数学百大经典例题
数学百大经典例题

例1 已知p:x1,x2是方程x2+5x-6=0的两根,q:x1+x2=-5,则p是q的[ ] A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件分析利用韦达定理转换.解∵x1,x2是方程x2+5x-6=0的两根,∴x1,x2的值分别为1,-6,∴x1+x2=1-6=-5.因此选A.说明:判断命题为假命题可以通过举反例.例2 p是q的充要条件的是[ ] A.p:3x+2>5,q:-2x-3>-5B.p:a>2,b<2,q:a>bC.p:四边形的两条对角线互相垂直平分,q:四边形是正方形D.p:a≠0,q:关于x的方程ax=1有惟一解分析逐个验证命题是否等价.解对A.p:x>1,q:x<1,所以,p是q的既不充分也不必要条件;对B.p q但q p,p是q的充分非必要条件;对C.p q且q p,p是q的必要非充分条件;⇒⇒⇔D p q q p p q p q D对.且,即,是的充要条件.选.说明:当a=0时,ax=0有无数个解.例3 若A是B成立的充分条件,D是C成立的必要条件,C是B成立的充要条件,则D是A成立的[ ] A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件分析通过B、C作为桥梁联系A、D.解∵A是B的充分条件,∴A B①∵D是C成立的必要条件,∴C D②∵是成立的充要条件,∴③⇔C B C B由①③得A C④由②④得A D.∴D 是A 成立的必要条件.选B .说明:要注意利用推出符号的传递性.例4 设命题甲为:0<x <5,命题乙为|x -2|<3,那么甲是乙的[ ]A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 分析 先解不等式再判定.解 解不等式|x -2|<3得-1<x <5.∵0<x <5-1<x <5,但-1<x <50<x <5 ∴甲是乙的充分不必要条件,选A .说明:一般情况下,如果条件甲为x ∈A ,条件乙为x ∈B .当且仅当时,甲为乙的充分条件;当且仅当时,甲为乙的必要条件;A B A B ⊆⊇当且仅当A =B 时,甲为乙的充要条件. 例5 设A 、B 、C 三个集合,为使A(B ∪C),条件AB 是[ ]A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件 分析 可以结合图形分析.请同学们自己画图.∴A(B ∪C).但是,当B =N ,C =R ,A =Z 时, 显然A(B ∪C),但AB 不成立, 综上所述:“A B ”“A (B ∪C)”,而“A (B ∪C)”“AB ”.即“AB ”是“A (B ∪C)”的充分条件(不必要).选A .说明:画图分析时要画一般形式的图,特殊形式的图会掩盖真实情况. 例6 给出下列各组条件:(1)p :ab =0,q :a 2+b 2=0;(2)p :xy ≥0,q :|x|+|y|=|x +y|;(3)p :m >0,q :方程x 2-x -m =0有实根; (4)p :|x -1|>2,q :x <-1. 其中p 是q 的充要条件的有[ ]A .1组B .2组C .3组D .4组分析 使用方程理论和不等式性质. 解 (1)p 是q 的必要条件 (2)p 是q 充要条件 (3)p 是q 的充分条件 (4)p 是q 的必要条件.选A .说明:ab =0指其中至少有一个为零,而a 2+b 2=0指两个都为零. 例>>是>>的条件.7x 3x 3x x x 12112⎧⎨⎩+⎧⎨⎩x 269分析 将前后两个不等式组分别作等价变形,观察两者之间的关系.解>且>+>且>,但当取=,=时,>>成立,而>>不成立=与>矛盾,所以填“充分不必要”.x 3x 3x x 6x x 9x 10x 2(x 2x 3)1212121222⇒+⎧⎨⎩⎧⎨⎩x x x x x x 1212126933 说明:>>->->x 3x 3 x 30x 301212⎧⎨⎩⇔⎧⎨⎩ ⇔⎧⎨⎩⇔⎧⎨⎩(x 3)(x 3)0(x 3)(x 3)0x x 6x x 3(x x )901212121212-+->-->+>-++>这一等价变形方法有时会用得上.例8 已知真命题“a ≥bc >d ”和“a <be ≤f ”,则“c ≤d ”是“e ≤f ”的________条件.分析 ∵a ≥b c >d(原命题), ∴c ≤d a <b(逆否命题). 而a <b e ≤f ,∴c ≤de ≤f 即c ≤d 是e ≤f 的充分条件.答 填写“充分”.说明:充分利用原命题与其逆否命题的等价性是常见的思想方法. 例9 ax 2+2x +1=0至少有一个负实根的充要条件是[ ]A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0分析 此题若采用普通方法推导较为复杂,可通过选项提供的信息,用排除法解之.当a =1时,方程有负根x =-1,当a =0时,x =-.故排除、、选.12A B D C 解常规方法:当=时,=-. a 0x 12当a ≠0时1a 0ax 2x 10021a 0a 12.>,则++=至少有一个负实根<-<<≤.⇔---⇔-⇔24422a a2a 0ax 2x 100221a 21a 1a 02.<,则++=至少有一个负实根<>->-><.⇔-+-⇔⇔⇔2442a a综上所述a ≤1.即ax 2+2x +1=0至少有一个负实根的充要条件是a ≤1. 说明:特殊值法、排除法都是解选择题的好方法.例10 已知p 、q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,那么s ,r ,p 分别是q 的什么条件?分析 画出关系图1-21,观察求解.解 s 是q 的充要条件;(s r q ,q s)r 是q 的充要条件;(r q ,q s r) p 是q 的必要条件;(q s r p)说明:图可以画的随意一些,关键要体现各个条件、命题之间的逻辑关系.例11 关于x 的不等式 |x |x 3(a 1)x 2(3a 1)0AB A B 1a 3a 12-≤与-+++≤的解集依次为与,问“”是“≤≤或=-”的充要条件吗?()()a a +-⊆121222分析 化简A 和B ,结合数轴,构造不等式(组),求出a . 解 A ={x|2a ≤x ≤a 2+1},B ={x|(x -2)[x -(3a +1)]≤0}当≤+即≥时,23a 1a 13B ={x|2≤x ≤3a +1}.A B 2a 2a +13a +11a 323a 1a 2⊆⇔⎧⎨⎩⇔≥≤≤≤当>+即<时,13 B ={x|3a +1≤x ≤2}A B 2a 3a +1a +12a 1A B a 11a 3A B 1a 3a 12⊆⇔⎧⎨⎩⇔⊆⇔⊆≥≤=-.综上所述:=-或≤≤.∴“”是“≤≤或=-”的充要条件.说明:集合的包含关系、命题的真假往往与解不等式密切相关.在解题时要理清思路,表达准确,推理无误.例>,>是<的必要条件还是充分条件,还是充12 x y xy 011x y要条件?分析 将充要条件和不等式同解变形相联系. 解.当<时,可得-<即< 1001111x yx y y x xy-则-><或-<>,即<<或>>,y x 0xy 0y x 0xy 0 x y xy 0x 0⎧⎨⎩⎧⎨⎩⎧⎨⎩⎧⎨⎩y xy故<不能推得>且>有可能得到<<,即>且>并非<的必要条件.1111x y x yxy x yx y xy 0()x y xy0⎧⎨⎩2x y xy 0x y x 0y 0x yx 0y 0x y xy 0.当>且>则分成两种情况讨论:>>>或><<不论哪一种情况均可化为<.∴>且>是<的充分条件.⎧⎨⎪⎩⎪⎧⎨⎪⎩⎪1111x y x y说明:分类讨论要做到不重不漏.例13 设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α,β均大于1的什么条件?分析 把充要条件和方程中根与系数的关系问题相联系,解题时需 要搞清楚条件与结论分别指什么.然后再验证是还是还是.p q p q q p p q ⇒⇒⇔解据韦达定理得:=α+β,=αβ,判定的条件是:>>结论是:α>β>还要注意条件中,,需要满足大前提Δ=-≥ a b p q (p a b a 4b 0)2a b 2111⎧⎨⎩⎧⎨⎩(1)1a2b1由α>β>得=α+β>,=αβ>,1⎧⎨⎩∴q p.上述讨论可知:a>2,b>1是α>1,β>1的必要但不充分条件.说明:本题中的讨论内容在二次方程的根的分布理论中常被使用.例14 (1991年全国高考题)设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么[ ] A.丙是甲的充分条件,但不是甲的必要条件B.丙是甲的必要条件,但不是甲的充分条件C.丙是甲的充要条件D.丙不是甲的充分条件,也不是甲的必要条件分析1:由丙乙甲且乙丙,即丙是甲的充分不必要条件.分析2:画图观察之.答:选A.说明:抽象命题之间的逻辑关系通常靠画图观察比较方便。
数学百大经典例

数学百大经典例————————————————————————————————作者:————————————————————————————————日期:例1 简述下列问题的结论,并画图说明:(1)直线⊂a 平面α,直线A a b =I ,则b 和α的位置关系如何? (2)直线α⊂a ,直线a b //,则直线b 和α的位置关系如何? 分析:(1)由图(1)可知:α⊂b 或A b =αI ; (2)由图(2)可知:α//b 或α⊂b .说明:此题是考查直线与平面位置关系的例题,要注意各种位置关系的画法与表示方法.典型例题二例2 P 是平行四边形ABCD 所在平面外一点,Q 是PA 的中点,求证://PC 平面BDQ . 分析:要证明平面外的一条直线和该平面平行,只要在该平面内找到一条直线和已知直线平行就可以了.证明:如图所示,连结AC ,交BD 于点O , ∵四边形ABCD 是平行四边形∴CO AO =,连结OQ ,则OQ 在平面BDQ 内,且OQ 是APC ∆的中位线,∴OQ PC //. ∵PC 在平面BDQ 外, ∴//PC 平面BDQ .说明:应用线面平行的判定定理证明线面平行时,关键是在平面内找一条直线与已知直线平行,怎样找这一直线呢?由于两条直线首先要保证共面,因此常常设法过已知直线作一平面与已知平面相交,如果能证明已知直线和交线平行,那么就能够马上得到结论.这一个证明线面平行的步骤可以总结为:过直线作平面,得交线,若线线平行,则线面平行.例3 经过两条异面直线a ,b 之外的一点P ,可以作几个平面都与a ,b 平行?并证明你的结论.分析:可考虑P 点的不同位置分两种情况讨论. 解:(1)当P 点所在位置使得a ,P (或b ,P )本身确定的平面平行于b (或a )时,过P 点再作不出与a ,b 都平行的平面;(2)当P 点所在位置a ,P (或b ,P )本身确定的平面与b (或a )不平行时,可过点P 作a a '//,b b //'.由于a ,b 异面,则a ',b '不重合且相交于P .由于P b a =''I ,a ',b '确定的平面α,则由线面平行判定定理知:α//a ,α//b .可作一个平面都与a ,b 平行.故应作“0个或1个”平面.说明:本题解答容易忽视对P 点的不同位置的讨论,漏掉第(1)种情况而得出可作一个平面的错误结论.可见,考虑问题必须全面,应区别不同情形分别进行分类讨论.典型例题四例4 平面外的两条平行直线中的一条平行于这个平面,那么另一条直线也平行于这个平面.已知:直线b a //,//a 平面α,α⊄b . 求证:α//b .证明:如图所示,过a 及平面α内一点A 作平面β. 设c =βαI ,∵α//a , ∴c a //. 又∵b a //, ∴c b //.∵α⊄b ,α⊂c , ∴α//b .说明:根据判定定理,只要在α内找一条直线b c //,根据条件α//a ,为了利用直线和平面平行的性质定理,可以过a 作平面β与α相交,我们常把平面β称为辅助平面,它可以起到桥梁作用,把空间问题向平面问题转化.和平面几何中添置辅助线一样,在构造辅助平面时,首先要确认这个平面是存在的,例如,本例中就是以“直线及直线外一点确定一个平面”为依据来做出辅助平面的.典型例题五例5 已知四面体ABC S -的所有棱长均为a .求:(1)异面直线AB SC 、的公垂线段EF 及EF 的长; (2)异面直线EF 和SA 所成的角.分析:依异面直线的公垂线的概念求作异面直线AB SC 、的公垂线段,进而求出其距离;对于异面直线所成的角可采取平移构造法求解.解:(1)如图,分别取AB SC 、的中点F E 、,连结CF SF 、.由已知,得SAB ∆≌CAB ∆. ∴CF SF =,E 是SC 的中点, ∴SC EF ⊥.同理可证AB EF ⊥∴EF 是AB SC 、的公垂线段.在SEF Rt ∆中,a SF 23=,a SE 21=. ∴22SE SF EF -=a a a 22414322=-. (2)取AC 的中点G ,连结EG ,则SA EG //.∴EF 和GE 所成的锐角或直角就是异面直线EF 和SA 所成的角. 连结FG ,在EFG Rt ∆中,a EG 21=,a GF 21=,a EF 22=. 由余弦定理,得22222124142412cos 222222=⋅⋅-+=⋅⋅-+=∠a a aa a EF EG GF EF EG GEF . ∴ο45=∠GEF .故异面直线EF 和SA 所成的角为ο45.说明:对于立体几何问题要注意转化为平面问题来解决,同时要将转化过程简要地写出来,然后再求值.典型例题六例6 如果一条直线与一个平面平行,那么过这个平面内的一点且与这条直线平行的直线必在这个平面内.已知:直线α//a ,α∈B ,b B ∈,a b //.求证:α⊂b .分析:由于过点B 与a 平行的直线是惟一存在的,因此,本题就是要证明,在平面α外,不存在过B 与a 平行的直线,这是否定性命题,所以使用反证法.证明:如图所示,设α⊄b ,过直线a 和点B 作平面β,且'b =αβI . ∵α//a ,∴α//'b .这样过B 点就有两条直线b 和'b 同时平行于直线a ,与平行公理矛盾. ∴b 必在α内.说明:(1)本例的结论可以直接作为证明问题的依据. (2)本例还可以用同一法来证明,只要改变一下叙述方式.如上图,过直线a 及点B 作平面β,设'b =αβI .∵α//a ,∴α//'b .这样,'b 与b 都是过B 点平行于a 的直线,根据平行公理,这样的直线只有一条, ∴b 与'b 重合.∵α⊂'b ,∴α⊂b .典型例题七例7 下列命题正确的个数是( ).(1)若直线l 上有无数个点不在平面α内,则α//l ; (2)若直线l 平行于平面α内的无数条直线,则α//l ;(3)若直线l 与平面α平行,则l 与平面α内的任一直线平行; (4)若直线l 在平面α外,则α//l .A .0个B .1个C .2个D .3个分析:本题考查的是空间直线与平面的位置关系.对三种位置关系定义的准确理解是解本题的关键.要注意直线和平面的位置关系除了按照直线和平面公共点的个数来分类,还可以按照直线是否在平面内来分类.解:(1)直线l 上有无数个点不在平面α内,并没有说明是所在点都不在平面α内,因而直线可能与平面平行亦有可能与直线相交.解题时要注意“无数”并非“所有”.(2)直线l 虽与α内无数条直线平行,但l 有可能在平面α内,所以直线l 不一定平行α.(3)这是初学直线与平面平行的性质时常见错误,借助教具我们很容易看到.当α//l 时,若α⊂m 且l m //,则在平面α内,除了与m 平行的直线以外的每一条直线与l 都是异面直线.(4)直线l 在平面α外,应包括两种情况:α//l 和l 与α相交,所以l 与α不一定平行. 故选A .说明:如果题中判断两条直线与一平面之间的位置关系,解题时更要注意分类要完整,考虑要全面.如直线l 、m 都平行于α,则l 与m 的位置关系可能平行,可能相交也有可能异面;再如直线m l //、α//l ,则m 与α的位置关系可能是平行,可能是m 在α内.典型例题八例8 如图,求证:两条平行线中的一条和已知平面相交,则另一条也与该平面相交. 已知:直线b a //,P a =α平面I .求证:直线b 与平面α相交.分析:利用b a //转化为平面问题来解决,由b a //可确定一辅助平面β,这样可以把题中相关元素集中使用,既创造了新的线面关系,又将三维降至二维,使得平几知识能够运用.解:∵b a //,∴a 和b 可确定平面β. ∵P a =αI,∴平面α和平面β相交于过点P 的直线l .∵在平面β内l 与两条平行直线a 、b 中一条直线a 相交,∴l 必定与直线b 也相交,不妨设Q l b =I ,又因为b 不在平面α内(若b 在平面α内,则α和β都过相交直线b 和l ,因此α与β重合,a 在α内,和已知矛盾).所以直线b 和平面α相交.说明:证明直线和平面相交的常用方法有:证明直线和平面只有一个公共点;否定直线在平面内以及直线和平面平行;用此结论:一条直线如果经过平面内一点,又经过平面外一点,则此直线必与平面相交(此结论可用反证法证明).典型例题九例9 如图,求证:经过两条异面直线中的一条,有且仅有一个平面与另一条直线平行.已知:a 与b 是异面直线.求证:过b 且与a 平行的平面有且只有一个.分析:本题考查存在性与唯一性命题的证明方法.解题时要理解“有且只有”的含义.“有”就是要证明过直线b 存在一个平面α,且α//a ,“只有”就是要证满足这样条件的平面是唯一的.存在性常用构造法找出(或作出)平面,唯一性常借助于反证法或其它唯一性的结论.证明:(1)在直线b 上任取一点A ,由点A 和直线a 可确定平面β. 在平面β内过点A 作直线'a ,使a a //',则'a 和b 为两相交直线, 所以过'a 和b 可确定一平面α. ∵α⊂b ,a 与b 为异面直线,∴α⊄a .又∵'//a a ,α⊂'a ,∴α//a .故经过b 存在一个平面α与a 平行.(2)如果平面γ也是经过b 且与a 平行的另一个平面, 由上面的推导过程可知γ也是经过相交直线b 和'a 的.由经过两相交直线有且仅有一个平面的性质可知,平面α与γ重合, 即满足条件的平面是唯一的.说明:对于两异面直线a 和b ,过b 存在一平面α且与a 平行,同样过a 也存在一平面β且与b 平行.而且这两个平面也是平行的(以后可证).对于异面直线a 和b 的距离,也可转化为直线a 到平面α的距离,这也是求异面直线的距离的一种方法.典型例题十例10 如图,求证:如果一条直线和两个相交平面都平行,那么这条直线和它们的交线平行.已知:l =βαI ,α//a ,β//a ,求证:l a //.分析:本题考查综合运用线面平行的判定定理和性质定理的能力.利用线面平行的性质定理,可以先证明直线a 分别和两平面的某些直线平行,即线面平行可得线线平行.然后再用线面平行的判定定理和性质定理来证明a 与l 平行.证明:在平面α内取点P ,使l P ∉,过P 和直线a 作平面γ交α于b . ∵α//a ,γ⊂a ,b =αγI , ∴b a //.同理过a 作平面δ交β于c . ∵β//a ,δ⊂a ,c =βδI , ∴c a //. ∴c b //.∵β⊄b ,β⊂c , ∴β//b .又∵α⊂b ,l =βαI , ∴l b //. 又∵b a //, ∴l a //.另证:如图,在直线l 上取点M ,过M 点和直线a 作平面和α相交于直线1l ,和β相交于直线2l .∵α//a ,∴1//l a , ∵β//a ,∴2//l a ,但过一点只能作一条直线与另一直线平行. ∴直线1l 和2l 重合.又∵α⊂1l ,β⊂2l , ∴直线1l 、2l 都重合于直线l ,∴l a //. 说明:“线线平行”与“线面平行”在一定条件下是可以相互转化的,这种转化的思想在立体几何中非常重要.典型例题十一例11 正方形ABCD 与正方形ABEF 所在平面相交于AB ,在AE 、BD 上各取一点P 、Q ,且DQ AP =.求证://PQ 面BCE .分析:要证线面平行,可以根据判定定理,转化为证明线线平行.关键是在平面BCE 中如何找一直线与PQ 平行.可考察过PQ 的平面与平面BCE 的交线,这样的平面位置不同,所找的交线也不同.证明一:如图,在平面ABEF 内过P 作AB PM //交BE 于M ,在平面ABCD 内过Q 作AB QN //交BC 于N ,连结MN .∵AB PM //,∴AEPEAB PM =. 又∵CD AB QN ////,∴BD BQ DC QN =,即BDBQAB QN =. ∵正方形ABEF 与ABCD 有公共边AB , ∴DB AE =.∵DQ AP =,∴BQ PE =. ∴QN PM =.又∵AB PM //,AB QN //, ∴QN PM //.∴四边形PQNM 为平行四边形.∴MN PQ //.又∵⊂MN 面BCE ,∴//PQ 面BCE .证明二:如图,连结AQ 并延长交BC 于S ,连结ES .∵AD BS //,∴QBDQ QS AQ =. 又∵正方形ABEF 与正方形ABCD 有公共边AB ,∴DB AE =,∵DQ AP =,∴QB PE =.∴QSAQ QB DQ PE AP ==. ∴ES PQ //,又∵⊂ES 面BEC ,∴//PQ 面BEC .说明:从本题中我们可以看出,证线面平行的根本问题是要在平面内找一直线与已知直线平行,此时常用中位线定理、成比例线段、射影法、平行移动、补形等方法,具体用何种方法要视条件而定.此题中我们可以把“两个有公共边的正方形”这一条件改为“两个全等的矩形”,那么题中的结论是否仍然成立?典型例题十二例12 三个平面两两相交于三条交线,证明这三条交线或平行、或相交于一点.已知:a =βαI ,b =γβI ,c =αγI .求证:a 、b 、c 互相平行或相交于一点.分析:本题考查的是空间三直线的位置关系,我们可以先从熟悉的两条交线的位置关系入手,根据共面的两条直线平行或相交来推论三条交线的位置关系.证明:∵a =βαI ,b =γβI ,∴β⊂b a 、.∴a 与b 平行或相交.①若b a //,如图∵γ⊂b ,γ⊄a ,∴γ//a .又∵c =αγI ,α⊂a ,∴c a //.∴c b a ////.②若a 与b 相交,如图,设O b a =I ,∴a O ∈,b O ∈.又∵βαI =a ,γβI =b .∴α∈O ,γ∈O又∵c =γαI ,∴c O ∈.∴直线a 、b 、c 交于同一点O .说明:这一结论常用于求一个几何体的截面与各面交线问题,如正方体ABCD 中, M 、N 分别是1CC 、11B A 的中点,画出点D 、M 、N 的平面与正方体各面的交线,并说明截面多边形是几边形?典型例题十三例13 已知空间四边形ABCD ,AC AB ≠,AE 是ABC ∆的BC 边上的高,DF 是BCD ∆的BC 边上的中线,求证:AE 和DF 是异面直线.证法一:(定理法)如图由题设条件可知点E 、F 不重合,设BCD ∆所在平面α.∴⇒⎪⎪⎩⎪⎪⎨⎧∉∈∉⊂DFEEADFαααAE和DF是异面直线.证法二:(反证法)若AE和DF不是异面直线,则AE和DF共面,设过AE、DF的平面为β.(1)若E、F重合,则E是BC的中点,这与题设ACAB≠相矛盾.(2)若E、F不重合,∵EFB∈,EFC∈,β⊂EF,∴β⊂BC.∵β∈A,β∈D,∴A、B、C、D四点共面,这与题设ABCD是空间四边形相矛盾.综上,假设不成立.故AE和DF是异面直线.说明:反证法不仅应用于有关数学问题的证明,在其他方面也有广泛的应用.首先看一个有趣的实际问题:“三十六口缸,九条船来装,只准装单,不准装双,你说怎么装?”对于这个问题,同学们可试验做一做.也许你在试验几次后却无法成功时,觉得这种装法的可能性是不存在的.那么你怎样才能清楚地从理论上解释这种装法是不可能呢?用反证法可以轻易地解决这个问题.假设这种装法是可行的,每条船装缸数为单数,则9个单数之和仍为单数,与36这个双数矛盾.只须两句话就解决了这个问题.典型例题十四例14已知AB、BC、CD是不在同一平面内的三条线段,E、F、G分别是AB、BC、CD的中点,求证:平面EFG和AC平行,也和BD平行.分析:欲证明AC//平面EFG,根据直线和平面平等的判定定理只须证明AC平行平面EFG内的一条直线,由图可知,只须证明EFAC//.证明:如图,连结AE、EG、EF、GF.在ABC∆中,E、F分别是AB、BC的中点.∴EFAC//.于是AC//平面EFG.同理可证,BD//平面EFG.说明:到目前为止,判定直线和平面平行有以下两种方法:(1)根据直线和平面平行定义;(2)根据直线和平面平行的判定定理.典型例题十五例15 已知空间四边形ABCD ,P 、Q 分别是ABC ∆和BCD ∆的重心,求证:ACD PQ 平面//.分析:欲证线面平行,须证线线平行,即要证明PQ 与平面ACD 中的某条直线平行,根据条件,此直线为AD ,如图.证明:取BC 的中点E .∵P 是ABC ∆的重心,连结AE ,则1∶3=PE AE ∶,连结DE ,∵Q 为BCD ∆的重心,∴1∶3=QE DE ∶,∴在AED ∆中,AD PQ //.又ACD AD 平面⊂,ACD PQ 平面⊄,∴ACD PQ 平面//.说明:(1)本例中构造直线AD 与PQ 平行,是充分借助于题目的条件:P 、Q 分别是ABC ∆和BCD ∆的重心,借助于比例的性质证明AD PQ //,该种方法经常使用,望注意把握.(2)“欲证线面平行,只须证线线平行”.判定定理给我们提供了一种证明线面平等的方法.根据问题具体情况要熟练运用.典型例题十六例16 正方体1111D C B A ABCD -中,E 、G 分别是BC 、11D C 的中点如下图. 求证:D D BB EG 11//平面.分析:要证明D D BB EG 11//平面,根据线面平等的判定定理,需要在平面D D BB 11内找到与EG 平行的直线,要充分借助于E 、G 为中点这一条件.证明:取BD 的中点F ,连结EF 、F D 1.∵E 为BC 的中点,∴EF 为BCD ∆的中位线,则DC EF //,且CD EF 21=. ∵G 为11D C 的中点,∴CD G D //1且CD G D 211=, ∴G D EF 1//且G D EF 1=,∴四边形G EFD 1为平行四边形,∴EG F D //1,而111B BDD F D 平面⊂,11B BDD EG 平面⊄,∴11//B BDD EG 平面.典型例题十七例17 如果直线α平面//a ,那么直线a 与平面α内的( ).A .一条直线不相交B .两条相交直线不相交C .无数条直线不相交D .任意一条直线都不相交解:根据直线和平面平行定义,易知排除A 、B .对于C ,无数条直线可能是一组平行线,也可能是共点线,∴C 也不正确,应排除C .与平面α内任意一条直线都不相交,才能保证直线a 与平面α平行,∴D 正确. ∴应选D .说明:本题主要考查直线与平面平行的定义.典型例题十八例18 分别和两条异面直线平行的两条直线的位置关系是( ).A .一定平行B .一定相交C .一定异面D .相交或异面解:如图中的甲图,分别与异面直线a 、b 平行的两条直线c 、d 是相交关系; 如图中的乙图,分别与异面直线a 、b 平行的两条直线c 、d 是相交关系.综上,可知应选D .说明:本题主要考查有关平面、线面平行等基础知识以及空间想象能力.典型例题十九例19 a 、b 是两条异面直线,下列结论正确的是( ).A .过不在a 、b 上的任一点,可作一个平面与a 、b 平行B .过不在a 、b 上的任一点,可作一个直线与a 、b 相交C .过不在a 、b 上的任一点,可作一个直线与a 、b 都平行D .过a 可以并且只可以作一平面与b 平行解:A 错,若点与a 所确定的平面与b 平行时,就不能使这个平面与α平行了. B 错,若点与a 所确定的平面与b 平等时,就不能作一条直线与a ,b 相交.C 错,假如这样的直线存在,根据公理4就可有b a //,这与a ,b 异面矛盾.D 正确,在a 上任取一点A ,过A 点做直线b c //,则c 与a 确定一个平面与b 平行,这个平面是惟一的.∴应选D.说明:本题主要考查异面直线、线线平行、线面平行等基本概念.典型例题二十例20 (1)直线b a //,α平面//a ,则b 与平面α的位置关系是_____________.(2)A 是两异面直线a 、b 外的一点,过A 最多可作___________个平面同时与a 、b 平行.解:(1)当直线b 在平面α外时,α//b ;当直线b 在平面α内时,α⊂b .∴应填:α//b 或α⊂b .(2)因为过A 点分别作a ,b 的平行线只能作一条,(分别称'a ,'b )经过'a ,'b 的平面也是惟一的.所以只能作一个平面;还有不能作的可能,当这个平面经过a 或b 时,这个平面就不满足条件了.∴应填:1.说明:考虑问题要全面,各种可能性都要想到,是解答本题的关键.典型例题二十一例21 如图,α//a ,A 是α的另一侧的点,a D C B ∈,,,线段AB ,AC ,AD 交α于E ,F ,G ,若4=BD ,4=CF ,5=AF ,则EG =___________.解:∵α//a ,ABD EG 平面I α=.∴EG a //,即EG BD //, ∴FCAF AF BD EG CD BC FG EF AC AF CD FG BC EF +==++===. 则9204545=+⨯=+⋅=FC AF BD AF EG . ∴应填:920. 说明:本题是一道综合题,考查知识主要有:直线与平面平行性质定理、相似三角形、比例性质等.同时也考查了综合运用知识,分析和解决问题的能力.。
高考数学百大经典例题 算术平均数与几何平均数

典型例题一例1 已知R c b a ∈,,,求证.222ca bc ab c b a ++≥++ 证明:∵ ab b a 222≥+, bc c b 222≥+,ca a c 222≥+, 三式相加,得)(2)(2222ca bc ab c b a ++≥++,即.222ca bc ab c b a ++≥++说明:这是一个重要的不等式,要熟练掌握.典型例题二例2 已知c b a 、、是互不相等的正数,求证:abc b a c c a b c b a 6)()()(222222>+++++ 证明:∵0222>>+a bc c b ,, ∴abc c b a 2)(22>+同理可得:abc b a c abc c a b 2)(2)(2222>+>+,. 三个同向不等式相加,得abc b a c c a b c b a 6)()()(222222>+++++ ①说明:此题中c b a 、、互不相等,故应用基本不等式时,等号不成立.特别地,b a =,c b ≠时,所得不等式①仍不取等号.典型例题三例3 求证)(2222222c b a a c c b b a ++≥+++++.分析:此问题的关键是“灵活运用重要基本不等式ab b a 222≥+,并能由)(2c b a ++这一特征,思索如何将ab b a 222≥+进行变形,进行创造”.证明:∵ab b a 222≥+,两边同加22b a +得222)()(2b a b a +≥+.即2)(222b a b a +≥+.∴)(222122b a b a b a +≥+≥+.同理可得:)(2222c b c b +≥+,)(2222a c a c +≥+. 三式相加即得)(2222222c b a a c c b b a ++≥+++++.典型例题四例4 若正数a 、b 满足3++=b a ab ,则ab 的取值范围是 . 解:∵+∈R b a ,, ∴323+≥++=ab b a ab ,令ab y =,得0322≥--y y ,∴3≥y ,或1-≤y (舍去).∴92≥=ab y ,∴ ab 的取值范围是[).,9+∞说明:本题的常见错误有二.一是没有舍去1-≤y ;二是忘了还原,得出[)+∞∈,3ab .前者和后者的问题根源都是对ab 的理解,前者忽视了.0≥ab 后者错误地将2y 视为ab .因此,解题过程中若用换元法,一定要对所设“元”的取值范围有所了解,并注意还原之.典型例题五例5 (1)求41622++=x x y 的最大值. (2)求函数1422++=x x y 的最小值,并求出取得最小值时的x 值. (3)若0,0>>y x ,且2=+y x ,求22y x +的最小值.解:(1)41622++=x x y 13163)1(162222+++=+++=x x x x .3326=≤即y 的最大值为.3当且仅当13122+=+x x 时,即22=x 2±=x 时,取得此最大值.(2)1141142222-+++=++=x x x x y 3142=-⋅≥ ∴ y 的最小值为3,当且仅当11422+=+x x ,即4)1(22=+x ,212=+x ,1±=x 时取得此最小值.(3)∴ xy y x 222≥+ ∴222)()(2y x y x +≥+即2)(222y x y x +≥+∵2=+y x ∴222≥+y x 即22y x +的最小值为2. 当且仅当4==y x 时取得此最小值.说明:解这类最值,要选好常用不等式,特别注意等号成立的条件.典型例题六例6 求函数xx y 321--=的最值. 分析:本例的各小题都可用最值定理求函数的最值,但是应注意满足相应条件.如:0≠x ,应分别对0,0<>x x 两种情况讨论,如果忽视+∈R x 的条件,就会发生如下错误:∵ 6213221)32(1321-=⋅-≤+-=--=xx x x x x y ,.621max -=y 解:当0>x 时,03,02>>x x ,又632=⋅xx , 当且仅当x x 32=,即26=x 时,函数x x 32+有最小值.62 ∴ .621max -=y 当0<x 时,03,02>->-x x ,又6)3()2(=-⋅-xx , 当且仅当x x 32-=-,即26+=x 时,函数)32(x x +-最小值.62 ∴ .621min +=y典型例题七例7 求函数91022++=x x y 的最值.分析:291991)9(2222≥+++=+++=x x x x y .但等号成立时82-=x ,这是矛盾的!于是我们运用函数xx y 1+=在1≥x 时单调递增这一性质,求函数)3(1≥+=t tt y 的最值.解:设392≥+=x t ,∴t t x x y 191022+=++=.当3≥t 时,函数tt y 1+=递增. 故原函数的最小值为310313=+,无最大值.典型例题八例8 求函数4522++=x x y 的最小值.分析:用换元法,设242≥+=x t ,原函数变形为)2(1≥+=t tt y ,再利用函数)2(1≥+=t tt y 的单调性可得结果.或用函数方程思想求解.解:解法一: 设242≥+=x t ,故).2(14522≥+=++=t t t x x y212121212121121)()11()(2t t t t t t t t t t y y t t --=-+-=-≥>,设. 由202121><-t t t t ,,得:0121>-t t ,故:21y y <. ∴函数)2(1≥+=t t t y 为增函数,从而25212=+≥y . 解法二: 设242≥=+t x ,知)2(1≥+=t tt y ,可得关于t 的二次方程012=+-yt t ,由根与系数的关系,得:121=t t .又2≥t ,故有一个根大于或等于2,设函数1)(2+-=yt t t f ,则0)2(≤f ,即0124≤+-y ,故25≥y .说明:本题易出现如下错解:2414452222≥+++=++=x x x x y .要知道,41422+=+x x 无实数解,即2≠y ,所以原函数的最小值不是2.错误原因是忽视了等号成立的条件.当a 、b 为常数,且ab 为定值,b a ≠时,ab ba >+2,不能直接求最大(小)值,可以利用恒等变形ab b a b a 4)(2+-=+,当b a -之差最小时,再求原函数的最大(小)值.典型例题九例9 ,4,0,0=+>>b a b a 求2211⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+b b a a 的最小值.分析:此题出现加的形式和平方,考虑利用重要不等式求最小值. 解:由,4=+b a ,得.2162)(222ab ab b a b a -=-+=+ 又,222ab b a ≥+得ab ab 2216≥-,即4≤ab .21111222⎪⎭⎫ ⎝⎛+++≥⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+∴b b a a b b a a .225244444422=⎪⎭⎫ ⎝⎛+≥⎪⎭⎫ ⎝⎛+=ab 故2211⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+b b a a 的最小值是225.说明:本题易出现如下错解:8441212112222=+=⎪⎪⎭⎫ ⎝⎛⋅+⎪⎪⎭⎫ ⎝⎛⋅≥⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+∴b b a a b b a a ,故2211⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+b b a a 的最小值是8.错误的原因是,在两次用到重要不等式当等号成立时,有1=a 和1=b ,但在4=+b a 的条件下,这两个式子不会同时取等号(31==b a 时,).排除错误的办法是看都取等号时,与题设是否有矛盾.典型例题十例10 已知:+∈R c b a ,,,求证:c b a cab b ac a bc ++≥++. 分析:根据题设,可想到利用重要不等式进行证明.证明:.2,222c bac a bc c ab abc b ac a bc ≥+=≥+即同理:a cab b ac b c ab a bc 2,2≥+≥+ ).(22c b a c ab b ac a bc ++≥⎪⎭⎫⎝⎛++∴.c b a cab b ac a bc ++≥++∴说明:证明本题易出现的思维障碍是:(1)想利用三元重要不等式解决问题;(2)不会利用重要不等式ab ba ≥+2的变式;(3)不熟练证明轮换对称不等式的常用方法.因此,在证明不等式时,应根据求证式两边的结构,合理地选择重要不等式.另外,本题的证明方法在证轮换对称不等式时具有一定的普遍性.典型例题十一例11设R e d c b a ∈、、、、,且8=++++e d c b a ,1622222=++++e d c b a ,求e 的最大值.分析:如何将22b a +与b a +用不等式的形式联系起来,是本题获解的关键.算术平均数与几何平均数定理ab b a 222≥+两边同加22b a +之后得222)(21b a b a +≥+. 解:由222)(21b a b a +≥+,则有 ,)(41])()[(212222222d c b a d c b a d c b a +++≥+++≥+++.5160)8(411622≤≤⇒-≥-∴e e e.51656=时,当最大值e d c b a ====说明:常有以下错解:abcd cd ab d c b a e 4)(21622222≥+≥+++=-, 448abcd d c b a e ≥+++=-.故abcd e abcd e ≥-≥-4222)48(,4)16(. 两式相除且开方得516014)8(1622≤≤⇒≥--e e e .错因是两不等式相除,如211,12>>,相除则有22>. 不等式222)(21b a b a +≥+是解决从“和”到“积”的形式.从“和”到“积”怎么办呢?有以下变形:222)(21b a b a +≥+或)(21222b a b a +≥+.典型例题十二例12 已知:0>y x >,且:1=xy ,求证:2222≥-+yx y x ,并且求等号成立的条件.分析:由已知条件+∈R y x ,,可以考虑使用均值不等式,但所求证的式子中有y x -,无法利用xy y x 2≥+,故猜想先将所求证的式子进行变形,看能否出现)(1)(y x y x -+-型,再行论证.证明:,1.0,0=>-∴>>xy y x y x 又yx xyy x y x y x -+-=-+∴2)(222 yx y x -+-=2)( .22)(2)(2=-⋅-≥y x y x等号成立,当且仅当)(2)(y x y x -=-时..4,2,2)(222=+=-=-∴y x y x y x ,6)(,12=+∴=y x xy.6=+∴y x由以上得226,226-=+=y x 即当226,226-=+=y x 时等号成立.说明:本题是基本题型的变形题.在基本题型中,大量的是整式中直接使用的均值不等式,这容易形成思维定式.本题中是利用条件将所求证的式子化成分式后再使用均值不等式.要注意灵活运用均值不等式.典型例题十三例13 已知00>>y x ,,且302=++xy y x ,求xy 的最大值. 分析:由302=++xy y x ,可得,)300(230<<+-=x xxy , 故)300(2302<<+-=x x x x xy ,令xx x t +-=2302.利用判别式法可求得t (即xy )的最大值,但因为x 有范围300<<x 的限制,还必须综合韦达定理展开讨论.仅用判别式是不够的,因而有一定的麻烦,下面转用基本不等式求解.解法一:由302=++xy y x ,可得,)300(230<<+-=x xxy . xx x x x x xy +-+++-=+-=264)2(34)2(23022⎥⎦⎤⎢⎣⎡+++-=264)2(34x x 注意到16264)2(2264)2(=+⋅+≥+++x x x x . 可得,18≤xy . 当且仅当2642+=+x x ,即6=x 时等号成立,代入302=++xy y x 中得3=y ,故xy 的最大值为18.解法二:+∈R y x , ,xy xy y x ⋅=≥+∴22222, 代入302=++xy y x 中得:3022≤+⋅xy xy 解此不等式得180≤≤xy .下面解法见解法一,下略.说明:解法一的变形是具有通用效能的方法,值得注意:而解法二则是抓住了问题的本质,所以解得更为简捷.典型例题十四例14 若+∈R c b a 、、,且1=++c b a ,求证:8111111≥⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-c b a .分析:不等式右边的数字“8”使我们联想到可能是左边三个因式分别使用基本不等式所得三个“2”连乘而来,而abca cb a a a 2111≥+=-=-. 证明:acb a a a +=-=-111,又0>a ,0>b ,0>c , a bc a c b 2≥+∴,即a bca a 21≥-. 同理b ca b 211≥-,cab c 211≥-, 8111111≥⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-∴c b a .当且仅当31===c b a 时,等号成立. 说明:本题巧妙利用1=++c b a 的条件,同时要注意此不等式是关于c b a 、、的轮换式.典型例题十五例15 设+∈R c b a 、、,求证:)(2222222c b a a c c b b a ++≥+++++.分析:本题的难点在于222222a c c b b a +++、、不易处理,如能找出22b a +与b a +之间的关系,问题可得到解决,注意到:b a b a b a b a ab b a +≥+⇒+≥+⇒≥+)(2)()(222222222,则容易得到证明.证明:2222222)(2)(22b a ab b a b a ab b a +≥++≥+∴≥+, ,于是.)(222222b a b a b a +=+≥+ 同理:)(2222c b c b +≥+,)(2222a c a c +≥+. 三式相加即得:)(2222222c b a a c c b b a ++≥+++++.说明:注意观察所给不等式的结构,此不等式是关于c b a 、、的轮换式.因此只需抓住一个根号进行研究,其余同理可得,然后利用同向不等式的可加性.典型例题十六例16 已知:+∈R b a 、(其中+R 表示正实数)求证:.ba ab b a b a b a 112222222+≥≥⎪⎪⎭⎫ ⎝⎛+≥+≥+ 分析:要证明的这一串不等式非常重要,222b a +称为平方根,2b a +称为算术平均数,ab 称为几何平均数,ba 112+称为调和平均数.证明:().0412222222≥-=⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫⎝⎛+b a b a b a .222222⎪⎭⎫ ⎝⎛+≥⎪⎪⎭⎫ ⎝⎛+∴b a b a +∈R b a 、∴2222ba b a +≥+,当且仅当“b a =”时等号成立. .0)(412222≥-=⎪⎪⎭⎫ ⎝⎛+-+b a b a b a ∴222⎪⎪⎭⎫⎝⎛+≥+b a b a ,等号成立条件是“b a =” ,0)(41222≥-=-⎪⎪⎭⎫ ⎝⎛+b a ab b a ∴ab b a ≥⎪⎪⎭⎫⎝⎛+22,等号成立条件是“b a =”.ba abab b a b a ab ab ba ab +-+=+-=+-2)(2112 .0)()2(2≥+-=+-+=ba b a ab b a ab b a ab∴ba ab 112+≥,等号成立条件是“b a =”.说明:本题可以作为均值不等式推论,熟记以上结论有利于处理某些复杂不等式的证明问题.本例证明过程说明,不等式性质中的比较法是证明不等式的最基本、最重要的方法.典型例题十七例17 设实数1a ,1b ,1c ,2a ,2b ,2c 满足021>a a ,2111b c a ≥,2222b c a ≥,求证2212121)())((b b c c a a +≥++.分析:由条件可得到1a ,2a ,1c , 2c 同号.为方便,不妨都设为正.将求证式子的左边展开后可看出有交叉项21c a 和12c a 无法利用条件,但使用均值不等式变成乘积后,重新搭配,可利用条件求证.证明:同号.2121,,0a a a a ∴>同理,由22222111b c a b c a ≥≥,知1a 与1c 同号,2a 与2c 同号∴1a ,1c ,2a ,2c 同号.不妨都设为正. 122122112121))((c a c a c a c a c c a a +++=++∴122122212c a c a b b ⋅++≥221122212c a c a b b ⋅++= 222122212b b b b ⋅++≥ ||2212221b b b b ++=221212221)(2b b b b b b +=++≥,即2212121)())((b b c c a a +≥++.说明:本题是根据题意分析得1a ,1c ,2a ,2c 同号,然后利用均值不等式变形得证.换一个角度,由条件的特点我们还会联想到使用二次方程根的判别式,可能会有另一类证法.实际上,由条件可知1a ,1c ,2a ,2c 为同号,不妨设同为正.又∵2111b c a ≥,2222b c a ≥,∴211144b c a ≥,222244b c a ≥.不等式021121≥++c x b x a ,022222≥++c x b x a 对任意实数x 恒成立(根据二次三项式恒为正的充要条件),两式相加得0)()(2)(2121221≥+++++c c x b b x a a ,它对任意实数x 恒成立.同上可得:2212121)())((b b c c a a +≥++.典型例题十八例18 如下图所示,某畜牧基地要围成相同面积的羊圈4间,一面可利用原有的墙壁,其余各面用篱笆围成,篱笆总长为36m .问每间羊圈的长和宽各为多少时,羊圈面积最大?分析:可先设出羊圈的长和宽分别为x ,y ,即求xy 的最大值.注意条件3664=+y x 的利用.解:设每间羊圈的长、宽分别为x ,y ,则有3664=+y x ,即1832=+y x .设xy S = ,623223218xy y x y x =⋅≥+=227,227≤≤∴S xy 即 上式当且仅当y x 32=时取“=”.此时⎩⎨⎧===,1832,32y x y x ⎪⎩⎪⎨⎧==∴.3,29y x ∴羊圈长、宽分别为29m ,3m 时面积最大. 说明:(1)首先应设出变量(此处是长和宽),将题中条件数学化(即建立数学模型)才能利用数学知识求解;(2)注意在条件1832=+y x 之下求积xy 的最大值的方法:直接用不等式y x y x 3223218⋅≥+=,即可出现积xy .当然,也可用“减少变量”的方法:22218261)218(261)218(31)218(31⎪⎭⎫ ⎝⎛-+⋅≤-⋅⋅=-⋅==→-=x x x x x x xy S x y ,当且仅当x x 2182-=时取“=”.典型例题十九例19 某单位建造一间地面面积为12m 2的背面靠墙的矩形小房,房屋正面的造价为1200元/m 2,房屋侧面的造价为800 元/m 2,屋顶的造价为5800元.如果墙高为3m ,且不计房屋背面的费用,问怎样设计房屋能使总造价最低,最低总造价是多少元?分析:这是一个求函数最小值的问题,关键的问题是设未知数,建立函数关系.从已知条件看,矩形地面面积为12m 2,但长和宽不知道,故考虑设宽为x m ,则长为x 12m ,再设总造价为y .由题意就可以建立函数关系了.解:设矩形地面的正面宽为x m ,则长为x12m ;设房屋的总造价为y .根据题意,可得: 5800280012312003+⨯⋅⋅+⋅=xx y 5800576003600++=xx 580016236005800)16(3600+⋅⨯≥++=xx x x )(34600580028800元=+= 当xx 16=,即4=x 时,y 有最小值34600元. 因此,当矩形地面宽为4m 时,房屋的总造价最低,最低总造价是34600元.说明:本题是函数最小值的应用题,这类题在我们的日常生活中经常遇到,有求最小值的问题,也有求最大值的问题,这类题都是利用函数式搭桥,用均值不等式解决,解决的关键是等号是否成立,因此,在解这类题时,要注意验证等号的成立.典型例题二十例20 某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每1m 长造价40元,两侧墙砌砖,每1m 长造价45元,顶部每1m 2造价20元.计算:(1)仓库底面积S的最大允许值是多少?(2)为使S达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长? 分析:用字母分别表示铁栅长和一堵砖墙长,再由题意翻译数量关系.解:设铁栅长为x m ,一堵砖墙长为y m ,则有xy S =.由题意得(*).32002045240=+⨯+xy y x应用算术平均数与几何平均数定理,得 ,201202012020904023200S S xyxy xyy x +=+=+⋅≥,1606≤+∴S S 即:.0)10)(10(≤--S S,010,016≤-∴>+S S从而:.100≤S因此S 的最大允许值是2100m ,取得此最大值的条件是y x 9040=,而100=xy ,由此求得15=x ,即铁栅的长应是m 15.说明:本题也可将xS y =代入(*)式,导出关于x 的二次方程,利用判别式法求解. 典型例题二十一例21 甲、乙两地相距km s ,汽车从甲地匀速行驶到乙地,速度不超过km/h c ,已知汽车每小时的运输成本........(以元为单位)由可变部分和固定部分组成:可变部分与速度km/h v 的平方成正比,且比例系数为b ;固定部分为a 元.(1)把全程运输成本y 元表示为速度km/h v 的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,汽车应以多大速度行驶?分析:这是1997年的全国高考试题,主要考查建立函数关系式、不等式性质(公式)的应用.也是综合应用数学知识、思想和方法解决实际问题的一道优秀试题.解:(1)依题意知汽车从甲地匀速行驶到乙地所用的时间为h vs ,全程运输成本为 )(2bv va s v s bv v s a y +=⋅+⋅=. 故所求函数为)(bv ba s y +=,定义域为)0(c v ,∈. (2)由于vb a s 、、、都为正数, 故有bv ba s bv v as ⋅⋅≥+2)(, 即ab s bv vas 2)(≥+. 当且仅当bv v a =,即ba v =时上式中等号成立. 若cb a ≤时,则ba v =时,全程运输成本y 最小; 当c b a ≤,易证c v <<0,函数)()(bv v a s v f y +==单调递减,即c v =时,)(m i n bc ca s y +=. 综上可知,为使全程运输成本y 最小,在c b a ≤时,行驶速度应为b av =; 在c b a ≤时,行驶速度应为c v =.。
数学百大经典例题

调查学生如何进行简单随机抽样例、某校有学生1200人,为了调查某种情况打算抽取一个样本容量为50的样本,问此样本若采用简单随机抽样将如何获得?分析:简单随机抽样分两种:抽签法和随机数表法.尽管此题的总体中的个体数不一定算“较少”,但依题意其操作过程却是保障等概率的.解:法一:首先,把该校学生都编上号码:0001,0002,0003,…,1200.如用抽签法,则作1200个形状、大小相同的号签(号签可以用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌.抽签时,每次从中抽出1个号签,连续抽取50次,就得到一个容量为50的样本.法二:首先,把该校学生都编上号码:0001,0002,0003,…,1200如用随机数表法,则可在数表上随机选定一个起始位置(例如,随意投一针,针尖所指数字可作起始位置).假如起始位置是表中的第5行第9列的数字6,从6开始向右连续取数字,以4个数为一组,碰到右边线时向下错一行向左继续取,所得数字如下:6438,5482,4622,3162,4309,9006,1844,3253,2383,0130,3046,1943,6248,3469,0253,7887,3239,7371,28的,3445,9493,4977,2261,8442,……所取录的4位数字如果小于或等于1200,则对应此号的学生就是被抽取的个体;如果所取录的4位数字大于1200而小于或等于2400,则减去1200剩余数即是被抽取的号码;如果大于2400而小于3600,则减去2 400;依些类推.如果遇到相同的号码,则只留第一次取录的数字,其余的舍去.经过这样处理,被抽取的学生所对应的号码分别是:0438,0682,1022,0762,0709,0606,0644,0853,1183,013O,0646,0743,0248,1069,0253,0687,0839,0171,0445,1045,1093,0177,1061,0042,…一直取够50人为止.说明:规范的,不带主观意向的随机抽样,才能保证公平性、客观性、准确性和可信性.故此,抽样的过程,也反映科学的工作态度和求实的工作作风.判断抽牌方法是否为简单随机抽样例人们打桥牌时,将洗好的扑克牌(52张)随机确定一张为起始牌,这时,开始按次序搬牌,对任何一家来说,都是从52张总体中抽取一个13张的样本.问这种抽样方法是否为简单随机抽样?分析:简单随机抽样的实质是逐个地从总体中随机抽取.而这里只是随机确定了起始张,这时其他各张虽然是逐张起牌的,其实各张在谁手里已被确定,所以,不是简单随机抽样,据其等距起牌的特点,应将其定位在系统抽样.解:是简单随机抽样,是系统抽样.说明:逐张随机抽取与逐张起牌不是一回事,其实抓住其“等距”的特点不难发现,属于哪类抽样.判断是不是系统抽样例下列抽样中不是系统抽样的是()i,A.从标有1-15号的15个球中,任选3个作样本,按从小号到大号排序,随机选起点以后10,500++i i (超过15则从1再数起)号入样B .工厂生产的产品,用传送带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品进行检验C .搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定调查人数为止D .电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈分析:本题考查系统抽样的有关概念,系统抽样适用于个体较多但均衡的总体.判断是否为系统抽样(简单随机抽样和分层抽样也是这样),应首先看是否在抽样前知道总体是由什么构成的,抽样的方法能否保证每个个体按事先规定的概率入样(即等可能抽样),再看是否将总体分成几个均衡的部分,每个部分中进行简单随机抽样.解: C .不是系统抽样,因事先不知道总体,抽样方法不能保证每个个体按事先规定的概率入样.答案是C说明:抽样方法的实质是:抽样过程中,每个个体被抽取的概率相等,并且抽样前对总体的构成必须心中有数,比如起码知道总体中个体有多少.用系统抽样调查工人到单位的时间例 某单位共有在岗职工人数为624人,为了调查工人上班时,从离开家到来到单位的路上平均所用时间,决定抽取10%的工人调查这一情况,如何采用系统抽样方法完成这一抽样? 分析:总体中的每个个体,都必须等和能地入样,为了实现“等距”入样,且又等概率,因此,应先剔除,再“分段”,后定起始化解:首先,将在岗的工人624人,用随机方式编号(如按出生年月日顺思维诊断序),000,001,002,…,623。
数学百大经典例题

典型例题一例1:已知正方体1111-D C B A ABCD . 求证:平面//11D AB 平面BD C 1. 证明:∵1111-D C B A ABCD 为正方体,∴B C A D 11//, 又 ⊂B C 1平面BD C 1, 故 //1A D 平面BD C 1. 同理 //11B D 平面BD C 1. 又 1111D B D A D = , ∴ 平面//11D AB 平面BD C 1.说明:上述证明是根据判定定理1实现的.本题也可根据判定定理2证明,只需连接C A 1即可,此法还可以求出这两个平行平面的距离.典型例题二例2:如图,已知βα//,a A ∈,α∈A β//a .求证:α⊂a .证明:过直线a 作一平面γ,设1a =αγ ,b =γβ . ∵βα// ∴b a //1又β//a∴b a //在同一个平面γ内过同一点A 有两条直线1,a a 与直线b 平行∴a 与1a 重合,即α⊂a .说明:本题也可以用反证法进行证明.典型例题三例3:如果一条直线与两个平行平面中的一个相交,那么它和另一个也相交. 已知:如图,βα//,A l =α . 求证:l 与β相交.证明:在β上取一点B ,过l 和B 作平面γ,由于γ与α有公共点A ,γ与β有公共点B .∴γ与α、β都相交. 设a =αγ ,b =γβ . ∵βα// ∴b a //又l 、a 、b 都在平面γ内,且l 和a 交于A . ∵l 与b 相交. 所以l 与β相交.典型例题四例4:已知平面βα//,AB ,CD 为夹在a ,β间的异面线段,E 、F 分别为AB 、CD 的中点.求证: α//EF ,β//EF .证明:连接AF 并延长交β于G . ∵F CD AG =∴ AG ,CD 确定平面γ,且AC =αγ ,DG =βγ .∵βα//,所以 DG AC //, ∴ GDF ACF ∠=∠,又 DFG AFC ∠=∠,DF CF =, ∴ △ACF ≌△DFG . ∴ FG AF =. 又 BE AE =,∴ BG EF //,β⊂BG . 故 β//EF .同理α//EF说明:本题还有其它证法,要点是对异面直线的处理.典型例题六例6 如图,已知矩形ABCD 的四个顶点在平面上的射影分别为1A 、1B 、1C 、1D ,且1A 、1B 、1C 、1D 互不重合,也无三点共线.求证:四边形1111D C B A 是平行四边形. 证明:∵α⊥1AA , α⊥1DD∴11//DD AA不妨设1AA 和1DD 确定平面β. 同理1BB 和1CC 确定平面γ. 又11//BB AA ,且γ⊂1BB ∴γ//1AA 同理γ//AD 又A AD AA = 1∴γβ//又11D A =βα ,11C B =γα∴1111//C B D A . 同理1111//D C B A .∴四边形1111D C B A 是平行四边形.典型例题七例7 设直线l 、m ,平面α、β,下列条件能得出βα//的是( ). A .α⊂l ,α⊂m ,且β//l ,β//m B .α⊂l ,β⊂m ,且m l // C .α⊥l ,β⊥m ,且m l // D .α//l ,β//m ,且m l //分析:选项A 是错误的,因为当m l //时,α与β可能相交.选项B 是错误的,理由同A .选项C 是正确的,因为α⊥l ,l m //,所以α⊥m ,又∵β⊥m ,∴βα//.选项D 也是错误的,满足条件的α可能与β相交.答案:C说明:此题极易选A ,原因是对平面平行的判定定理掌握不准确所致.本例这样的选择题是常见题目,要正确得出选择,需要有较好的作图能力和对定理、公理的准确掌握、深刻理解,同时要考虑到各种情况.典型例题八例8 设平面α⊥平面γ,平面β⊥平面γ,且α、β分别与γ相交于a 、b ,b a //.求证:平面α//平面β.分析:要证明两平面平行,只要设法在平面α上找到两条相交直线,或作出相交直线,它们分别与β平行(如图).证明:在平面α内作直线PQ ⊥直线a ,在平面β内作直线MN ⊥直线b . ∵平面α⊥平面γ,∴PQ ⊥平面γ,MN ⊥平面γ, ∴MN PQ //.又∵p a //,Q a PQ = ,N b MN = , ∴平面α//平面β.说明:如果在α、β内分别作γ⊥PQ ,γ⊥MN ,这样就走了弯路,还需证明PQ 、MN 在α、β内,如果直接在α、β内作a 、b 的垂线,就可推出MN PQ //.由面面垂直的性质推出“线面垂直”,进而推出“线线平行”、“线面平行”,最后得到“面面平行”,最后得到“面面平行”.其核心是要形成应用性质定理的意识,在立体几何证明中非常重要.典型例题九例9 如图所示,平面α//平面β,点A 、C α∈,点β∈D B 、,a AB =是α、β的公垂线,CD 是斜线.若b BD AC ==,c CD =,M 、N 分别是AB 和CD 的中点,(1)求证:β//MN ; (2)求MN 的长.分析:(1)要证β//MN ,取AD 的中点P ,只要证明MN 所在的平面β//PMN .为此证明β//PM ,β//PN 即可.(2)要求MN 之长,在CMA ∆中,CM 、CN 的长度易知,关键在于证明CD MN ⊥,从而由勾股定理可以求解.证明:(1)连结AD ,设P 是AD 的中点,分别连结PM 、PN . ∵M 是AB 的中点,∴BD PM //. 又β⊂BD ,∴β//PM .同理∵N 是CD 的中点,∴AC PN //. ∵α⊂AC ,∴α//PN .∵βα//,P PM PN = ,∴平面β//PMN . ∵MN ⊂平面PMN ,∴β//MN . (2)分别连结MC 、MD . ∵b BD AC ==,a BM AM 21==,又∵AB 是α、β的公垂线,∴︒=∠=∠90DBM CAM , ∴ACM Rt ∆≌BDM Rt ∆,∴DM CM =, ∴DMC ∆是等腰三角形.又N 是CD 的中点,∴CD MN ⊥. 在CMN Rt ∆中,22222421c a b CNCMMN -+=-=.说明:(1)证“线面平行”也可以先证“面面平行”,然后利用面面平行的性质,推证“线面平行”,这是一种以退为进的解题策略.(2)空间线段的长度,一般通过构造三角形、然后利用余弦定理或勾股定理来求解. (3)面面平行的性质:①面面平行,则线面平行;②面面平行,则被第三个平面所截得的交线平行.典型例题十例10 如果平面α内的两条相交直线与平面β所成的角相等,那么这两个平面的位置关系是__________.分析:按直线和平面的三种位置关系分类予以研究. 解:设a 、b 是平面α内两条相交直线.(1)若a 、b 都在平面β内,a 、b 与平面β所成的角都为︒0,这时α与β重合,根据教材中规定,此种情况不予考虑.(2)若a 、b 都与平面β相交成等角,且所成角在)90,0(︒︒内; ∵a 、b 与β有公共点,这时α与β相交.若a 、b 都与平面β成︒90角,则b a //,与已知矛盾.此种情况不可能.(3)若a 、b 都与平面β平行,则a 、b 与平面β所成的角都为︒0,α内有两条直线与平面β平行,这时βα//.综上,平面α、β的位置关系是相交或平行.典型例题十一例11 试证经过平面外一点有且只有一个平面和已知平面平行. 已知:α平面∉A ,求证:过A 有且只有一个平面αβ//.分析:“有且只有”要准确理解,要先证这样的平面是存在的,再证它是惟一的,缺一不可.证明:在平面α内任作两条相交直线a 和b ,则由α∉A 知,a A ∉,b A ∉. 点A 和直线a 可确定一个平面M ,点A 和直线b 可确定一个平面N . 在平面M 、N 内过A 分别作直线a a //'、b b //', 故'a 、'b 是两条相交直线,可确定一个平面β. ∵α⊄'a ,α⊂a ,a a //',∴α//'a . 同理α//'b .又β⊂'a ,β⊂'b ,A b a ='',∴αβ//. 所以过点A 有一个平面αβ//.假设过A 点还有一个平面αγ//,则在平面α内取一直线c ,c A ∉,点A 、直线c 确定一个平面ρ,由公理2知:m =ρβ ,n =ργ , ∴c m //,c n //,又m A ∈,n A ∈,这与过一点有且只有一条直线与已知直线平行相矛盾,因此假设不成立, 所以平面β只有一个.所以过平面外一点有且只有一个平面与已知平面平行.典型例题十二例12 已知点S 是正三角形ABC 所在平面外的一点,且SC SB SA ==,SG 为SAB ∆上的高,D 、E 、F 分别是AC 、BC 、SC 的中点,试判断SG 与平面DEF 内的位置关系,并给予证明分析1:如图,观察图形,即可判定//SG 平面DEF ,要证明结论成立,只需证明SG 与平面DEF 内的一条直线平行.观察图形可以看出:连结CG 与DE 相交于H ,连结FH ,FH 就是适合题意的直线. 怎样证明FH SG //?只需证明H 是CG 的中点.证法1:连结CG 交DE 于点H , ∵DE 是ABC ∆的中位线,∴AB DE //.在ACG ∆中,D 是AC 的中点,且AG DH //, ∴H 为CG 的中点.∵FH 是SCG ∆的中位线,∴SG FH //. 又SG ⊄平面DEF ,FH ⊂平面DEF , ∴//SG 平面DEF .分析2:要证明//SG 平面DEF ,只需证明平面SAB //平面DEF ,要证明平面DEF //平面SAB ,只需证明DF SA //,EF SB //而DF SA //,EF SB //可由题设直接推出. 证法2:∵EF 为SBC ∆的中位线, ∴SB EF //.∵⊄EF 平面SAB ,⊂SB 平面SAB ,∴//EF 平面SAB .同理://DF 平面SAB ,F DF EF = , ∴平面SAB //平面DEF ,又∵⊂SG 平面SAB , ∴//SG 平面DEF .典型例题十三例13 如图,线段PQ 分别交两个平行平面α、β于A 、B 两点,线段PD 分别交α、β于C 、D 两点,线段QF 分别交α、β于F 、E 两点,若9=PA ,12=AB ,12=BQ ,ACF ∆的面积为72,求BDE ∆的面积.分析:求BDE ∆的面积,看起来似乎与本节内容无关,事实上,已知ACF ∆的面积,若BDE ∆与ACF ∆的对应边有联系的话,可以利用ACF ∆的面积求出BDE ∆的面积.解:∵平面AF QAF =α ,平面BE QAF =β , 又∵βα//,∴BE AF //.同理可证:BD AC //,∴FAC ∠与EBD ∠相等或互补,即EBD FAC ∠=∠sin sin . 由BE FA //,得212412∶∶∶∶===QA QB AF BE , ∴AF BE 21=由AC BD //,得:73219∶∶∶∶===PB PA BD AC ,∴AC BD 37=.又∵ACF ∆的面积为72,即72sin 21=∠⋅⋅FAC AC AF .∴EBD BD BE S DBE ∠⋅⋅=∆sin 21FAC AC AF ∠⋅⋅⋅=sin 372121 FAC AC AF ∠⋅⋅⋅=sin 2167 847267=⨯=.∴BDE ∆的面积为84平方单位.说明:应用两个平行的性质一是可以证明直线与直线的平行,二是可以解决线面平行的问题.注意使用性质定理证明线线平行时,一定第三个平面与两个平行平面相交,其交线互相平行.典型例题十四例14 在棱长为a 的正方体中,求异面直线BD 和C B 1之间的距离.分析:通过前面的学习,我们解决了如下的问题:若a 和b 是两条异面直线,则过a 且平行于b 的平面必平行于过b 且平行于a 的平面.我们知道,空间两条异面直线,总分别存在于两个平行平面内.因此,求两条异面直线的距离,有时可以通过求这两个平行平面之间的距离来解决.具体解法可按如下几步来求:①分别经过BD 和C B 1找到两个互相平等的平面;②作出两个平行平面的公垂线;③计算公垂线夹在两个平等平面间的长度.解:如图,根据正方体的性质,易证:1111111//////D CB BD A C D B A D B BD 平面平面⇒⎭⎬⎫连结1AC ,分别交平面BD A 1和平面11D CB 于M 和N因为1CC 和1AC 分别是平面ABCD 的垂线和斜线,AC 在平面ABCD 内,BD AC ⊥ 由三垂线定理:BD AC ⊥1,同理:D A AC 11⊥ ∴⊥1AC 平面BD A 1,同理可证:⊥1AC 平面11D CB ∴平面BD A 1和平面11D CB 间的距离为线段MN 长度. 如图所示:在对角面1AC 中,1O 为11C A 的中点,O 为AC 的中点∴a AC NC MN AM 333111====.∴BD 和C B 1的距离等于两平行平面BD A 1和11D CB 的距离为a 33.说明:关于异面直线之间的距离的计算,有两种基本的转移方法:①转化为线面距.设a 、b 是两条异面直线,作出经过b 而和a 平行的平面α,通过计算a 和α的距离,得出a 和b 距离,这样又回到点面距离的计算;②转化为面面距,设a 、b 是两条异面直线,作出经过b 而和a 平行的平面α,再作出经过a 和b 平行的平面β,通过计算α、β之间的距离得出a 和b 之间的距离.典型例题十五例15 正方体1111D C B A ABCD -棱长为a ,求异面直线AC 与1BC 的距离. 解法1:(直接法)如图:取BC 的中点P ,连结PD 、1PB 分别交AC 、1BC 于M 、N 两点, 易证:MN DB //1,AC DB ⊥1,11BC DB ⊥.∴MN 为异面直线AC 与1BC 的公垂线段,易证:a DB MN 33311==.小结:此法也称定义法,这种解法是作出异面直线的公垂线段来解.但通常寻找公垂线段时,难度较大. 解法2:(转化法)如图:∵//AC 平面B C A 11,∴AC 与1BC 的距离等于AC 与平面B C A 11的距离, 在1OBO Rt ∆中,作斜边上的高OE ,则OE 长为所求距离,∵a OB 22=,a OO =1,∴a B O 231=,∴a BO OB OO OE 3311=⋅=.小结:这种解法是将线线距离转化为线面距离.解法3:(转化法)如图:∵平面1ACD //平面B C A 11,∴AC 与1BC 的距离等于平面1ACD 与平面B C A 11的距离. ∵⊥1DB 平面1ACD ,且被平面1ACD 和平面B C A 11三等分;∴所求距离为a D B 33311=.小结:这种解法是线线距离转化为面面距离. 解法4:(构造函数法)如图:任取点1BC Q ∈,作BC QR ⊥于R 点,作AC PK ⊥于K 点,设x RC =,则x a QR BR -==,KR CK =,且222CR CKKR =+∴2222121x CRKR ==.则222)(21x a x QK-+= 2223131)32(23a a a x ≥+-=,故QK 的最小值,即AC 与1BC 的距离等于a 33.小结:这种解法是恰当的选择未知量,构造一个目标函数,通过求这个函数的最小值来得到二异面直线之间的距离.解法5:(体积桥法)如图:当求AC 与1BC 的距离转化为求AC 与平面B C A 11的距离后,设C 点到平面B C A 11的距离为h ,则1111BCC A BCA C V V --=.∵222131)2(4331a a a h ⋅⋅=⋅,∴a h33.即AC 与1BC 的距离等于a 33.小结:本解法是将线线距离转化为线面距离,再将线面距离转化为锥体化为锥体的高,然后用体积公式求之.这种方法在后面将要学到.说明:求异面直线距离的方法有:(1)(直接法)当公垂线段能直接作出时,直接求.此时,作出并证明异面直线的公垂线段,是求异面直线距离的关键.(2)(转化法)把线线距离转化为线面距离,如求异面直线a 、b 距离,先作出过a 且平行于b 的平面α,则b 与α距离就是a 、b 距离.(线面转化法).也可以转化为过a 平行b 的平面和过b 平行于a 的平面,两平行平面的距离就是两条异面直线距离.(面面转化法).(3)(体积桥法)利用线面距再转化为锥体的高用何种公式来求.(4)(构造函数法)常常利用距离最短原理构造二次函数,利用求二次函数最值来解. 两条异面直线间距离问题,教科书要求不高(要求会计算已给出公垂线时的距离),这方面的问题的其他解法,要适度接触,以开阔思路,供学有余力的同学探求.典型例题十六例16 如果βα//,AB 和AC 是夹在平面α与β之间的两条线段,AC AB ⊥,且2=AB ,直线AB 与平面α所成的角为︒30,求线段AC 长的取值范围.解法1:如图所示:作β⊥AD 于D ,连结BD 、CD 、BC∵BD AB >,DC AC >,222BC AC AB =+, ∴在BDC ∆中,由余弦定理,得: 022cos 222222=⋅-+<⋅-+=∠CDBD BCACAB CDBD BCCDBD BDC .∵β⊥AD ,∴ABD ∠是AB 与β所在的角. 又∵βα//,∴ABD ∠也就等于AB 与α所成的角,即︒=∠30ABD . ∵2=AB , ∴1=AD ,3=BD ,12-=AC DC ,24ACBC +=,∴01324131222<-⋅---+≤-ACAC AC,即:31102≤-<AC.∴332≥AC ,即AC 长的取值范围为⎪⎪⎭⎫⎢⎣⎡∞+,332.解法2:如图:∵AC AB ⊥∴AC 必在过点A 且与直线AB 垂直的平面γ内设l =βγ ,则在γ内,当l AC ⊥时,AC 的长最短,且此时ABC AB AC ∠⋅=tan33230tan =︒⋅AB而在γ内,C 点在l 上移动,远离垂足时,AC 的长将变大,从而332≥AC ,即AC 长的取值范围是⎪⎪⎭⎫⎢⎣⎡∞+,332.说明:(1)本题考查直线和直线、直线和平面、平面和平面的位置关系,对于运算能力和空间想象能力有较高的要求,供学有余力的同学学习.(2)解法1利用余弦定理,采用放缩的方法构造出关于AC 长的不等式,再通过解不等式得到AC 长的范围,此方法以运算为主.(3)解法2从几何性质角度加以解释说明,避免了繁杂的运算推导,但对空间想象能力要求很高,根据此解法可知线段AC 是连结异面直线AB 和l 上两点间的线段,所以AC 是AB 与l 的公垂线段时,其长最短.典型例题十七例17 如果两个平面分别平行于第三个平面,那么这两个平面互相平行. 已知:γα//,γβ//,求证:βα//.分析:本题考查面面平行的判定和性质定理以及逻辑推理能力.由于两个平面没有公共点称两平面平行,带有否定性结论的命题常用反证法来证明,因此本题可用反证法证明.另外也可以利用平行平面的性质定理分别在三个平面内构造平行且相交的两条直线,利用线线平行来推理证明面面平行,或者也可以证明这两个平面同时垂直于某一直线.证明一:如图,假设α、β不平行,则α和β相交.∴α和β至少有一个公共点A ,即α∈A ,β∈A . ∵γα//,γβ//, ∴γ∉A .于是,过平面γ外一点A 有两个平面α、β都和平面γ平行,这和“经过平面外一点有且只有一个平面与已知平面平行”相矛盾,假设不成立。
百个著名初等数学问题

第01题阿基米德分牛问题Archimedes' Problema Bovinum 太阳神有一牛群,由白、黑、花、棕四种颜色的公、母牛组成.在公牛中,白牛数多于棕牛数,多出之数相当于黑牛数的1/2+1/3;黑牛数多于棕牛数,多出之数相当于花牛数的1/4+1/5;花牛数多于棕牛数,多出之数相当于白牛数的1/6+1/7.在母牛中,白牛数是全体黑牛数的1/3+1/4;黑牛数是全体花牛数1/4+1/5;花牛数是全体棕牛数的1/5+1/6;棕牛数是全体白牛数的1/6+1/7.问这牛群是怎样组成的?第02题德·梅齐里亚克的法码问题The Weight Problem of Bachet de Meziriac 一位商人有一个40磅的砝码,由于跌落在地而碎成4块.后来,称得每块碎片的重量都是整磅数,而且可以用这4块来称从1至40磅之间的任意整数磅的重物.问这4块砝码碎片各重多少?第03题牛顿的草地与母牛问题Newton's Problem of the Fields and Cows a头母牛将b块地上的牧草在c天内吃完了;a'头母牛将b'块地上的牧草在c'天内吃完了;a"头母牛将b"块地上的牧草在c"天内吃完了;求出从a到c"9个数量之间的关系?第04题贝韦克的七个7的问题Berwick's Problem of the Seven Sevens 在下面除法例题中,被除数被除数除尽:* * 7 * * * * * * * ÷ * * * * 7 * = * * 7 * ** * * * * ** * * * * 7 ** * * * * * ** 7 * * * ** 7 * * * ** * * * * * ** * * * 7 * * * * * * * ** * * * * *用星号(*)标出的那些数位上的数字偶然被擦掉了,那些不见了的是些什么数字呢?第05题柯克曼的女学生问题Kirkman's Schoolgirl Problem 某寄宿学校有十五名女生,她们经常每天三人一行地散步,问要怎样安排才能使每个女生同其他每个女生同一行中散步,并恰好每周一次?第06题伯努利-欧拉关于装错信封的问题The Bernoulli-Euler Problem of the Misaddressed letters 求n个元素的排列,要求在排列中没有一个元素处于它应当占有的位置.第07题欧拉关于多边形的剖分问题Euler's Problem of Polygon Division 可以有多少种方法用对角线把一个n边多边形(平面凸多边形)剖分成三角形?第08题鲁卡斯的配偶夫妇问题Lucas' Problem of the Married Couples n对夫妇围圆桌而坐,其座次是两个妇人之间坐一个男人,而没有一个男人和自己的妻子并坐,问有多少种坐法?第09题卡亚姆的二项展开式Omar Khayyam's Binomial Expansion 当n是任意正整数时,求以a和b的幂表示的二项式a+b的n次幂.第10题柯西的平均值定理Cauchy's Mean Theorem 求证n个正数的几何平均值不大于这些数的算术平均值.第11题伯努利幂之和的问题Bernoulli's Power Sum Problem 确定指数p为正整数时最初n个自然数的p次幂的和S=1p+2p+3p+…+n p.第12题欧拉数The Euler Number 求函数φ(x)=(1+1/x)x及Φ(x)=(1+1/x)x+1当x 无限增大时的极限值.第13题牛顿指数级数Newton's Exponential Series 将指数函数e x变换成各项为x的幂的级数.第14题麦凯特尔对数级数Nicolaus Mercator's Logarithmic Series 不用对数表,计算一个给定数的对数.第15题牛顿正弦及余弦级数Newton's Sine and Cosine Series 不用查表计算已知角的正弦及余弦三角函数.第16题正割与正切级数的安德烈推导法Andre's Derivation of the Secant and Tangent Series 在n个数1,2,3,…,n的一个排列c1,c2,…,c n中,如果没有一个元素c i 的值介于两个邻近的值c i-1和c i+1之间,则称c1,c2,…,c n为1,2,3,…,n的一个屈折排列. 试利用屈折排列推导正割与正切的级数.第17题格雷戈里的反正切级数Gregory's Arc Tangent Series 已知三条边,不用查表求三角形的各角.第18题德布封的针问题Buffon's Needle Problem 在台面上画出一组间距为d 的平行线,把长度为l(小于d)的一根针任意投掷在台面上,问针触及两平行线之一的概率如何?第19题费马-欧拉素数定理The Fermat-Euler Prime Number Theorem 每个可表示为4n+1形式的素数,只能用一种两数平方和的形式来表示.第20题费马方程The Fermat Equation 求方程x2-dy2=1的整数解,其中d为非二次正整数.第21题费马-高斯不可能性定理The Fermat-Gauss Impossibility Theorem 证明两个立方数的和不可能为一立方数.第22题二次互反律The Quadratic Reciprocity Law (欧拉-勒让德-高斯定理)奇素数p与q的勒让德互反符号取决于公式(p/q)·(q/p)=(-1)[(p-1)/2]·[(q-1)/2].第23题高斯的代数基本定理Gauss' Fundamental Theorem of Algebra 每一个n 次的方程z n+c1z n-1+c2z n-2+…+c n=0具有n个根.第24题斯图谟的根的个数问题Sturm's Problem of the Number of Roots 求实系数代数方程在已知区间上的实根的个数.第25题阿贝尔不可能性定理Abel's Impossibility Theorem 高于四次的方程一般不可能有代数解法.第26题赫米特-林德曼超越性定理The Hermite-Lindemann TranscedenceTheorem 系数A不等于零,指数α为互不相等的代数数的表达式A1eα1+A2eα2+A3eα3+…不可能等于零.第27题欧拉直线Euler's Straight Line 在所有三角形中,外接圆的圆心,各中线的交点和各高的交点在一直线—欧拉线上,而且三点的分隔为:各高线的交点(垂心)至各中线的交点(重心)的距离两倍于外接圆的圆心至各中线的交点的距离.第28题费尔巴哈圆The Feuerbach Circle 三角形中三边的三个中点、三个高的垂足和高的交点到各顶点的线段的三个中点在一个圆上.第29题卡斯蒂朗问题Castillon's Problem 将各边通过三个已知点的一个三角形内接于一个已知圆.第30题马尔法蒂问题Malfatti's Problem 在一个已知三角形内画三个圆,每个圆与其他两个圆以及三角形的两边相切.第31题蒙日问题Monge's Problem 画一个圆,使其与三已知圆正交.第32题阿波洛尼斯相切问题The Tangency Problem of Apollonius. 画一个与三个已知圆相切的圆.第33题马索若尼圆规问题Macheroni's Compass Problem. 证明任何可用圆规和直尺所作的图均可只用圆规作出.第34题斯坦纳直尺问题Steiner's Straight-edge Problem 证明任何一个可以用圆规和直尺作出的图,如果在平面内给出一个定圆,只用直尺便可作出.第35题德里安倍立方问题The Deliaii Cube-doubling Problem 画出体积为一已知立方体两倍的立方体的一边.第36题三等分一个角Trisection of an Angle 把一个角分成三个相等的角.第37题正十七边形The Regular Heptadecagon 画一正十七边形.第38题阿基米德π值确定法Archimedes' Determination of the Number Pi 设圆的外切和内接正2v n边形的周长分别为a v和b v,便依次得到多边形周长的阿基米德数列:a0,b0,a1,b1,a2,b2,…其中a v+1是a v、b v的调和中项,b v+1是b v、a v+1的等比中项. 假如已知初始两项,利用这个规则便能计算出数列的所有项. 这个方法叫作阿基米德算法.第39题富斯弦切四边形问题Fuss' Problem of the Chord-TangentQuadrilateral 找出半径与双心四边形的外接圆和内切圆连心线之间的关系.(注:一个双心或弦切四边形的定义是既内接于一个圆而同时又外切于另一个圆的四边形)第40题测量附题Annex to a Survey 利用已知点的方位来确定地球表面未知但可到达的点的位置.第41题阿尔哈森弹子问题Alhazen's Billiard Problem 在一个已知圆内,作出一个其两腰通过圆内两个已知点的等腰三角形.第42题由共轭半径作椭圆An Ellipse from Conjugate Radii 已知两个共轭半径的大小和位置,作椭圆.第43题在平行四边形内作椭圆An Ellipse in a Parallelogram, 在规定的平行四边形内作一内切椭圆,它与该平行四边形切于一边界点.第44题由四条切线作抛物线A Parabola from Four Tangents 已知抛物线的四条切线,作抛物线.第45题由四点作抛物线A Parabola from Four Points. 过四个已知点作抛物线.第46题由四点作双曲线A Hyperbola from Four Points. 已知直角(等轴)双曲线上四点,作出这条双曲线.第47题范·施古登轨迹题Van Schooten's Locus Problem 平面上的固定三角形的两个顶点沿平面上一个角的两个边滑动,第三个顶点的轨迹是什么?第48题卡丹旋轮问题Cardan's Spur Wheel Problem. 一个圆盘沿着半径为其两倍的另一个圆盘的内缘滚动时,这个圆盘上标定的一点所描出的轨迹是什么?第49题牛顿椭圆问题Newton's Ellipse Problem. 确定内切于一个已知(凸)四边形的所有椭圆的中心的轨迹.第50题彭赛列-布里昂匈双曲线问题The Poncelet-Brianchon HyperbolaProblem 确定内接于直角(等边)双曲线的所有三角形的顶垂线交点的轨迹.第51题作为包络的抛物线A Parabola as Envelope 从角的顶点,在角的一条边上连续n次截取任意线段e,在另一条边上连续n次截取线段f,并将线段的端点注以数字,从顶点开始,分别为0,1,2,…,n和n,n-1,…,2,1,0.求证具有相同数字的点的连线的包络为一条抛物线.第52题星形线The Astroid 直线上两个标定的点沿着两条固定的互相垂直的轴滑动,求这条直线的包络.第53题斯坦纳的三点内摆线Steiner's Three-pointed Hypocycloid 确定一个三角形的华莱士(Wallace)线的包络.第54题一个四边形的最接近圆的外接椭圆The Most Nearly Circular Ellipse Circumscribing a Quadrilateral 一个已知四边形的所有外接椭圆中,哪一个与圆的偏差最小?第55题圆锥曲线的曲率The Curvature of Conic Sections 确定一个圆锥曲线的曲率.第56题阿基米德对抛物线面积的推算Archimedes' Squaring of a Parabola 确定包含在抛物线内的面积.第57题推算双曲线的面积Squaring a Hyperbola 确定双曲线被截得的部分所含的面积.第58题求抛物线的长Rectification of a Parabola 确定抛物线弧的长度.第59题笛沙格同调定理(同调三角形定理)Desargues' Homology Theorem (Theorem of Homologous Triangles) 如果两个三角形的对应顶点连线通过一点,则这两个三角形的对应边交点位于一条直线上.反之,如果两个三角形的对应边交点位于一条直线上,则这两个三角形的对应顶点连线通过一点.第60题斯坦纳的二重元素作图法Steiner's Double Element Construction 由三对对应元素所给定的重迭射影形,作出它的二重元素.第61题帕斯卡六边形定理Pascal's Hexagon Theorem 求证内接于圆锥曲线的六边形中,三双对边的交点在一直线上.第62题布里昂匈六线形定理Brianchon's Hexagram Theorem 求证外切于圆锥曲线的六线形中,三条对顶线通过一点.第63题笛沙格对合定理Desargues' Involution Theorem 一条直线与一个完全四点形*的三双对边的交点与外接于该四点形的圆锥曲线构成一个对合的四个点偶. 一个点与一个完全四线形*的三双对顶点的连线和从该点向内切于该四线形的圆锥曲线所引的切线构成一个对合的四个射线偶.*一个完全四点形(四线形)实际上含有四点(线)1,2,3,4和它们的六条连线交点23,14,31,24,12,34;其中23与14、31与24、12与34称为对边(对顶点).第64题由五个元素得到的圆锥曲线A Conic Section from Five Elements 求作一个圆锥曲线,它的五个元素——点和切线——是已知的.第65题一条圆锥曲线和一条直线A Conic Section and a Straight Line 一条已知直线与一条具有五个已知元素——点和切线——的圆锥曲线相交,求作它们的交点.第66题一条圆锥曲线和一定点A Conic Section and a Point 已知一点及一条具有五个已知元素——点和切线——的圆锥曲线,作出从该点列到该曲线的切线.第67题斯坦纳的用平面分割空间Steiner's Division of Space by Planes n个平面最多可将整个空间分割成多少份?第68题欧拉四面体问题Euler's Tetrahedron Problem 以六条棱表示四面体的体积.第69题偏斜直线之间的最短距离The Shortest Distance Between Skew Lines 计算两条已知偏斜直线之间的角和距离.第70题四面体的外接球The Sphere Circumscribing a Tetrahedron 确定一个已知所有六条棱的四面体的外接球的半径.第71题五种正则体The Five Regular Solids 将一个球面分成全等的球面正多边形.第72题正方形作为四边形的一个映象The Square as an Image of aQuadrilateral 证明每个四边形都可以看作是一个正方形的透视映象.第73题波尔凯-许瓦尔兹定理The Pohlke-Schwartz Theorem 一个平面上不全在同一条直线上的四个任意点,可认为是与一个已知四面体相似的四面体的各隅角的斜映射.第74题高斯轴测法基本定理Gauss' Fundamental Theorem of Axonometry 正轴测法的高斯基本定理:如果在一个三面角的正投影中,把映象平面作为复平面,三面角顶点的投影作为零点,边的各端点的投影作为平面的复数,那么这些数的平方和等于零.第75题希帕查斯球极平面射影Hipparchus' Stereographic Projection 试举出一种把地球上的圆转换为地图上圆的保形地图射影法.第76题麦卡托投影The Mercator Projection 画一个保形地理地图,其坐标方格是由直角方格组成的.第77题航海斜驶线问题The Problem of the Loxodrome 确定地球表面两点间斜驶线的经度.第78题海上船位置的确定Determining the Position of a Ship at Sea 利用天文经线推算法确定船在海上的位置.第79题高斯双高度问题Gauss' Two-Altitude Problem 根据已知两星球的高度以确定时间及位置.第80题高斯三高度问题Gauss' Three-Altitude Problem 从在已知三星球获得同高度瞬间的时间间隔,确定观察瞬间,观察点的纬度及星球的高度.第81题刻卜勒方程The Kepler Equation 根据行星的平均近点角,计算偏心及真近点角.第82题星落Star Setting 对给定地点和日期,计算一已知星落的时间和方位角.第83题日晷问题The Problem of the Sundial 制作一个日晷.第84题日影曲线The Shadow Curve 当直杆置于纬度φ的地点及该日太阳的赤纬有δ值时,确定在一天过程中由杆的一点投影所描绘的曲线.第85题日食和月食Solar and Lunar Eclipses 如果对于充分接近日食时间的两个瞬间太阳和月亮的赤经、赤纬以及其半径均为已知,确定日食的开始和结束,以及太阳表面被隐蔽部分的最大值.第86题恒星及会合运转周期Sidereal and Synodic Revolution Periods 确定已知恒星运转周期的两共面旋转射线的会合运转周期.第87题行星的顺向和逆向运动Progressive and Retrograde Motion ofPlanets 行星什么时候从顺向转为逆向运动(或反过来,从逆向转为顺向运动)?第88题兰伯特慧星问题Lambert's Comet Prolem 借助焦半径及连接弧端点的弦,来表示慧星描绘抛物线轨道的一段弧所需的时间.第89题与欧拉数有关的斯坦纳问题Steiner's Problem Concerning the Euler Number 如果x为正变数,x取何值时,x的x次方根为最大?第90题法格乃诺关于高的基点的问题Fagnano's Altitude Base PointProblem 在已知锐角三角形中,作周长最小的内接三角形.第91题费马对托里拆利提出的问题Fermat's Problem for Torricelli 试求一点,使它到已知三角形的三个顶点距离之和为最小.第92题逆风变换航向Tacking Under a Headwind 帆船如何能顶着北风以最快的速度向正北航行?第93题蜂巢(雷阿乌姆尔问题)The Honeybee Cell (Problem by Reaumur) 试采用由三个全等的菱形作成的顶盖来封闭一个正六棱柱,使所得的这一个立体有预定的容积,而其表面积为最小.第94题雷奇奥莫塔努斯的极大值问题Regiomontanus' Maximum Problem 在地球表面的什么部位,一根垂直的悬杆呈现最长?(即在什么部位,可见角为最大?)第95题金星的最大亮度The Maximum Brightness of Venus 在什么位置金星有最大亮度?第96题地球轨道内的慧星A Comet Inside the Earth's Orbit慧星在地球的轨道内最多能停留多少天?第97题最短晨昏蒙影问题The Problem of the Shortest Twilight 在已知纬度的地方,一年之中的哪一天晨昏蒙影最短?第98题斯坦纳的椭圆问题Steiner's Ellipse Problem 在所有能外接(内切)于一个已知三角形的椭圆中,哪一个椭圆有最小(最大)的面积?第99题斯坦纳的圆问题Steiner's Circle Problem 在所有等周的(即有相等周长的)平面图形中,圆有最大的面积.反之:在有相等面积的所有平面图形中,圆有最小的周长.第100题斯坦纳的球问题Steiner's Sphere Problem 在表面积相等的所有立体中,球具有最大体积.在体积相等的所有立体中,球具有最小的表面.。
数学百大经典例题

数学百大经典例题数学是一门严谨而又充满挑战的学科,它包含着无尽的智慧和美妙的逻辑。
在数学学习的过程中,例题是必不可少的一部分。
下面,我将为大家介绍数学领域中的百大经典例题,希望能够对大家的数学学习有所帮助。
1. 平行线与三角形试题描述:已知三角形ABC,其中AB // CD,AD = BD,角A = 40°,角C = 70°,求角A的大小。
解答:由于AB // CD,因此角A与角C是对应角,它们的大小相等。
由题意,可以得出角C = 70°,那么角A也等于70°。
2. 直角三角形的边长关系试题描述:在直角三角形ABC中,已知角A = 90°,且BC = 6,AC = 8,求AB的长度。
解答:根据勾股定理,直角三角形的两个直角边的平方和等于斜边的平方。
代入已知条件,得到 6^2 + AB^2 = 8^2,即 36 + AB^2 = 64。
解方程可得 AB = 2。
3. 点到直线的距离试题描述:已知平面上一直线L的方程为3x - 4y + 5 = 0,求点A(2,3)到直线L的距离。
解答:点A到直线L的距离公式为:d = |Ax + By + C| /√(A^2 +B^2)。
将已知数据代入公式,得到 d = |3*2 - 4*3 + 5| / √(3^2 + (-4)^2) = 7 / 5。
4. 平面与平面的交线试题描述:已知平面α过点A(1,2,3),直线L通过点B(2,-1,1),求平面α与直线L的交线。
解答:首先,求直线L的方程。
根据两点式公式可得直线L的方程为 x - 2 = y + 1 = z - 1。
然后,将直线L的方程代入平面α的方程中,得到 1*(x-1) + 2*(y-2) + 3*(z-3) = 0。
整理化简后可得平面α与直线L的交线方程。
5. 不等式的解集试题描述:求不等式2x - 3 > 5的解集。
解答:将不等式中的x系数移到左边,得到 2x - 3 - 5 > 0,即 2x - 8 > 0。
数学百大经典例题

开锁次数的数学期望和方差例 有n 把看上去样子相同的钥匙,其中只有一把能把大门上的锁打开.用它们去试开门上的锁.设抽取钥匙是相互独立且等可能的.每把钥匙试开后不能放回.求试开次数ξ的数学期望和方差.分析:求)(k P =ξ时,由题知前1-k 次没打开,恰第k 次打开.不过,一般我们应从简单的地方入手,如3,2,1=ξ,发现规律后,推广到一般.解:ξ的可能取值为1,2,3,…,n .;12112121)111()11()3(;111111)11()2(,1)1(nn n n n n n n n P nn n n n n P nP =-⋅--⋅-=-⋅--⋅-===-⋅-=-⋅-====ξξξ nk n k n k n n n n n n n k n k n n n n k P 111212312111)211()211()111()11()(=+-⋅+-+---⋅--⋅-=+-⋅+----⋅--⋅-== ξ;所以ξ的分布列为:2131211=⋅++⋅+⋅+⋅=n n n n n E ξ; n n n n n k n n n n n n D 1)21(1)21(1)213(1)212(1)211(22222⋅+-++⋅+-++⋅+-+⋅+-+⋅+-= ξ ⎥⎦⎤⎢⎣⎡⋅+++++++-++++=n n n n n n 22222)21()321)(1()321(1 1214)1(2)1()12)(1(611222-=⎥⎦⎤⎢⎣⎡+++-++=n n n n n n n n n 说明:复杂问题的简化处理,即从个数较小的看起,找出规律所在,进而推广到一般,方差的公式正确使用后,涉及一个数列求和问题,合理拆项,转化成熟悉的公式,是解决的关键.次品个数的期望例 某批数量较大的商品的次品率是5%,从中任意地连续取出10件,ξ为所含次品的个数,求ξE .分析:数量较大,意味着每次抽取时出现次品的概率都是0.05,ξ可能取值是:0,1,2,…,10.10次抽取看成10次独立重复试验,所以抽到次品数ξ服从二项分布,由公式np E =ξ可得解.解:由题,()05.0,10~B ξ,所以5.005.010=⨯=ξE .说明:随机变量ξ的概率分布,是求其数学期望的关键.因此,入手时,决定ξ取哪些值及其相应的概率,是重要的突破点.此题k k k C k P --⋅==1010)05.01()05.0()(ξ,应觉察到这是()05.0,10~B ξ.根据分布列求期望和方差例 设ξ 是一个离散型随机变量,其分布列如下表,求q 值,并求ξ ξ D E、.分析:根据分布列的两个性质,先确定q 的值,当分布列确定时,ξ ξ D E、只须按定义代公式即可.解: 离散型随机变量的分布满足(1),,3,2,1,0 =≥i P i (2).1321=+++P P P 所以有⎪⎪⎩⎪⎪⎨⎧≤≤-≤=+-+.1,1210,1212122q q q q 解得 .211-=q 故ξ 的分布列为⎪⎭⎫ ⎝⎛-⨯+-⨯+⨯-=∴2231)12(021)1(ξ E .2122321 -=-+-= ⎪⎭⎫ ⎝⎛-⨯--+-⨯-+⨯---=223)]21(1[)12()21(21)]21(1[ 222ξ D ⎪⎭⎫ ⎝⎛-+-+⨯-=2232)12(21)22( 32 .12223123622223 -=-+-+-+-=小结:解题时不能忽视条件i i p k P ==)(ξ时,10≤≤i p ,⋅⋅⋅=,2,1i 否则取了1>q 的值后,辛辛苦苦计算得到的是两个毫无用处的计算.产品中次品数分布列与期望值例 一批产品共100件,其中有10件是次品,为了检验其质量,从中以随机的方式选取5件,求在抽取的这5件产品中次品数分布列与期望值,并说明5件中有3件以上(包括3件)为次品的概率.(精确到0.001)分析:根据题意确定随机变量及其取值,对于次品在3件以上的概率是3,4,5三种情况的和.解:抽取的次品数是一个随机变量,设为ξ ,显然ξ 可以取从0到5的6个整数.抽样中,如果恰巧有k 个(5,4,3,2,1,0=k )次品,则其概率为510059010)(C C C k P k k -⋅==ξ按照这个公式计算,并要求精确到0.001,则有.0)5( ,0)4( ,07.0)3( ,070.0)2( ,340.0)1( ,583.0)0(============ξ ξ ξ ξ ξ ξ P P P P P P 故ξ 的分布列为.501.00504007.03070.02340.01583.00=⨯+⨯+⨯+⨯+⨯+⨯=ξ E由分布列可知,.007.0)3( ,00007.0)3( =≥∴++=≥ξ ξ P P 这就是说,所抽取的5件品中3件以上为次品的可能性很小,只有7%.评定两保护区的管理水平例 甲、乙两个野生动物保护区有相同的自然环境,且野生动物的种类和数量也大致相等.而两个保护区内每个季度发现违反保护条例的事件次数的分布列分别为:甲保护区:乙保护区:分析:一是要比较一下甲、乙两个保护区内每季度发生的违规事件的次数的均值,即数学期望;二是要看发生违规事件次数的波动情况,即方差值的大小.(当然,亦可计算其标准差,同样说明道理.)解:甲保护区的违规次数1ξ的数学期望和方差为:;3.12.032.023.013.001=⨯+⨯+⨯+⨯=ξE;21.12.0)3.13(2.0)3.12(3.0)3.11(3.0)3.10(22221=⨯-+⨯-+⨯-+⨯-=ξD乙保护区的违规次数2ξ的数学期望和方差为:;3.14.025.011.002=⨯+⨯+⨯=ξE41.04.0)3.12(5.0)3.11(1.0)3.10(2222=⨯-+⨯-+⨯-=ξD ;因为2121,ξξξξD D E E >=,所以两个保护区内每季度发生的违规平均次数是相同的,但乙保护区内的违规事件次数更集中和稳定,而甲保护区的违规事件次数相对分散和波动.(标准差64.0,1.12211≈===ξσξξσξD D 这两个值在科学计算器上容易获得,显然,σξσξ>1)说明:数学期望仅体现了随机变量取值的平均大小,但有时仅知道均值大小还是不够的,比如:两个随机变量的均值相等了(即数学期望值相等),这就还需要知道随机变量的取值如何在均值周期变化,即计算其方差(或是标准差).方差大说明随机变量取值分散性大;方差小说明取值分散性小或者说取值比较集中、稳定.射击练习中耗用子弹数的分布列、期望及方差例 某射手进行射击练习,每射击5发子弹算一组,一旦命中就停止射击,并进入下一组的练习,否则一直打完5发子弹后才能进入下一组练习,若该射手在某组练习中射击命中一次,并且已知他射击一次的命中率为0.8,求在这一组练习中耗用子弹数ξ 的分布列,并求出ξ 的期望ξ E 与方差ξ D (保留两位小数). 分析:根据随机变量不同的取值确定对应的概率,在利用期望和方差的定义求解. 解: 该组练习耗用的子弹数ξ 为随机变量,ξ 可以取值为1,2,3,4,5.ξ =1,表示一发即中,故概率为;8.0)1(==ξ Pξ =2,表示第一发未中,第二发命中,故;16.08.02.08.0)8.01()2(=⨯=⨯-==ξ Pξ =3,表示第一、二发未中,第三发命中,故;032.08.02.08.0)8.01()3(22=⨯=⨯-==ξ Pξ =4,表示第一、二、三发未中,第四发命中,故0064.08.02.08.0)8.01()4(33=⨯=⨯-==ξ Pξ =5,表示第五发命中,故.0016.02.01)8.01()5(44==⋅-==ξ P因此,ξ 的分布列为0016.050064.04032.0316.028.01⨯+⨯+⨯+⨯+⨯=ξ E,25.1008.00256.0096.032.08.0 =++++=0016.0)25.15(0064.0)25.14(032.0)25.13(16.0)25.12(8.0)25.11(22222⨯-+⨯-+⨯-+⨯-+⨯-=ξ D .31.00225.00484.0098.009.005.0 =++++=说明:解决这类问题首先要确定随机变量的所有可能取值,然后再根据概率的知识求解对应的概率.准备礼品的个数例 某寻呼台共有客户3000人,若寻呼台准备了100份小礼品,邀请客户在指定时间来领取.假设任一客户去领奖的概率为4%.问:寻呼台能否向每一位顾客都发出奖邀请?若能使每一位领奖人都得到礼品,寻呼台至少应准备多少礼品?分析:可能来多少人,是一个随机变量ξ.而ξ显然是服从二项分布的,用数学期望来反映平均来领奖人数,即能说明是否可行.解:设来领奖的人数)3000,,2,1,0(, ==k k ξ,所以k k k C k P --⋅==300003000)04.01()04.0()(ξ,可见()04.0,30000~B ξ,所以,12004.03000=⨯=ξE (人)100>(人).答:不能,寻呼台至少应准备120份礼品.说明:“能”与“不能”是实际问题转到数学中来,即用数字来说明问题.数字期望反映了随机变量取值的平均水平.用它来刻画、比较和描述取值的平均情况,在一些实际问题中有重要的价值.因此,要想到用期望来解决这一问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典型例题一例1 三条直线两两相交,由这三条直线所确定平面的个数是( ). A .1 B .2 C .3 D .1或3分析:本题显然是要应用推论2判断所能确定平面的个数,需要在空间想象出这三条直线所有不同位置的图形,有如下图的三种情况(如图):答案:D .说明:本题启发我们考虑问题不要只局限于平面图形,应养成在三维空间考虑问题的习惯.典型例题二例2 一条直线与三条平行直线都相交,求证这四条直线共面.分析:先将已知和求证改写成符号语言.证明诸线共面,可先由其中的两条直线确定一个平面,然后证明其余的直线均在此平面内.也可先由其中两条确定一个平面α,另两条确定平面β,再证平面α,β重合.已知:c b a ////,A a l = ,B b l = ,C c l = . 求证:直线a ,b ,c ,l 共面. 证明: ∵ b a //,∴ a ,b 确定一个平面α. ∵ A a l = ,B b l = , ∴ α∈A ,α∈B ,故α⊂l .又 ∵ c a //, ∴ a ,c 确定一个平面β. 同理可证β⊂l .∴ a =βα ,且l =βα .∵ 过两条相交直线a ,l 有且只有一个平面,故α与β重合即直线a ,b ,c ,l 共面.说明:本例是新教材第9页第9题的一个简单推广,还可推广到更一般的情形.本例证明既采用了归一法,同时又采用了同一法.这两种方法是证明线共面问题的常用方法.在证明α⊂c 时,也可以用如下反证法证明:假设直线α⊄c ,则c 一定与α相交,此时直线c 与a 内的所有直线都不会平行,这显然与c a //矛盾.故α⊂c .典型例题三例3 已知ABC ∆在平面α外,它的三边所在的直线分别交平面α于P ,Q ,R 三点,证明P ,Q ,R 三点在同一条直线上.分析:如图所示,欲证P ,Q ,R 三点共线,只须证P ,Q ,R 在平面α和平面ABC ∆的交线上,由P ,Q ,R 都是两平面的公共点而得证.证明:∵ P AB =α ,Q BC =α , ∴ PQ 是平面α与平面ABC 的交线. 又 ∵ R AC =α ,∴ α∈R 且∈R 平面ABC , ∴ PQ R ∈,∴ P ,Q ,R 三点共线.说明:证明点共线的一般方法是证明这些点是某两个平面的公共点,由公理2,这些点都在这两平面的交线上.典型例题四例4 如图所示,ABC ∆与111C B A ∆不在同一个平面内,如果三直线1AA 、1BB 、1CC 两两相交,证明:三直线1AA 、1BB 、1CC 交于一点. 分析:证明三线共点的一般思路是:先证明两条直线交于一点,再证明该点在第三条直线上即可.证明:由推论2,可设1BB 与1CC ,1CC 与1AA ,1AA 与1BB 分别确定平面α,β,γ.取P BB AA =11 ,则1AA P ∈,1BB P ∈. 又因1CC =βα ,则1CC P ∈(公理2), 于是P CC BB AA =111 ,故三直线1AA 、1BB 、1CC 共点.说明:空间中证三线共点有如下两种方法:(1)先确定两直线交于一点,再证该点是这两条直线所在两个平面的公共点,第三条直线是这两个平面的交线,由公理2,该点在它们的交线上,从而得三线共点.(2)先将其中一条直线看做是某两个平面的交线,证明该交线与另两直线分别交于两点,再证这两点重合.从而得三线共点.典型例题五(1)不共面的四点可以确定几个平面?(2)三条直线两两平行但不共面,它们可以确定几个平面? (3)共点的三条直线可以确定几个平面? 分析:(1)可利用公里3判定。
(2)可利用公里3的推论3判定。
(3)需进行分类讨论判定。
解:(1)不共面的四点可以确定四个平面。
(2)三条直线两两平行但不共面,它们可以确定3个平面。
(3)共点的三条直线可以确定1个或3个平面。
说明:判定平面的个数问题关键是要紧紧地抓住已知条件,要做到不重不漏。
平面的确定问题主要是根据已知条件和公里3及其3个推论来判定平面的个数。
典型例题六例6 A 、B 、C 为空间三点,经过这三点:A .能确定一个平面B .能确定无数个平面C .能确定一个或无数个平面D .能确定一个平面或不能确定平面 分析:本题考查空间确定平面的方法,解题的主要依据是公理3及三个推论. 解:由于题设中所给的三点A 、B 、C 并没有指明这三点之间的位置关系, 所以在应用公理3时要注意条件“不共线的三点”.当A 、B 、C 三点共线时,经过这三点就不能确定平面,当A 、B 、C 三点不共线时,经过这三点就可以确定一个平面,故选D .说明:空间确定一平面的方法有多种,既可以根据不共线的三点来确定一个平面,又可以根据空间两相交直线或两平行直线来确定一个平面.典型例题七例7 判断题(答案正确的在括号内打“√”号,不正确的在括号内打“×”号).(1)两条直线确定一个平面;( )(2)经过一点的三条直线可以确定一个平面;( ) (3)两两相交的三条直线不共面;( )(4)不共面的四点中,任何三点不共线.( )分析:(1)两条直线能否确定平面,应注意这两条直线的位置关系,不给出位置关系则要分情况讨论,才可得出结论.两条相交直线可确定一个平面,两条平行直线可确定一个平面,除此以外的任何两条直线不能确定平面;(2)经过一点的两条直线可确定一个平面,三条直线不一定能确定平面; (3)三条直线两两相交,若不共点时这三条直线必共面;(4)如果有三点共线,则此三点所在直线与第四点必同在某一平面内,即四点共面. 解:(1)× (2)× (3)× (4)√.说明:由(3)题的分析过程可知:两两相交的三条直线有时共面有时不共面.那么对于空间四条直线何时共面何时不共面呢?典型例题八例8 如图,在正方体1111D C B A ABCD 中,点E 、F 分别是棱1AA 、1CC 的中点,试画出过点1D 、E 、F 三点的截面.分析:本题考查作多面体截面的能力,主要依据是公理1和公理2欲画出所要求的截面与正方体各个侧面的交线.解:连F D 1并延长F D 1与DC 的延长线交于点H ,连结E D 1与DA 的延长线交于点G ,连结GH 与AB 、BC 两条棱交于点B ,连结BE 、BF ,则F BED 1就是过点1D 、E 、F 三点的截面.说明:本题亦可以证明点B 、E 、1D 、F 四点共面.若E 、F 不是棱A A 1与C C 1的中点,则作图过程中GH 不一定过点B ,所画的截面多边形可能是五边形.典型例题九例9 判断下列说法是否正确?并说明理由.(1)平行四边形是一个平面.(2)任何一个平面图形都是一个平面.(3)空间图形中先画的线是实线,后画的线是虚线.解:(1)不正确.平行四边形它仅是平面上四条线段构成的图形,它是不能无限延伸的. 说明:在立体几何中,我们通常用平行四边形表示平面,但绝不是说平行四边形就是平面.(2)不正确.平面图形和平面是完全不同的两个概念,平面图形是有大小,它是不可能无限延展的.说明:要严格区分“平面图形”和“平面”这两个概念.(3)不正确.在空间图形中,我们一般是把能够看得见的线画成实线,把被平面遮住看不见的线画成虚线(无论是题中原有的,还是后引的辅助线).说明:在平面几何中,凡是后引的辅助线都画成虚线;在立体几何中却不然.有的同学在学习立体几何时,对此点没有认识,必将影响空间立体感的形成,削弱或阻断空间想象能力的培养.典型例题十例10按照给出的要求,完成下面两个相交平面的作图,如下图的(1)、(2)、(3)、(4)、(5)、(6)中的线段AB,分别是两个平面的交线.解:由两个相交平面的画法:本题只须过线段的端点画出与交线AB平行且相等的线段,即可得到相关的平行四边形,注意被平面遮住的部分应画成虚线或者不画,然后在相关的平面上标上表示平面的字母即可如下图所示.说明:(1)画好两个相交平面的图形,是画好一切立体图形的基础.(2)画空间图形的过程,是培养我们空间想象能力的过程,一定要认真对待,决不可以掉以轻心.典型例题十一例11(1)一个平面将空间分成几部分?(2)两个平面将空间分成几部分?(3)三个平面将空间分成几部分?画出图形,(要求:至少有两种情况有画法过程) 解:(1)一个平面将空间分成两部分.(2)两个平面平行时,将空间分成三部分,两个平面相交时,将空间分成四部分.(3)本小题情况比较复杂,须分类予以处理.情况1:当平面α、平面β、平面γ互相平行(即γβα////),将空间分成四个部分,其图形如右图.情况2:当平面α与平面β平行,平面γ与它们相交(即βα//,γ与其相交),将空间分成六部分,其图形如下图. 画法是:情况3:当平面α、平面β、平面γ都相交,且三条交线重合(即l =βα 且l =γα ) 将空间分成六部分,其图形如下图.说明:本种情况给出两种图形,一种是将交线画成水平状态,一种是将交线画成竖直状态.情况4:平面α、平面β、平面γ都相交且三条交线共点,但互不重合.(即l =γα ,且γ与α、β都相交,三条交线共点).将空间分成八部分,其图形如下图. 画法是:情况5:平面α、平面β、平面γ两两相交且三条交线平行(即l =βα ,γ与α、β都相交且三条交线平行).将空间分成七部分,其图形如下图.说明:1.本小题(3),在解答过程中,采用了简单到复杂递进的处理方法,首先对两个平面在空间的位置分类讨论,再让第三个平面以不同情况介入,然后分类解决.2.通过此题的解答,要学会处理问题的思维方法,注意逻辑思维能力的培养与提高.3.本题是一个基础性很强的问题,无论是对立体图形的画法以及空间想象能力的形成都大有裨益.典型例题十二例12下图中表示两个相交平面,其中画法正确的是().解:对于A,图中没有画出平面α与平面β的交线,另外图中的实、虚线也没有按照画法原则去画,因此A的画法不正确.同样的道理,也可知B、C图形的画法不正确.D的图形画法正确.∴应选D.说明:对空间图形的准确辨识,是培养空间想象能力的重要组成部分,一定要注意这方面能力的锻炼.典型例题十三例13观察下图,说明图形中的不同之处.解:上面的图形都是由九条线段构成的图形、外形似乎相似.仔细观察,由于图中的实、虚线的画法不同,则反映了不同的几何体.A图是一个簸箕形图形;B图是体,是三棱柱;C图也是体,也是三棱柱.B图如果看作是从三棱柱的正面观察,C图则可看作是从三棱柱的后面观察.说明:在立体几何中,一定要明确画图过程中哪条线画实线,哪条线画虚线.要记住:能够看得到的线一定画成实线,被挡住的看不到的线画成虚线.下面再给出两组图形如下图所示,请同学们予以辨识,指出它们有什么不同.典型例题十四例14 若点Q 在直线b 上,b 在平面β内,则Q 、b 、β之间的关系可记作( ).A .β∈∈b QB .β⊂∈b QC .β⊂⊂b QD .β∈⊂b Q 解法1:(直接法)∵点Q 在直线b 上,∴b Q ∈, ∵直线b 在平面β内,∴β⊂b , ∴β⊂∈b Q . ∴应选B . 解法2:(排除法)∵点Q 与直线b 之间的关系是元素与集合之间的关系, ∴只能用符号“∈”或“∉”表示, ∴C 、D 应予排除.∵直线b 与平面β之间是集合与集合之间的关系, ∴只能用符号“⊂”或“⊄”表示, ∴A 应予以排除.综上可知应选B .说明:要能正确地使用点、直线、平面之间关系的符号语言.典型例题十五例15 用符号语言表示下列语句(1)点A 在平面α内,但在平面β外; (2)直线a 经过平面α外一点M ;(3)直线a 在平面α内,又在平面β内,即平面α和β相交于直线a . 解:(1)α∈A 但β∉A .(2)α∉M ,a M ∈.(3)α⊂a 且β⊂a ,即a =βα .说明:符号语言比较简洁、严谨,可大大的缩短文字语言表达的长度,有利于推理、计算.典型例题十六例16 将下面用符号语言表示的关系改用文字语言予以叙述,并用用图形语言予以表示.βαβα⊂⊂∈=AC AB l A l ,,, .分析:本题实质是数学三种语言——符号语言、文字语言、图形语言的互译. 解:文字语言叙述为:点A 在平面α与平面β的交线l 上,AB 、AC 分别在α、β内. 图形语言表示为如图:说明:文字语言比较自然、生动,它能将问题所研究的对象的含义更加明白地叙述出来,我们教科书上的概念、定理等多以文字语言叙述.图形语言,易引起清晰的视觉形象,它能直观地表达概念、定理的本质以及相互关系,在抽象的数学思维面前起着具体化和加深理解的作用.各种数学语言间的互译可为我们在更广阔的思维领域里寻找问题解决的途径提供方便.有利于培养我们思维的广阔性.典型例题十七例17 如下图中ABC ∆,若AB 、BC 在平面α内,判断AC 是否在平面α内.解:∵AB 在平面α内, ∴A 点一定在平面α内. ∵BC 在平面α内,∴C 点一定在平面α内.∴点A 、点C 都在平面α内. ∴直线AC 在平面内(公理1).说明:公理1可以用来判断直线是否在平面内.典型例题十八例18 如下图,在正方体1111D C B A ABCD -中,E 、F 分别为1CC 和1AA 上的中点,画出平面F BED 1与平面ABCD 的交线.分析:可根据公理2,如果两个平面有一个公共点,它们就有过这点的一条直线,也只有这一条直线;这条直线的位置还须借助于另一个条件来确定.解:在平面D D AA 11内,延长F D 1, ∵F D 1与DA 不平行,因此F D 1与DA 必相交于一点,设为P 则1FD P ∈,DA P ∈.又∵⊂1FD 平面F BED 1,⊂AD 平面ABCD 内, ∴∈P 平面F BED 1,∈P 平面ABCD . 又B 为平面ABCD 与平面F BED 1的公共点,∴连结PB ,PB 即为平面F BED 1与平面ABCD 的交线.说明:公理2是两个平面相交的性质,它说明两个平面相交,交线是一条直线.要注意理解两个平面不存在只有一个公共点的情形,如果有一个公共点,那么必定有无数多个公共点,且这些点恰好组成一条直线.同时要注意,找到两个平面的一个公共点,交线的具体位置还无法判定,只有找到两个公共点,才确定这两个平面的交线.这是做几何体截面时确定交线经常用到的方法.典型例题十九例19 已知E 、F 、G 、H 分别是空间四边形ABCD (四条线段首尾相接,且连接点不在同一平面内.所组成的空间图形叫空间四边形.)各边AB 、AD 、CB 、CD 上的点,且直线EF 和HG 交于点P ,如下图,求证:点B 、D 、P 在同一条直线上.证明:如图∵直线EF 直线PHG=,∴P∈直线EF,而EF⊂平面ABD,∴P∈平面ABD.同理,P∈平面CBD,即点P是平面ABD和平面CBD的公共点.显然,点B、D也是平面ABD和平面CBD的公共点,由公理2知,点B、D、P都在平面ABD和平面CBD的交线上,即点B、D、P在同一条直线上.说明:证明三点共线通常采用如下方法:方法1是首先找出两个平面,然后证明这三点都是这两个平面的公共点,根据公理2知,这些点都在交线上.方法2是选择其中两点确定一条直线,然后证明另一点在其上.。