第四高级中学17—18学年上学期高二期末考试数学(文)试题(附答案)
2023-2024学年西安市高二数学第一学期期末考试卷附答案解析

2023-2024学年西安市高二数学第一学期期末考试卷注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:人教A 版选择性必修第一册至选择性必修第二册第四章.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线350x +=的倾斜角为()A .30B .60C .120D .1502.已知()F 为双曲线22:14x y C m -=的一个焦点,则C 的渐近线的方程为()A .0x =B 0y ±=C .20x y ±=D .20x y ±=3.已知数列{}n a 的首项13a =,且122n na a +=-,则9a =()A .3B .2-C .43D .3-4.在三棱锥-P ABC 中,M 为AC 的中点,则PM =()A .1122BA BC BP ++B .1122BA BC BP +- C .111222BA BC BP +-D .111222BA BC BP++ 5.某学习小组研究一种卫星接收天线(如图①所示),发现其曲面与轴截面的交线为抛物线,在轴截面内的卫星波束呈近似平行状态射入形为抛物线的接收天线,经反射聚焦到焦点处(如图②所示).已知接收天线的口径(直径)为5.6m ,深度为0.7m ,则该抛物线的焦点到顶点的距离为()A .2.1mB .2.8mC .4.2mD .56m .6.若直线10ax by +-=与圆22:1O x y +=相离,则过点(),P a b 的直线与椭圆22165y x +=的交点个数是()A .0或1B .0C .1D .27.设n S 为等差数列{}n a 的前n 项和,若1354686,12a a a a a a ++=++=,则8S =()A .8B .12C .18D .248.已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为12,F F .过2F 的直线交双曲线C 右支于,A B 两点,且2213,AF F B AB AF ==,则C 的离心率为()A .2B .3C 2D 3二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.关于空间向量,以下说法正确的是()A .若非零向量a ,b,c 满足a b ⊥ ,c b ⊥ ,则a c∥ B .若对空间中任意一点O ,有121236OP OA OB OC=+- ,则P ,A ,B ,C 四点共面C .若空间向量()0,1,1a =,()1,1,2b =,则a 在b 上的投影向量为11,,122⎛⎫⎪⎝⎭D .已知直线l 的方向向量为()2,1,1a =-,平面α的法向量为()2,1,5b =---,则l α∥或l ⊂α10.已知圆22:60M x y x +-=和圆22:80,N x y y P ++=是圆M 上一点,Q 是圆N 上一点,则下列说法正确的是()A .圆M 与圆N 有四条公切线B .两圆的公共弦所在的直线方程为340x y +=C .PQ的最大值为12D .若(2,P ,则过点P 且与圆M 相切的直线方程为60x -+=11.已知数列{}n a 满足126a =,132n n a a +=-,n S 为{}n a 的前n 项和,则()A .{}1n a +为等比数列B .{}n a 的通项公式为4131n n a -=-C .{}n a 为递减数列D .当4n =或5n =时,nS 取得最大值12.已知F 是椭圆2222:1(0)x y C a b a b +=>>的右焦点,直线y kx =与椭圆C 交于A ,B 两点,M ,N 分别为AF ,BF 的中点,O 为坐标原点,若60MON ∠=︒,则椭圆C 的离心率可能为()A .2B .910C .12D .三、填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.若直线l 与直线10x y +-=关于直线2y =对称,则直线l 的一般式方程为.14.已知空间中的三点()()()0,0,0,0,1,1,1,0,1O A B ,则点A 到直线OB 的距离为.15.已知()4,1A ,()3,0B ,M 是抛物线C :212y x =上的一点,则MAB △周长的最小值为.16.如图所示的数阵由数字1和2构成,将上一行的数字1变成1个2,数字2变成2个1,得到下一行的数据,形成数阵,设na 是第n 行数字1的个数,nb 是第n 行数字2的个数,则67a a +=,221n n a b ++=.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知圆C 过点()2,0A 和()0,0B ,且圆心C 在直线:0l x y -=上.(1)求圆C 的标准方程;(2)经过点()2,1-的直线l '与l 垂直,且l '与圆C 相交于,M N 两点,求MN.18.已知数列{}n a 的前n 项和为n S ,且25n S n n =+.(1)求{}n a 的通项公式;(2)设14n n n b a a +=,求数列{}n b 的前n 项和n T .19.一动圆经过点()0,2F 且与直线=2y -相切,设该动圆圆心的轨迹为曲线C .(1)求曲线C 的方程;(2)若直线l 与C 交于A ,B 两点,且线段AB 的中点坐标为()2,2,求直线l 的方程.20.在正三棱柱111ABC A B C -中,1AA AC=,E 为AB的中点.(1)证明:1//BC 平面1A EC.(2)求平面1A EC与平面11C CBB 夹角的余弦值.21.已知{}n a 是首项为1的等差数列,{}n b 是公比为2的等比数列,且12b a =,24b a =.(1)求{}n a 和{}n b 的通项公式;(2)在{}n a 中,对每个正整数k ,在ka 和1k a +之间插入k 个kb ,得到一个新数列{}n c ,设n T 是数列{}n c 的前n 项和,比较66T 与20000的大小关系.22.已知椭圆()2222:10x y a b C a b =>>+的上、下顶点分别是,A B ,点P (异于,A B 两点),直线PA 与PB的斜率之积为49-,椭圆C 的长轴长为6.(1)求C 的标准方程;(2)已知(0,1)T ,直线PT 与椭圆C 的另一个交点为Q ,且直线AP 与BQ 相交于点D ,证明点D 在定直线上.1.C【分析】根据直线方程可得斜率,进而可知倾斜角.【详解】设直线的倾斜角为α,则0180α≤<,由题意可得:直线350x +=的斜率为k =则tan α=120α=.故选:C 2.B【分析】根据题意求,,a b c ,即可得渐近线方程.【详解】由题意可知:2,a c ==x 轴上,可得b =所以C 的渐近线的方程为by x a =±=0y ±=.故选:B.3.A【分析】求出2345,,,a a a a ,发现周期,根据周期来求解.【详解】由题可得22a =-,312a =,443a =,53a =,故{}n a 是以4为周期的周期数列,故913a a ==.故选:A.4.B【分析】连接BM ,根据空间向量的运算法则,准确化简,即可求解.【详解】连接BM ,根据向量的运算法则,可得1122PM BM BP BA BC BP=-=+-.故选:B.5.B【分析】建立平面直角坐标系,得到()0.7,2.8A ,代入抛物线方程,求出 5.6p =,从而得到答案.【详解】如图所示,建立平面直角坐标系,则()0.7,2.8A ,将()0.7,2.8A 代入22y px =,故22.8 1.4p =,解得 5.6p =,所以该抛物线的焦点到顶点的距离为 2.82p=m.故选:B 6.D【分析】由直线与圆相离得221a b +<,则点(),P a b 在椭圆22165y x +=的内部,由此即可得解.【详解】由题意直线10ax by +-=与圆22:1O x y +=相离,所以圆心到直线的距离1d r=>=,即2201a b <+<,而2222116555b a a b ++≤<<,即点(),P a b 在椭圆22165y x +=的内部,所以过点(),P a b 的直线与椭圆22165y x +=的交点个数是2.故选:D.7.D【分析】直接由等差数列性质以及求和公式即可得解.【详解】由题意1353468636,312a a a a a a a a ++==++==,解得362,4a a ==,所以()()188368446242a a S a a ⨯+==+=⨯=.故选:D.8.A 【分析】设2F B n=,根据双曲线定义和线段之间的倍数关系求出14BF a=,18AF AB a==,由余弦定理求出11cos 4F BA ∠=,进而得到2c a =,得到答案.【详解】由已知可设2F B n=,则23AF n=,故2124AF AB A B nF F +===,由双曲线的定义有122a AF AF n=-=,故22F B n a==,148AF AB n a===,故1224BF a BF a=+=,在1AF B△中,由余弦定理得22222211111664641cos 22484BF AB AF a a a F BA BF AB a a ∠+-+-===⋅⨯⋅.在12BF F △中,由余弦定理得22212121212cos F F BF BF BF BF F BA=+-⋅∠,即222141622444a a a a c +-⋅⋅⋅=,解得224c a =,即2c a =,故C 的离心率为2.故选:A 9.BCD【分析】根据a,c 的方向不确定判断A ;根据空间向量共面定理判断B ;根据投影向量定义判断C ;利用4150a b ⋅=--+=,可得a b ⊥ ,从而判断D .【详解】对于A ,非零向量a ,b ,c 满足a b ⊥ ,c b ⊥ ,a ,c 的方向不确定,则a,c 不一定平行,故A 错误;对于B ,121236OP OA OB OC =+- ,1211236+-=,所以P ,A ,B ,C 四点共面,故B 正确;对于C ,因为=01+11+12=3a b ⋅⨯⨯⨯ ,22221+1+2=6b = ,所以a 在b上的投影向量为111,,1222a b b b bb ⋅⎛⎫⋅== ⎪⎝⎭,故C 正确;对于D ,因为直线l 的方向向量为()2,1,1a =-,平面α的法向量为()2,1,5b =---,所以4150a b ⋅=--+=,所以a b ⊥ ,则l α∥或l ⊂α,故D 正确.故选:BCD.10.BCD【分析】对于A ,判断两圆的位置关系即可;对于B ,两圆方程相减即可;对于C ,由max M NMN P r r Q =++验算即可;对于D ,点在圆上,利用垂直关系得切线斜率,进一步即可验算.【详解】对于A ,圆()22:39M x y -+=、()22:416N x y ++=的圆心、半径依次分别为()()3,0,3,0,4,4M N M r N r =-=,圆心距满足157N M M N r r MN r r -=<==<+=,所以两圆相交,圆M 与圆N 有两条条公切线,故A 错误;对于B ,两圆()22:39M x y -+=、()22:416N x y ++=方程相减得,698167x y -+--=-,化简并整理得两圆的公共弦所在的直线方程为340x y +=,故B 正确;对于C ,由题意max 53412M N P MN r r Q ++==++=,当且仅当,,,P Q M N 四点共线,PQ取最大值,故C 正确,对于D ,()(22239-+=,即点(2,P 在圆22:60M xy x +-=上面,又22023PM k ==--P 且与圆M相切的直线方程为)2y x -=-,化简并整理得,过点P 且与圆M相切的直线方程为60x -+=,故D 正确.故选:BCD.11.AC【分析】利用构造法得()1311n n a a ++=+,判断出{}11n a ++为首项为27,公比为13的等比数列,判断A 选项;利用等比数列通项公式求出1n a +通项公式,得出4113n n a -骣琪=-琪桫,判断B 选项;根据函数4113x y -骣琪=-琪桫是减函数,判断C 选项;令n a =,解得4n =,判断D 选项.【详解】因为132n n a a +=-,所以1331n n a a ++=+,即()1311n n a a ++=+,11113n na a ++=+,又因为126a =,所以1127a +=,所以{}11n a ++为首项为27,公比为13的等比数列,A 正确;141112733n n n a --骣骣琪琪+=´=琪琪桫桫,所以4113n n a -骣琪=-琪桫,B 错误;因为函数4113x y -骣琪=-琪桫是减函数,所以{}n a 为递减数列,C 正确;令0n a =,即41103n -骣琪-=琪桫,解得4n =,所以4n ≤时,n a ≥,5n ≥时,n a <,所以当3n =或4n =时,nS 取得最大值,D 错误.故选:AC 12.BD【分析】根据题意,先画出图象,然后判断四边形1AF BF为平行四边形,由60MON ∠=︒可得1120FAF ∠=︒,进而结合椭圆的定义与基本不等式可得有关,a c 的不等式,解不等式得到离心率的取值范围,从而逐项判断四个选项即可得到答案.【详解】根据题意,图象如图所示:设1F 为椭圆C 的左焦点,因为直线y kx =与椭圆C 交于A ,B 两点,所以由椭圆的对称性得OA OB =,又1OF OF =,于是四边形1AF BF 为平行四边形.因为M ,N 分别为AF ,BF 的中点,O 是1F F 中点,所以1//AF OM ,1//BF ON ,平行四边1AF BF 中160AF B MON ∠=∠=︒,1120FAF ∠=︒,在1AF F 中,2221112cos 120F F AF AF AF AF =+-∠()()()()2222111113AF AFAF AF AF AF AF AF AF AF ++=+-≥+-=.因为直线y kx =斜率存在,所以A ,B 两点不在y 轴上,即1AF AF ≠,又在2222:1(0)x y C a b a b +=>>中,112,2AF AF a FF c +==,所以,()221134AF AFF F +>,即2243c a ≥,又a c >,所以22314c a <<,即e <1<.综上所述,2e ⎛⎫∈ ⎪ ⎪⎝⎭;因为1,222⎛⎫∉ ⎪⎪⎝⎭,故A ,C错误;22758191210010010⎛⎛⎫=<=< ⎪ ⎝⎭⎝⎭,即910⎫∈⎪⎪⎝⎭,故B 正确;1244=<<,即42⎛⎫∈ ⎪ ⎪⎝⎭,故D 正确.故选:BD .13.30x y -+=【分析】在直线l 上任取一点(,)M x y ,则点M 关于直线2y =对称点(,4)M x y '-在直线10x y +-=上,即可求解.【详解】设直线l 上任意一点(,)M x y ,则点M 关于直线2y =对称点(,4)M x y '-,因为直线l 与直线10x y +-=关于直线2y =对称,所以(,4)M x y '-在直线10x y +-=上,即410x y +--=,得到直线l 的一般式方程为30x y -+=故答案为:30x y -+=14.2【分析】由题意得OA OB === OA OB OB ⋅,结合勾股定理即可得解.【详解】由题意得()()0,1,1,1,0,1OA OB ==,所以OA OB ===22OA OB OB ⋅==,所以点A 到直线OB2.故答案为:.15.77【分析】利用抛物线的定义求解即可.【详解】由题可知()3,0B 为抛物线C 的焦点,C 的准线方程为3x =-.设d 为点M 到C 的准线的距离,则MA MB +=7MA d +≥.又AB =MAB △周长的最小值为7故答案为:716.1612n +【分析】由题意可知:112,n n n n a b b a ++==,且21212,21a b b a ====,进而可得22n n a a +=,结合等比数列运算求解.【详解】由题意可知:112,n n n n a b b a ++==,且21212,21a b b a ====,则2122n n n a b a ++==,可得12222n n n a a -=⋅=,2122n n n b a +==,所以1671221888816,2n n n a a a a b +++=+=+=+=.故答案为:16;12n +.17.(1)()()22112x y -+-=【分析】(1)由题意得(),C c c ,()2222222CA c c c c CB =-+=+=,由此即可得解.(2)首先得经过点()2,1-且与l 垂直的直线l '为1y x =-+,由弦长公式即可得解.【详解】(1)由题意设圆心(),C c c ,又圆C 过点()2,0A 和()0,0B ,所以()2222222CA c c c c CB =-+=+=,解得1c =,所以圆心()1,1C,半径为r CB ==所以圆C 的标准方程为()()22112x y -+-=.(2)由题意经过点()2,1-且与l 垂直的直线l '为()12y x +=--,即1y x =-+,又圆心()1,1C 到直线1y x =-+的距离为d =,r =所以MN ==18.(1)*24,N n a n n +∈=(2)()*,N 33n nT n n =∈+【分析】(1)由,n n a S 的关系即可得解.(2)由裂项相消法即可得解.【详解】(1)由题意116a S ==,当*2,N n n ≥∈时,所以()()()212155121524n n n a S S n n n n n n -⎡⎤-+-⎦==+-+--==+⎣,又1246=+=a ,所以{}n a 的通项公式为*24,N n a n n +∈=.(2)由题意()()14411242623n n n b a a n n n n +===-++++,所以()111111113445233333n n T n n n n =-+-++-=-=++++ .所以数列{}n b 的前n 项和()*,N 33n nT n n =∈+.19.(1)28x y=(2)220x y -+=.【分析】(1)根据抛物线的定义和标准方程可以确定曲线C 的方程.(2)利用点差法结合中点坐标公式和斜率公式求解.【详解】(1)依题意得该动圆的圆心到点()0,2F 的距离到直线=2y -的距离相等.又点()0,2F 不在直线=2y -上,所以根据抛物线的定义可知该动圆圆心的轨迹是以()0,2F 为焦点,=2y -为准线的抛物线,所以曲线C 的方程为28x y =.(2)设()11,A x y ,()22,B x y ,则21122288x y x y ⎧=⎨=⎩,两式相减得()2212128x x y y -=-,即1212128y y x xx x -+=-.因为线段AB 的中点坐标为()2,2,所以124x x +=,则121212y y x x -=-,即直线l 的斜率为12,所以直线l 的方程为()1222y x -=-,即220x y -+=,经检验,直线:l 220x y -+=与曲线:C 28x y =相交,满足题意,所以直线l 的方程为220x y -+=.20.(1)证明见解析;(2);【分析】(1)利用中位线性质构造线线平行即可证明线面平行;(2)建立空间直角坐标系,利用空间向量计算面面夹角.【详解】(1)连接1AC ,与1A C 交于点F ,连接EF ,则F 为1AC 的中点.因为E 为AB 的中点,所以1//EF BC ,又1BC ⊂/平面1A EC ,EF ⊂平面1A EC ,所以1//BC 平面1A EC .(2)取11A B 的中点D ,连接ED ,则1//DE AA ,CE AB ⊥.又1AA ⊥平面ABC ,所以DE ⊥底面ABC ,CE ⊂底面ABC ,所以DE CE ⊥,则可以E 为原点,,,EC EB ED 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,令11AA =,则()0,0,0E,C ⎫⎪⎪⎝⎭,110,,12A ⎛⎫- ⎪⎝⎭,10,,02B ⎛⎫ ⎪⎝⎭,110,,12B ⎛⎫ ⎪⎝⎭,所以EC ⎫=⎪⎪⎝⎭ ,110,,12EA ⎛⎫=- ⎪⎝⎭ ,()10,0,1BB =,1,02CB ⎛⎫= ⎪ ⎪⎝⎭ .设平面1A EC 的法向量为(),,n x y z = ,则1102302n EA y z n EC ⎧⋅=-+=⎪⎪⎨⎪⋅==⎪⎩ ,取20,1y x z =⇒==,即()0,2,1n = .设平面11C CBB 的法向量为(),,m a b c =,则101022m BB c m CB b ⎧⋅==⎪⎨⋅=-+=⎪⎩ ,取10a b c =⇒==,即()m = ,则cos ,m n m n m n ⋅=== ,即平面1A EC 与平面11C CBB夹角的余弦值为.21.(1)n a n =,2n n b =(2)6620000T <【分析】(1)根据题意结合等差、等比数列的通项公式运算求解;(2)根据题意分析可知6612111210()(210)T a a a b b b =++⋅⋅⋅++++⋅⋅⋅+,利用分组求和法结合等差、等比数列求和公式以及错位相减法运算求解.【详解】(1)设数列{}n a 的公差为d ,因为1224b a b a =⎧⎨=⎩,则111213b d b d =+⎧⎨=+⎩,解得112d b =⎧⎨=⎩,所以11n a n n =+-=,1222n n n b -=⨯=.(2)因为(1)1232k k k ++++⋅⋅⋅+=,当10k =时,(1)552k k +=,可知6612111210()(210)T a a a b b b =++⋅⋅⋅++++⋅⋅⋅+,且1211(111)11662a a a +⨯++⋅⋅⋅+==,令{}n nb 的前n 项和为n S ,则234122232422n n S n =⨯+⨯+⨯+⨯+⋅⋅⋅+⨯,可得234512122232422n n S n +=⨯+⨯+⨯+⨯+⋅⋅⋅+⨯,两式相减得()231112(21)22222212221n n n n n n S n n n +++--=+++⋅⋅⋅+-⨯=-⨯=-⨯--,即1(1)22n n S n +=-⨯+,可得111210210922b b b ++⋅⋅⋅+=⨯+,所以1166922661850020000T =⨯++=<.22.(1)29x +24y =1(2)证明见解析【分析】(1)设11(,)P x y ,根据斜率之积和点P 在椭圆上整理可得椭圆C 的标准方程;(2)设直线PT 的方程为1y kx =+,联立椭圆方程消去y ,利用P ,Q 坐标表示出直线PA 与PB 的方程,求解出点D 的坐标,然后用韦达定理化简即可得证.【详解】(1)由题意可得(0,),(0,)A b B b -,且26a =,则3a =.设11(,)P x y ,则1111,PA PB y b y b k k x x -+==,所以22121PA PB y b k k x -⋅=*,因为点P 在椭圆C 上,所以2211221x y a b +=,所以()2221212b y a x b -=,代入*式得()222122221249PA PB y b b k k a b y a b -⋅==-=--,由29a =代入得24b =,故椭圆C 的标准方程为:29x +24y =1;(2)设22(,)Q x y ,00(,)D x y ,显然直线PT 不垂直于x 轴,故可设直线PT 的方程为1y kx =+,由221,1,94y kx x y =+⎧⎪⎨+=⎪⎩消去y 得22(49)18270k x kx ++-=,因为点(0,1)T 在椭圆C 的内部,则直线PT 与椭圆恒有两个交点,所以12122218279494,kx x x x k k -+==-++,由(1)知,(0,2),(0,2)A B -,所以直线AP 的方程为1122y y x x -=+,直线BQ 的方程为2222y y x x +=-,由直线AP 与BQ 相交于点00(,)D x y ,则100120022222y y x x yy x x -⎧=+⎪⎪⎨+⎪=-⎪⎩,消0x 得()()()1200212222x y y y x y ++=⋅--①,由(1)知11112249y y x x -+⋅=-,得()11112492y x x y -=-+,可得()()()()12121221121229229(3)(3)244x y y y kx kx x y x x x x +++++=-=--()2222121212227183·939999494274494k k k k x x k x x k k x x k --+++++++=-⋅=-⨯-+()222275499493427k k k --++=-⋅=-,将()()12212=32x y x y +-代入①式得()00232y y +=-,解得04y =,即点D 在直线4y =上.【点睛】思路点睛:应用韦达定理解决非对称式的关键在于借助圆锥曲线斜率之积为定值,将()()122122x y x y +-转化为()()12129224y y x x ++-对称式结构再处理即可.。
新疆乌鲁木齐市第四中学2021-2022学年高二上学期期末考试 数学试题解析(001)高中数学

A.3B.2C.1D.0
【答案】C
【解析】
【详解】若函数 是幂函数,则函数 的图象不过第四象限,原命题是真命题,则其逆否命题也是真命题;其逆命题为:若函数 的图象不过第四象限,则函数 是幂函数是假命题,所以原命题的否命题也是假命题.故它的逆命题、否命题、逆否命题三个命题中,真命题有一个.选C.
A. B. C. D.
【答案】B
【解析】
【分析】
利用双曲线 的实轴长为 ,求出 ,即可求出该双曲线的渐近线的斜率.
【详解】由题意 , ,所以 , ,
所以双曲线的渐近线的斜率为 .
故选:B.
【点睛】本题考查双曲线的方程与性质,考查学生的计算能力,属于基础题.
5.已知△ABC的顶点B、C在椭圆 +y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是()
A. B. C. D.
【答案】C
【解析】
【分析】根据题意,依次分析选项中函数的奇偶性与单调性,综合即可得答案.
【详解】根据题意,依次分析选项:
对于A, 为一次函数,不是偶函数,不符合题意;
对于B, , ,为奇函数,不是偶函数,不符合题意;
对于C, ,为二次函数,是偶函数且在 上是减函数,符合题意;
对于D, , ,为奇函数,不是偶函数,不符合题意;
3.已知等差数列 的前 项和为 , , ,则 ()
A. B. C. D.
【答案】C
【解析】
【分析】利用已知条件求得 ,由此求得 .
【详解】依题意 ,解得 ,所以 .
故选:C
【点睛】本小题主要考查等差数列的通项公式和前 项和公式,属于基础题.
2023-2024学年湖南师大附中高二数学上学期期末考试卷附答案解析

2023-2024学年湖南师大附中高二数学上学期期末考试卷时量:120分钟满分:150分一、选择题:本大题共8个小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1.设复数z 满足=1i z -,z 在复平面内对应的点为(x,y),则A.22+11()x y +=B.22(1)1x y -+=C.22(1)1y x +-=D.22(+1)1y x +=2.直线() 2140x m y +++=与直线 320mx y +-=平行,则m =A.2B.2或3-C.3-D.2-或3-3.已知角α的终边与单位圆的交于点1,2P y ⎛⎫- ⎪⎝⎭,则sin tan αα⋅=()A.3-B.3±C.32-D.32±4.随着新一轮科技革命和产业变革持续推进,以数字化、网络化、智能化以及融合化为主要特征的新型基础设施建设越来越受到关注.5G 基站建设就是“新基建”的众多工程之一,截至2020年底,我国已累计开通5G 基站超70万个,未来将进一步完善基础网络体系,稳步推进5G 网络建设,实现主要城区及部分重点乡镇5G 网络覆盖.2021年1月计划新建设5万个5G 基站,以后每个月比上一个月多建设1万个,预计我国累计开通500万个5G 基站时要到()A.2022年12月B.2023年2月C.2023年4月D.2023年6月5.已知(2x-1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则|a0|+|a1|+…+|a5|=()A.1B.243C.121D.1226.设椭圆E 的两焦点分别为1F ,2F ,以1F 为圆心,12F F 为半径的圆与E 交于P ,Q 两点,若12PF F ∆为直角三角形,则E 的离心率为A.1C.17.如图,在平行四边形ABCD 中,点E 是CD 的中点,点F 为线段BD 上的一动点,若()0,0AF x AE yDC x y =+>>,则22341x y -+的最大值为()A.12B.34C.1D.28.已知当e x ≥时,不等式11e ln ax x a xx +-≥恒成立,则正实数a 的最小值为()A.1B.1eC.eD.21e二、多选题:本大题共4个小题,每小题5分,满分20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法正确的是()A.4个班分别从3个景点选择一处游览,不同的选法的种数是43;B.从1,2,3,4,5选择2个数(可重复)组成两位偶数一共有10个;C.两个口袋分别装有2个和3个小球,从两个口袋分别各取1个球,一共有5种取法;D.从1,3,5,7,10选择2个不相同的数作为分子分母组成分数,一共可以组成10个分数;10.设等比数列{}n a 的公比为q,其前n 项和为n S ,前n 项积为nT,并且满足条件11a >,781a a ⋅>,87101a a -<-,则下列结论正确的是()A.01q <<B.791a a ⋅>C.n S 的最大值为9S D.n T 的最大值为7T 11.已知函数()sin cos f x x x x x=+-的定义域为[)2,2ππ-,则()A.()f x 为奇函数B.()f x 在[)0,p 上单调递增C.()f x 有且仅有4个极值点D.()f x 恰有4个极大值点12.下列有关正方体的说法,正确的有()A.正方体的内切球、棱切球、外接球的半径之比为B.若正方体1111ABCD A B C D -的棱长为1,Q 为正方体侧面11BCC B 上的一个动点,,E F 为线段1AC 的两个三等分点,则QE QF+的最小值为C.若正方体8个顶点到某个平面的距离为公差为1的等差数列,则正方体的棱长为D.若正方体ABCD A B C D -''''的棱长为3,点P 在棱CC '上,且2PC PC =',则三棱锥B D AP '-'的外接球表面积为99π4三、填空题:本大题共4小题,每小题5分,共20分.13.已知函数()2ln 2f x x x ax =++,若()e 0f '=,则=a .14.若直线10x ay a +--=与圆22:(2)4C x y -+=交于,A B 两点,当AB 最小时,劣弧 AB 的长为.15.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若()2cos sin cos a c B A A -=,a =且cos sin B C =-,则bc =.16.如图,椭圆22221(0)x y a b a b +=>>与双曲线22221(0,0)x y m n m n -=>>有公共焦点()()12,0,,0(0)F c F c c ->,椭圆的离心率为1e ,双曲线的离心率为2e ,点P 为两曲线的一个公共点,且1260,F PF I ∠=为12F PF △的内心,1,,F I G 三点共线,且0,GP IP x ⋅=轴上点,A B 满足,AI IP BG GP λμ==,则12e e 的最小值为;22λμ+的最小值为.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知函数()()2cos cos sin f x x x x x=-+.(1)求函数()f x 的单调递减区间和最小正周期;(2)若当ππ,62x ⎡⎤∈⎢⎥⎣⎦时,不等式()f x m ≥有解,求实数m 的取值范围.18.用总长为52m3的钢条制作一个长方体容器的框架,如果所制容器底面一边比另一边的长多1m ,那么高为多少时容器的容积最大?最大容积是多少?19.在如图所示的试验装置中,两个正方形框架,ABCD ABEF 的边长都是1,且它们所在的平面互相垂直.活动弹子,M N 分别在正方形对角线AC 和BF 上移动,且CM 和BN的长度保持相等,记(0CM BN t t ==<<.(1)求MN 长的最小值;(2)当MN 的长最小时,求二面角A MN B --的正弦值.20.已知数列{}n a 的首项11a =,且满足13,,4,.nn n a n a a n ++⎧=⎨⎩为奇数为偶数(1)记2n n b a =,证明:{}1n b +为等比数列;(2)求数列{}n a 的通项公式及其前21n -项和21n S -.21.阅读材料并解决如下问题:Bézier 曲线是计算机图形学及其相关领域中重要的参数曲线之一.法国数学家DeCasteljau 对Bézier 曲线进行了图形化应用的测试,提出了DeCasteljau 算法:已知三个定点,根据对应的一定比例,使用递推画法,可以画出抛物线.反之,已知抛物线上三点的切线,也有相应边成比例的结论.已知抛物线2Γ:2(0)y px p =>上的动点到焦点距离的最小值为12.(1)求Γ的方程及其焦点坐标和准线方程;(2)如图,,,A B C 是Γ上的三点,过三点的三条切线分别两两交于点,,D E F ,若//AC DF ,求BD BF的值.22.设()()e e 21x x f x ax =--且()0f x ≥恒成立.(1)求实数a 的值;(2)证明:()f x 存在唯一的极大值点0x ,且()220e2--<<f x .1.C【分析】本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x,y)和点(0,1)之间的距离为1,可选正确答案C.【详解】,(1),z x yi z i x y i =+-=+-1,z i -=则22(1)1y x +-=.故选C.【点睛】本题考查复数的几何意义和模的运算,渗透了直观想象和数学运算素养.采取公式法或几何法,利用方程思想解题.2.B【分析】两直线平行,斜率相等;按10m +=,0m =和10,0m m +≠≠三类求解.【详解】当10m +=即1m =-时,两直线为240x +=,320x y -+-=,两直线不平行,不符合题意;当0m =时,两直线为240x y ++=,320y -=两直线不平行,不符合题意;当10,0m m +≠≠即1,0m m ≠-≠时,直线2(1)40x m y +++=的斜率为21m -+,直线320mx y +-=的斜率为3m -,因为两直线平行,所以213mm -=-+,解得2m =或3-,故选B.【点睛】本题考查直线平行的斜率关系,注意斜率不存在和斜率为零的情况.3.C【详解】分析:首先求出点P 的坐标,再利用三角函数的定义得出cos ,sin αα的值,进而由同角三角函数基本关系式求出结果即可.详解:∵点1,2P y ⎛⎫- ⎪⎝⎭在单位圆上,2y ∴=±,则由三角函数的定义可得得1cos ,22αα=-=±则23sin 34sin ·tan .1cos 22αααα===--点睛:此题考查了三角函数的定义以及同角三角函数基本关系式的应用,求出y 的值是解题的关键.4.B【分析】每个月开通5G 基站的个数是以5为首项,1为公差的等差数列,设预计我国累计开通500万个5G 基站需要n 个月,结合等差数列的前n 项和公式列得关于n 的方程,解之即可.【详解】每个月开通5G 基站的个数是以5为首项,1为公差的等差数列,设预计我国累计开通500万个5G 基站需要n 个月,则(1)70515002n n n -++⨯=,化简整理得,298600n n +-=,解得25.17n ≈或34.17-(舍负),所以预计我国累计开通500万个5G 基站需要25个月,也就是到2023年2月.故选:B.5.B【分析】运用赋值法建立方程组,解之可得选项.【详解】令x=1,得a5+a4+a3+a2+a1+a0=1①,令x=-1,得-a5+a4-a3+a2-a1+a0=-243②,①+②,得2(a4+a2+a0)=-242,即a4+a2+a0=-121.,①-②,得2(a5+a3+a1)=244,即a5+a3+a1=122.所以|a0|+|a1|+…+|a5|=122+121=243.故选:B.【点睛】方法点睛:对形如()(),nax b a b R +∈的式子求其展开式的各项系数之和,常用赋值法,只需令1x =即可;对形如()(),nax by a b R +∈的式子求其展开式中各项系数之和,只需令1x y ==即可.6.B【分析】由12PF F ∆为直角三角形,得01290PF F ∠=,可得122,PF c PF ==,利用椭圆的定义和离心率的概念,即可求解.【详解】如图所示,因为12PF F ∆为直角三角形,所以01290PF F ∠=,所以122,PF c PF ==,则22c a +=,解得1ce a ==,故选B【点睛】本题主要考查了椭圆的标准方程及其简单的几何性质的应用,其中解答中合理利用椭圆的定义和离心率的概念求解是解答的关键,着重考查了运算与求解能力,属于基础题.7.A【分析】设BD、AE 交于O,根据题意可得AOB EOD ∽△△,所以32AE AO=,进而可得32AF x AO y AB=+ ,根据O、F、B 三点共线,可得x,y 的关系,代入所求,即可基本不等式,即可得答案.【详解】设BD、AE 交于O,因为DE AB ∕∕,所以AOB EOD ∽△△,所以2AO ABOE DE ==,所以2AO OE =,则32AE AO= ,所以32AF x AO y ABx AE yDC ++== ,因为O、F、B 三点共线,所以312x y +=,即232x y -=,所以222322141414x y y y y y -==+++,因为0,0x y >>,所以144y y +≥,当且仅当14y y =,即12y =时等号成立,此时13x =,所以223221141424x y y y -=≤=++,故选:A8.B【分析】原不等式可变形为11e ln e ln a a x xx x -≤-,令()ln f x x x =-则()1e a x f f x ⎛⎫≤ ⎪⎝⎭对于e x ≥恒成立,利用导数判断()ln f x x x=-的单调性可得1e axx ≤,转化为1ln a x x ≥,令()[)()ln e,h x x x x =∈+∞,利用导数求()h x最小值可得1ln x x 的最大值即可求解.【详解】由题意,原不等式可变形为11e ln a xx a x x -≤-,即11e ln e ln a a x x x x -≤-,设()ln f x x x=-,则当e x ≥时,()1e a x f f x ⎛⎫≤ ⎪⎝⎭恒成立,因为()111x f x x x -'=-=,所以函数()f x 在()0,1上单调递减,在()1,+∞上单调递增,因为e x ≥,0a >所以1e 1x>,1ax >,因为()f x 在()1,+∞上单调递增,所以要使()1e a x f f x ⎛⎫≤ ⎪⎝⎭,只需1e a xx ≤,两边取对数,得1ln a x x ≤,因为e x ≥,所以1ln a x x ≥;令()[)()ln e,h x x x x =∈+∞,因为()ln 10h x x '=+>,所以()h x 在[)e,+∞上单调递增,所以()()min e eh x h ==,所以110ln e x x <≤,则1e a ≥,故正实数a 的最小值为1e ,故选:B.9.AB【分析】计算4个班分别从3个景点选择一处游览,共有几种选法,判断A;计算出从1,2,3,4,5选择2个数(可重复)组成两位偶数一共有几个,判断B;根据分步乘法原理计算两个口袋分别装有2个和3个小球,从两个口袋分别各取1个球,有几种取法,判断C;考虑1作分子情况和不选1时的情况,计算出分数的个数,判断D.【详解】A,4个班分别从3个景点选择一处游览,每一个班都有3种选择,分4步完成,故有433333⨯⨯⨯=种选法,A 正确;B,从1,2,3,4,5选择2个数(可重复)组成两位偶数,先确定个位数字有2种可能,再确定十位数字有5种可能,故共有2510⨯=个偶数,B 正确;C,两个口袋分别装有2个和3个小球,从两个口袋分别各取1个球,共有236⨯=种取法,C 错误;D,从1,3,5,7,10选择2个不相同的数作为分子分母组成分数,若选1作分子,则分母有4种可能,此时有4个分数,不选1时,共有24A 12=个分数,故共有41216+=个分数,故D 错误,故选:AB 10.AD【分析】根据题意71a >,81a <,再利用等比数列的定义以及性质逐一判断即可.【详解】因为11a >,781a a ⋅>,8711a a -<-,所以71a >,81a <,所以01q <<,故A 正确.27981a a a =<⋅,故B 错误;因为11a >,01q <<,所以数列{}n a 为递减数列,所以n S 无最大值,故C 错误;又71a >,81a <,所以n T 的最大值为7T ,故D 正确.故选:AD【点睛】本题考查了等比数列的性质、定义,考查了基本知识的掌握情况,属于基础题.11.BC【分析】由函数的定义域不关于原点对称,可知函数是非奇非偶函数,求出函数的导数,利用导数分析函数的单调性与极值.【详解】因为()f x 的定义域为[)22ππ-,,定义域不关于原点对称,所以()f x 是非奇非偶函数,又()()1cos cos sin 1sin f x x x x x x x'+--+==,当[)0,x Îp 时,()0f x ¢>,则()f x 在[)0,p 上单调递增,显然()00f '≠,令()0f x '=,得1sin x x =-,分别作出sin y x =,y1x =-在区间[)22ππ-,上的图象,由图可知,这两个函数的图象在区间[)22ππ-,上共有4个公共点,且两图象在这些公共点上都不相切,故()f x 在区间[)22ππ-,上的极值点的个数为4,且()f x 只有2个极大值点,故选:BC.12.ABD【分析】设正方体棱长为a ,分别求出正方体的内切球、棱切球、外接球的半径判断A;利用补体法,把QE QF+转为1QE QF +,当1E Q F 、、共线的时候1QE QF EF +=最小,利用余弦定理求出1EF 判断B;利用已知条件确定棱长与8个顶点到某个平面的距离的关系,利用等体积法求出棱长判断C;利用坐标法求出球心坐标,进而求出球的半径,从而求出外接球表面积判断D.【详解】对于选项A,设正方体边长为a ,则其内切球、棱切球、外接球半径分别为12a ,故比值为,故A 正确;对于选项B,如图1QE QF QE QF +=+,当1E QF 、、共线的时候1QE QF EF +=最小,在1AC M 中,22211111||1cos 23C A C M AM AC M C A C M+-∠==,由余弦定理得22211111111112cos 9EF C E C F C E C F AC M =+-∠=,所以1EF =,所以QE QF +有最小值,故B 正确;对于选项C,因为点1111,,,,,,,A B C D A B C D 到某个平面的距离成等差数列,且公差为1.不妨设平面α为符合题意的平面,α过点C ,延长1111,,D C A B AB 分别交平面α于点,,E F G ,则点1111,,,,,,,C C B B D D A A 与平面α的距离分别应为0,1,2,3,4,5,6,7,因为11,,,D E A F DC AG 互相平行,所以它们与平面α所成角相等,故由比例关系得1111::::::1:2:3:4:5:6:7C E BG B F DC D E AG A F =.设正方体的棱长为4a ,则11,2,3C E a BG a B F a ===,用几何方法可解得,,EF EC CF ===,由余弦定理可得222cos 2CE EF CF CEF CE EF +-∠==⋅,sin CEF∠==,故21sin2ECFS EF EC CEF=⋅⋅⋅∠=,由1CC⊥平面1111DCBA,知1CC为四面体1C EC F-的底面1EC F上的高,所以由11C ECF C EC FV V--=,算得点1C到平面α的距离,12121EC FECFS CCd aS⋅===,因为1d=,所以121a=,从而可得4a=,所以正方体的棱长为4a=C错误;对于选项D,以D为坐标原点,,,DA DC DD'所在直线分别为,,x y z轴建立如图所示的空间直角坐标系,则()()()()0,0,3,0,3,2,3,3,3,3,0,0D P B A'',设三棱锥B D AP'-'的外接球球心为(),,N x y z,由2222||ND NP NB NA===''得,222222222222(3)(3)(2)(3)(3)(3)(3)x y z x y z x y z x y z++-=+-+-=-+-+-=-++,解得75,44x z y===,所以三棱锥B D AP '-'的外接球半径3114R ==,所以三棱锥B D AP '-'的外接球表面积为2994ππ4S R ==,D 正确.故选:ABD.【点睛】方法点睛:几何体外接球半径的求法主要有:①直接法:确定球心位置,求出半径;②补形法:把几何体补成常见几何体,如正方体,长方体等;③向量坐标法:建立坐标系,设出球心,利用半径相等可得球心坐标,进而可求半径.13.1e -##1e--【分析】利用导数的运算法则及求导公式求出导数,再由给定的导数值求出a .【详解】函数()2ln 2f x x x ax =++,求导得()1ln 2f x x ax =++',于是(e)2e 20f a =+=',所以1a e =-.故答案为:1e-14.π【分析】先求出直线10x ay a +--=过定点的坐标,再求出圆22:(2)4C x y -+=的圆心和半径,当MC AB ⊥时AB 取得最小值,最后求出劣弧 AB 的长.【详解】直线10x ay a +--=可化为()()110x a y -+-=,则当10x -=且10y -=,即1x =且1y =时,等式恒成立,所以直线恒过定点()1,1M ,圆C 的圆心为()2,0C ,半径2r =,当MC AB ⊥时,AB取得最小值,且最小值为==,此时弦长AB 所对的圆心角为π2,所以劣弧 AB 的长为π2π2⨯=.故答案为:π【分析】利用正弦定理、诱导公式、和角公式、差角公式、二倍角公式分析运算即可得解.【详解】解:由题意,()2cos sin cos a c B A A-=,则由正弦定理可得()sin 2sin cos sin cos A C B A A A-=,∵0πA <<,∴sin 0A ≠,∴sin 2sin cos A C B A -=,又∵πA B C ++=,则()πA B C =-+,()sin sin A B C =+∴()sin 2sin cos B C C B A+-=,∴()sin B C A -=.又由πcos sin cos 2⎛⎫=-=+ ⎪⎝⎭B C C ,可得:π0π2<<<<C B ,则πππ22<+<C ,∴π2B C=+,即π2B C -=,则()sin 1B C -=,1A =,即cos 2A =,由0πA <<解得:π4A =,∴由π23π4B C B C ⎧-=⎪⎪⎨⎪+=⎪⎩解得:5π8=B ,π8C =.∴由正弦定理可得:π5ππsin sin sin488==b c ,解得:5π2sin 8=b ,π2sin 8=c ,∴5πππππ2sin 2sin 4sin cos 2sin 88884=⋅===bc .16.21【分析】根据椭圆和双曲线的定义可得12,PF m a PF a m=+=-,进而根据余弦定理,结合离心率公式可得2221314e e +=,即可利用基本不等式求解空1,根据内心的性质,结合椭圆定义和双曲线定义可得1e λ=,2e μ=,进而根据基本不等式乘“1”法即可求解.【详解】由题意得椭圆与双曲线的焦距为122F F c=,椭圆的长轴长为2a ,双曲线的实轴长为2m ,不妨设点P 在双曲线的右支上,由双曲线的定义:122PF PF m-=,由椭圆的定义:122PF PF a+=,可得:12,PF m a PF a m=+=-,又1260F PF ∠=,由余弦定理得:22221212124PF PF PF PF F F c +-⋅==,即()()222()()4,m a a m m a a m c ++--+⋅-=整理得:22234a m c +=,所以:2222221231344a m c c e e +=⇒+=;则1222121213,2e e e e e e +≥≥,当且仅当2212132e e ==时取等号.I 为12F PF △的内心,所以1IF 为12PF F ∠的角平分线,由于111112111211sin 2211sin 22PF I AF IPF IF PF F S PI S IA AF IF PF F ∠==∠ ,则有11PF IP AF AI =,同理:22PF IP AF AI=,所以1212PF PF IP AF AF AI==,所以12121212IPPF PF a AIAF AF c e +===+,即1AI e IP=,因为AI IP λ=,所以||||||AI IP λ= ,故1e λ=,I 为12F PF △的内心,1,,F I G 三点共线,即1F G 为1PF B ∠的角平分线,延长射线1F P ,连接2F G ,由G 点向112,,F P F B F P 作垂线,垂足分别为,,E D H ,1260,0F PF GP IP ∠=⋅=,260F PB BPE ∠∠∴== ,即BP 为2EPF ∠的角平分线.GH GE GD ∴==,即2F G 为2PF B ∠的角平分线,则有2121GBBF BF PG PF PF ==,又21BF BF ≠,所以1221222BGBF BF c e PGPF PF m-===-,即2BG e GP= ,因为BG GP μ=,所以||||BG GP μ= ,故2e μ=,所以()22222222221212121222222212212133113113134214442e e e e e e e e e e e e e e λμ⎛⎫⎛⎫⎛⎫+=+=++=+++≥+⋅=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当2241221222133334e e e e e e +=⇒==时,等号成立,所以22λμ+的最小值为312+.故答案为:32,312+【点睛】方法点睛:圆锥曲线中的范围或最值问题,可根据题意构造关于参数的目标函数,然后根据题目中给出的范围或由判别式得到的范围求解,解题中注意函数单调性和基本不等式的作用.17.(1)()π5ππ,π36k k k ⎡⎤++∈⎢⎥⎣⎦Z ,π;(2)(],2-∞.【分析】(1)利用二倍角正弦、余弦公式和辅助角公式对函数进行化简,利用正弦定理函数的性质可得出函数()f x 的单调递减区间,利用正弦函数的周期公式即可求出函数()f x 的最小正周期;(2)根据题意可知m 小于等于()f x 的最大值,结合正弦函数的定义域求出的最大值,即可知m 的取值范围.【详解】(1)()()222cos 3sin cos sin 23sin cos cos sin f x x x x x x x x x=-+=-+π3sin2cos22sin 26x x x ⎛⎫=-=- ⎪⎝⎭.所以函数()f x 的最小正周期πT =.由ππ3π2π22π,262k x k k +≤-≤+∈Z ,解得π5πππ,36k x k k +≤≤+∈Z .所以函数()f x 的单调递减区间为()π5ππ,π36k k k ⎡⎤++∈⎢⎥⎣⎦Z .(2)由题意可知,即max ()m f x ≤.因为ππ,62x ⎡⎤∈⎢⎥⎣⎦,所以ππ5π2666x ≤-≤.故当ππ262x -=,即π3x =时,()f x 取得最大值,且最大值为π23f ⎛⎫= ⎪⎝⎭.所以2m ≤,实数m 的取值范围为(],2-∞.18.当长方体容器的高为4m 3时,容积最大,最大容积为38m3.【分析】设底面的一边的长为m x ,求出另一边的长为()1m x +,以及高,表示出体积,利用导数求出最大值即可.【详解】设底面的一边的长为m x ,另一边的长为()1m x +.因为钢条长为52m3,所以,长方体容器的高为()52441103243x x x --+=-.设容器的容积为V ,则()()32104105122,03333V V x x x x x x x x ⎛⎫==+-=-++<<⎪⎝⎭,()28106033V x x x =-++=',解得59x =-(舍去),1x =,当()0,1x ∈时,()0V x '>,()V x 在()0,1单调递增;当51,3x ⎛⎫∈ ⎪⎝⎭时,()0V x '<,()V x 在51,3⎛⎫ ⎪⎝⎭单调递减;因此,1x =是函数()V x 在50,3⎛⎫⎪⎝⎭内的极大值点,也是最大值点.此时长方体容器的高为4m 3.所以,当长方体容器的高为4m 3时,容积最大,最大容积为38m 3.19.(1)22(2)【分析】(1)根据条件,建立空间直角坐标系,求出,0,122M ⎛⎫- ⎪ ⎪⎝⎭,,022N t ⎛⎫ ⎪ ⎪⎝⎭,再利用空间两点间的距离公式,即可求出结果;(2)根据(1)结果,得到1111,0,,,,02222M N ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,再求出平面AMN 和BMN 的法向量,再利用两平面夹角的向量法,即可求出结果.【详解】(1)因为面ABCD ⊥面ABEF ,又面ABCD ⋂面ABEF AB =,CB AB ⊥,CB ⊂面ABCD ,所以CB ⊥面ABEF ,又AB BE ⊥,如图,以B 为原点,,,BA BE BC 所在直线分别为x 轴、y 轴、z轴建立空间直角坐标系,因为两个正方形的边长为1,则()()1,0,0,0,0,0,(0,0,1)A B C ,又CM BN t ==,则CM ==-,得到,0,1M ⎫⎪⎪⎝⎭,同理可得,0N ⎫⎪⎪⎝⎭,所以MN =又0t <<t =时,MN 的长最小,最小值为22.(2)由(1)知,MN 的长最小时,M N 、分别为正方形对角线AC 和BF 的中点,可得1111,0,,,,02222M N ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,设平面AMN 的一个法向量为()111,,m x y z =r,又1111,0,,0,,2222MA MN ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,由1111110,22110,22m MA x z m MN y z ⎧⋅=-=⎪⎪⎨⎪⋅=-=⎪⎩ ,取11x =,可得()1,1,1m = ,设平面BMN 的一个法向量为(,,)n a b c = ,又11(,0,)22BM = ,110,,22⎛⎫=- ⎪⎝⎭ MN ,由110,22110,22n BM a n MN b c ⎧⋅=+=⎪⎪⎨⎪⋅=-=⎪⎩,取1a =-,可得()1,1,1n =- ,则1cos ,||||3m n m n m n ⋅==⋅,所以sin ,3m n == ,因此,二面角A MN B --的正弦值为3.20.(1)证明见解析(2)-1222544,54 1.n n n n a n -⎧⨯-⎪=⎨⎪⨯-⎩为奇数为偶数,1212574533n n S n --=⨯--.【分析】(1)先求出 n b 的递推关系式,利用等比数列的定义可证结论;(2)利用分组求和的方法可求答案.【详解】(1)因为13,,4,,nn n a n a a n ++⎧=⎨⎩为奇数为偶数且2n n b a =,则()()12122121134343n n n n n n b a a a a b +++++===+=+=+,可得()1141n n b b ++=+.且12134b a a ==+=,所以{}1n b +是以5为首项,4为公比的等比数列.(2)由(1)可得1154n n b -+=⨯,所以1541n n b -=⨯-,即12541n n a -=⨯-.又因为2213n n a a -=+,则12123544n n n a a --=-=⨯-.所以数列{}n a 的通项公式为1222544,,541,.n n n n a n --⎧⨯-⎪=⎨⎪⨯-⎩为奇数为偶数又1112125445411045n n n n n a a ----+=⨯-+⨯-=⨯-,所以()()()2112342122n n n nS a a a a a a a --=++++++- ()()()()0111104510451045541n n --=⨯-+⨯-++⨯--⨯- ()()0111104445541n n n --=⨯+++--⨯- 1114257105541451433n n n n n ---=⨯--⨯+=⨯---.所以数列{}n a的前21n -项的和1212574533n n S n --=⨯--.21.(1)抛物线Γ的标准方程为22y x =,其焦点坐标为1,02⎛⎫⎪⎝⎭,准线方程为12x =-(2)1【分析】(1)根据题意可得122p =,求出p ,即可得Γ的方程及其焦点坐标和准线方程;(2)设()()()322312123445566,,,,,,,,,,222y y y A y B y Cy D x y E x y F x y ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,抛物线22y x =上过点A 的切线方程为()2112y x t y y -=-,联立方程,根据Δ0=求出t ,进而可求得抛物线上过点A 的切线方程,同理可求得抛物线上过点,B C 的切线方程,两两联立,可以求得交点,,D E F 的纵坐标,再分别求出,,AD EF DBDE FC BF,再根据//AC DF 即可得解.【详解】(1)因为抛物线22(0)y px p =>上的点到焦点距离的最小值为12,转化为到准线距离的最小值为12,所以122p =,所以1p =,因此抛物线Γ的标准方程为22y x =,其焦点坐标为1,02⎛⎫⎪⎝⎭,准线方程为12x =-;(2)设()()()322312123445566,,,,,,,,,,222y y y A y B y Cy D x y E x y F x y ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则抛物线22y x =上过点A 的切线方程为()2112y x t y y -=-,将切线方程与抛物线方程联立,得:联立()211222y x t y y y x ⎧-=-⎪⎨⎪=⎩,消去x ,整理得2211220y ty ty y -+-=,所以()()2222211111Δ(2)4248440t ty y t ty y t y =---=-+=-=,从而有1t y =,所以抛物线上过点A 的切线方程为2112y x y y =-,同理可得抛物线上过点,B C 的切线方程分别为223223,22y y x y y x y y =-=-,两两联立,可以求得交点,,D E F 的纵坐标分别为132312456,,222y y y y y y y y y +++===,则121141213124523222y y y AD y y y y y y y y DE y y y y +---===++---,同理可得12122323,EF y y DB y y FCy y BFy y --==--,即AD EF DB DEFCBF==,当//AC DF 时,ADCF DE FE=,故EFFC FCEF=,即EF FC=,因此1BDEF BFFC==.【点睛】方法点睛:求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.22.(1)12(2)证明见解析【分析】(1)将问题转化为()e 21,x x ax x ϕ=--∈R,()0x ϕ≥恒成立,利用导数求解()x ϕ的单调性,即可求解()ln222ln210a a a a ϕ=--≥,构造函数()22ln21(0)g a a a a a =-->,继续利用导数求解函数的单调性得最值即可求解,(2)利用导数求解函数的单调性,结合零点存在性定理,即可求证.【详解】(1)由条件知()()e e 210x x f x ax =--≥恒成立,e 0,e 210x x ax >∴--≥ 恒成立,令()e 21,x x ax x ϕ=--∈R,则()0x ϕ≥恒成立,()e 2x x aϕ∴-'=,①当0a ≤时,()()0,x x ϕϕ'>在R 上单调递增,又()00ϕ=,∴当0x <时,()0x ϕ<,与()0x ϕ≥矛盾,不合题意;②当0a >时,()x ϕ在(),ln2a ∞-单调递减,在()ln2,a ∞+单调递增,∴当ln2=x a 时,()x ϕ有极小值,也为最小值,且最小值为()ln222ln21a a a a ϕ=--,又()0x ϕ≥恒成立,22ln210a a a ∴--≥,令()22ln21(0)g a a a a a =-->,则()22ln222ln2g a a a-=-'=-,令()2ln20g a a ='->,解得102a <<,()g a ∴在10,2⎛⎫ ⎪⎝⎭单调递增,在1,2∞⎛⎫+ ⎪⎝⎭单调递减,()102g a g ⎛⎫∴≤= ⎪⎝⎭,所以由()22ln210g a a a a =--≥,解得12a =,综上,实数a 的值为12.(2)由题可得()()e 2e 2x x f x x '=--,令()2e 2xh x x =--,则()2e 1xh x ='-,由()0h x '=得1ln2x =,在1,ln 2∞⎛⎫- ⎪⎝⎭上,()0h x '<,在1ln ,2∞⎛⎫+⎪⎝⎭上,()0h x '>,所以()h x 在1,ln 2∞⎛⎫- ⎪⎝⎭单调递减,在1ln ,2∞⎛⎫+ ⎪⎝⎭单调递增,又()()()1ln 22211200,ln 2e ln 2ln210,22e 22022e h h h -⎛⎫==--=--=---= ⎪⎝⎭,()12ln 02h h ⎛⎫∴-< ⎪⎝⎭,由零点存在定理及()h x 的单调性知,方程()0h x =在12,ln 2⎛⎫- ⎪⎝⎭有唯一根,设为0x 且002e 20xx --=,从而()h x 有两个零点0x 和0,且在区间()0,x ∞-上,()0f x '>,在区间()0,0x 上,()0f x '<,在区间()0,∞+上,()0f x '>,所以()f x 在()0,x ∞-单调递增,在()0,0x 单调递减,在()0,∞+单调递增,从而()f x 存在唯一的极大值点0x ,由002e 20x x --=得0002e ,12x x x +=≠-,()()()()022000000000222111ee 1122224424x x x x x xf x x x x x -++-++⎛⎫⎛⎫∴=--=--=-+≤== ⎪ ⎪⎝⎭⎝⎭,等号不成立,所以()202f x -<,又()012ln ,2x f x -<<在()0,x ∞-单调递增,所以()()()2242202e e 21e e ef x f -----⎡⎤>-=---=+>⎣⎦,综上可知,()f x 存在唯一的极大值点0x ,且()220e2f x --<<成立.【点睛】方法点睛:利用导数证明或判定不等式问题:1.通常要构造新函数,利用导数研究函数的单调性与极值(最值),从而得出不等关系;2.利用可分离变量,构造新函数,直接把问题转化为函数的最值问题,从而判定不等关系;3.适当放缩构造法:根据已知条件适当放缩或利用常见放缩结论,从而判定不等关系;4.构造“形似”函数,变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.。
2023-2024学年绵阳市高二语文(下)期末考试卷附答案详析

2023-2024学年绵阳市高二语文(下)期末考试卷本试卷共150分,考试时间150分钟。
一、现代文阅读(36分)(一)现代文阅读Ⅰ(本题共5小题,18分)阅读下面的文字,完成下面小题。
材料一:大自然如同一位神奇的魔术师,时不时地带给我们惊喜和震撼。
神奇的寒夜灯柱就是大自然赐予我们的视觉盛宴。
寒夜灯柱背后的科学原理并不复杂,简单来讲,就是光的镜面反射现象。
寒夜灯柱究竟是如何产生的?科学家对此进行了研究。
在寒夜灯柱产生的过程中,冰晶起到了决定性作用:大气中水平排列的冰晶就像一层层舞台幕布,挡在地面和夜空之中,成为地面灯光的“幕布”。
我们知道,空气中含有大量的水蒸气,它们凝结后会成为水滴;若水蒸气发生凝华,就直接变成了冰晶。
凝华是寒冷地区很容易出现的一种物理现象:过低的气温让大气里的水蒸气结冰,形成细小的冰晶。
生活中,我们肉眼可见的云中就含有大量的水滴和冰晶。
那么,是不是有了冰晶,就能看到寒夜灯柱呢?当然不是。
因为并不是所有的冰晶都对寒夜灯柱的出现做出了贡献。
大气中的冰晶主要有柱状冰晶和片状冰晶两种。
此外,还有罕见的角锥状冰晶和异形冰晶。
其中,片状冰晶对寒夜灯柱现象做出的贡献最大。
片状冰晶的形成一般会受到空气温度与湿度等因素的影响,它产生于空气寒冷且下层大气结构相当稳定的环境中。
如果夜空中悬浮着大量呈水平方向排列的片状冰晶,且天空无风,这些冰晶就会像一面面微型镜子一般飘浮于空中。
此时,在大气层竖直方向上,各类灯光被处在不同高度的片状冰晶反射,最终集合成了一根根光柱,这就是我们所看见的寒夜灯柱。
气象监测显示,当气温在-20℃—-10℃之间时,冰晶和水滴并存,这一温度对于水蒸气凝华成片状冰晶最为有利。
从-10℃等温线开始,片状冰晶一般是随着海拔高度增高而逐渐增多。
尤其是在降雪前后,由于气温下降和空气湿度增大,非常有利于片状冰晶的形成。
除了冰晶,寒夜灯柱的主要贡献者中还包括人造光源。
如果缺少照射光源,即使冰晶在天地之间形成了“幕布”,也无法产生寒夜灯柱。
安徽省黄山市2018-2019学年高二上学期期末考试数学(文)试题 Word版含解析

黄山市2018~2019学年度第一学期期末质量检测高二(文科)数学试题第Ⅰ卷(选择题满分60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若直线a平行于平面α,则下列结论错误..的是( )A. 直线a上的点到平面α的距离相等B. 直线a平行于平面α内的所有直线C. 平面α内有无数条直线与直线a平行D. 平面α内存在无数条直线与直线a成90°角【答案】B【解析】【分析】由题意,根据两直线的位置关系的判定,以及直线与平面的位置关系,逐一判定,即可得到答案.【详解】由题意,直线a平行于平面α,则对于A中,直线a上的点到平面α的距离相等是正确的;对于B中,直线a与平面α内的直线可能平行或异面,所以不正确;对于C中,平面α内有无数条直线与直线a平行是正确的;对于D中,平面α内存在无数条直线与直线a 成90°角是正确的,故选D.【点睛】本题主要考查了空间中两直线的位置关系的判定,其中解答中熟记空间中两条直线的三种位置关系是解答的关键,着重考查了推理与论证能力,属于基础题.2.在空间直角坐标系中,点关于平面的对称点是( )A. B. C. D.【答案】D【解析】【分析】空间直角坐标系中任一点关于坐标平面的对称点为,即可求得答案【详解】根据空间直角坐标系中点的位置关系可得点关于平面的对称点是故选【点睛】本题考查了对称点的坐标的求法,解决此类问题的关键是熟练掌握空间直角坐标系,以及坐标系中点之间的位置关系,属于基础题。
3.已知,则“”是“直线与直线垂直”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】当时,判断两直线是否垂直,由此判断充分性,当两直线垂直时,根据两直线垂直的性质求出的值,由此判断必要性,从而得到答案【详解】充分性:当时,两条直线分别为:与此时两条直线垂直必要性:若两条直线垂直,则,解得故“”是“直线与直线垂直”的充分不必要条件故选【点睛】本题是一道有关充分条件和必要条件的题目,需要分别从充分性和必要性两方面分析,属于基础题。
2017-2018学年第一学期初二数学期末试题和答案

2017-2018学年第一学期期末测试卷初二数学一、选择题(每小题2分,本题共16分)1.剪纸是古老的汉族民间艺术,剪纸的工具材料简便普及,技法易于掌握,有着其他艺术门类 不可替代的特性,因而,这一艺术形式从古到今,几乎遍及我国的城镇乡村,深得人民群 众的喜爱.请你认真观察下列四幅剪纸图案, 其中不是..轴对称图形的是A .B .C .D .2. 若代数式4xx -有意义,则实数x 的取值范围是 A .0x = B .4x = C .0x ≠ D .4x ≠3. 实数9的平方根是A .3B .±3C.3± D .814. 在下列事件中,是必然事件的是A .买一张电影票,座位号一定是偶数B .随时打开电视机,正在播新闻C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5. 下列变形中,正确的是A. (23)2=2×3=6B.2)52(-=-52C.169+=169+ D. )4()9(-⨯-=49⨯6. 如果把yx y322-中的x 和y 都扩大5倍,那么分式的值A .扩大5倍B .不变C .缩小5倍D .扩大4倍7. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是A. B. C. D.8. 如图所示,将矩形纸片先沿虚线按箭头方向向右对折,对折后的纸片沿虚线向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是A. B. C. D.二、填空题(每小题2分,本题共16分)9. 写出一个比3大且比4小的无理数:______________.10. 如图,AE =DF ,∠A =∠D ,欲证ΔACE ≌ΔDBF ,需要添加条件 ____________,证明全等的理由是________________________;AE P BCD11. 一个不透明的盒子中装有6张生肖邮票,其中有3张“猴票”,2张“鸡票”和1张“狗票”,这些邮票除了画面内容外其他都相同,从中随机摸出一张邮票,恰好是“鸡票”的可能性为 .12. 已知等腰三角形的两条边长分别为2和5,则它的周长为______________. 13.mn =______________. 14. 小明编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→21, 则x 为 .15. 如图,等边△ABC 的边长为6,AD 是BC 边上的中线,点E 是AC 边上的中点. 如果点P 是AD 上的动点,那么EP+CP 的最小值 为______________.16. 如图,OP =1,过P 作OP PP ⊥1且11=PP ,根据勾股定理,得21=OP ;再过1P 作121OP P P ⊥且21P P =1,得32=OP ;又过2P 作232OP P P ⊥且132=P P ,得 =3OP 2;…依此继续,得=2018OP , =n OP (n 为自然数,且n >0)三、解答题(本大题共9小题,17—25小题,每小题5分,共45分) 17.计算:238)3(1230-+----π18. 计算:1)P 4P 3P 2PP 1O19. 如图,点A 、F 、C 、D 在同一条直线上. AB ∥DE ,∠B =∠E ,AF=DC. 求证:BC =EF .20. 解分式方程:3x 3x 211x x +=-+21. 李老师在黑板上写了一道题目,计算:23311x x x---- .小宇做得最快,立刻拿给李老 师看,李老师看完摇了摇头,让小宇回去认真检查. 请你仔细阅读小宇的计算过程,帮 助小宇改正错误.23311x x x ----=()()33111x x x x --+-- (A ) =()()()()()3131111x x x x x x +--+-+- (B ) = 33(1)x x --+ (C ) = 26x -- (D )(1) 上述计算过程中, 哪一步开始..出现错误? ;(用字母表示) (2) 从(B )到(C )是否正确? ;若不正确,错误的原因是 ; (3) 请你写出此题完整正确的解答过程.D22.如图:在△ABC 中,作AB 边的垂直平分线,交AB 于点E ,交BC 于点F ,连结AF (1(2)你的作图依据是 .(3)若AC=3,BC=5,则△ACF 的周长是23. 先化简,再求值:121112++÷⎪⎭⎫ ⎝⎛+-a a aa ,其中13-=a .24. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于 DE ⊥AB 于E, 当时,求DE 的长。
四川省内江市第一中学2023-2024学年高二上学期开学考试数学试题(含简单答案)

内江一中2023—2024学年高二上学期开学考试试题数学一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 在复平面内,复数对应的点的坐标为,则复数的共轭复数( )A. B. C. D. 2. 在下列各组向量中,可以作为基底的一组是( )A. B. C. D 3. 的监测值是用来评价环境空气质量的指标之一.划分等级为:日均值在以下,空气质量为一级;日均值在,空气质量为二级;日均值超过为超标.如图是某地12月1日至10日的日均值(单位:)变化的折线图,关于日均值说法正确的是( )A. 这10天日均值的分位数为60B. 前5天的日均值的极差小于后5天的日均值的极差C. 前5天的日均值的方差大于后5天的日均值的方差 D. 这10天的日均值的中位数为414. 已知的外接圆圆心为O ,且,在向量上的投影向量为( ).z ()2,1--z z =2i --2i -+2i +2i-()()120,0,1,1e e == ()()121,2,5,10e e =-=- ()()123,5,3,5e e ==-- ()1232,3,2,4e e ⎛⎫=-=- ⎪⎝⎭2.5PM 2.5PM 335g /m μ2.5PM 33575g /m μ~ 2.5PM 375g /m μ2.5PM 3g /m μ 2.5PM 80%ABC V 2AO AB AC =+ CA = CA CBA. B. C. D. 5. 已知,则( )A. B. 或 C. D. 或6. 已知,是不共线的向量,且,,,则( )A. B ,C ,D 三点共线B. A ,B ,C 三点共线C. A ,C ,D 三点共线D. A ,B ,D 三点共线7. 设的内角的对边分别为,且,若角的内角平分线,则的最小值为( )A. 8B. 4C. 16D. 128. 八卦是中国古代的基本哲学概念,八卦文化是中华文化的核心精髓,八卦图与太极图(图1)的轮廓分别为正八边形ABCDEFGH 和圆(图2),其中正八边形的中心是点,鱼眼(黑白两点)、是圆半径的中点,且关于点对称.若,圆的半径为6,当太极图转动(即圆面及其内部点绕点转动)时,的最大值为( )A. 39B. 48C. 57D. 60二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对得2分,有选错的得0分.)9. 恩格尔系数是食品支出总额占个人消费支出总额的比重,恩格尔系数达59%以上为贫困,50%~59%为温饱,40%~50%为小康,30%~40%为富裕,低于30%为最富裕.国家统计局2023年1月17日发布了我国2022年居民收入和消费支出情况,根据统计图表,如图甲、乙所示,下列说法正确的是()34CB 12CB 13CB 14CB ππ24,,sin24425αα⎫⎛∈-=- ⎪⎝⎭tan α=34-34-43-343434-a b 28AB a b =-+ 33BC a b =- 5CD a b =+ ABC V ,,A B C ,,a b c 222b c bc a ++=A 2AD =BA AC ⋅ O O P Q OO OA =O O O PA QC ⋅A. 2022年农村居民人均可支配收入增长额超过城镇居民人均可支配收入增长额B. 2022年城镇居民收入增长率快于农村居民C. 从恩格尔系数看,可认为我国在2022年达到富裕D. 2022年全国居民人均消费支出构成中食品烟酒和居住占比超过50%10. 从1,2,3,,9中任取三个不同的数,则在下述事件中,是互斥但不是对立事件的有( )A. “三个都为偶数”和“三个都为奇数”B. “至少有一个奇数”和“至多有一个奇数”C. “至少有一个奇数”和“三个都为偶数”D. “一个偶数两个奇数”和“两个偶数一个奇数”11. 对于△ABC ,有如下判断,其中正确的判断是( )A. 若,则△ABC 为等腰三角形B. 若,,则符合条件△ABC 有两个C. 若,则△ABC 为等腰直角三角形D. 若,则△ABC 是钝角三角形12. 已知函数,以下说法中,正确是( )A. 函数关于点对称B. 函数在上单调递增C. 当时,的取值范围为D. 将函数的图像向左平移个单位长度,所得图像的解析式为三、填空题(本题共4小题,每小题5分,共20分.)的的L cos cos A B =a =b =30A = cos cos a A b B =222sin sin sin 0A B C +-<()2cos 2sin 2f x x x x =+-()f x π,012⎛⎫ ⎪⎝⎭()f x ππ,66⎡⎤-⎢⎥⎣⎦π2π,63x ⎛⎫∈ ⎪⎝⎭()f x (]2,1-()f x π12()2sin 21g x x =-13. 已知复数在复平面内对应的点在第四象限,则实数m 的取值范围是______.14. 某校高一年级共有男生420人,女生380人,为了解学生身高状况,决定按性别进行分层,用分层随机抽样的方法从高一年级全体学生中抽出40人,组建一个合唱团,则男生应该抽取__________人.15. 一个圆锥的侧面展开图是一个扇形,已知扇形的半径为3,圆心角为,则扇形的弧长等于___________;该圆锥的体积等于___________.16. 在中,由以下各个条件分别能得出为等边三角形的有:______.①已知且;②已知且;③已知且;④已知且.四、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.)17. 已知,求下列式子的值.(1)为第二象限角,求;(2).18. 已知向量的夹角为,且,,.(1)求;(2)当时,求的值.19. 黄山原名“黟山”,因峰岩青黑,遥望苍黛而名,后因传说轩辕黄帝曾在此炼丹,故改名为“黄山”,黄山雄踞风景秀丽的安徽南部,是我国最著名的山岳风景区之一、明代旅行家、地理学家徐霞客两游黄山,赞叹说:“登黄山天下无山,观止矣!”又留“五岳归来不看山,黄山归来不看岳”的美誉.为更好地提升旅游品质,黄山风景区的工作人员随机选择100名游客对景区进行满意度评分(满分100分),根据评分,制成如图所示的频率分布直方图.(1)根据频率分布直方图,求x 的值;()()3i 2i z m =+-+2π3ABC V ABC V 2a b c +=2A B C +=sin A =b c =2a b c +=2222a b c +=cos cos a B b A=60A =︒()1tan π3α+=-αsin cos αα-22sin cos cos ααα-,a b π32a = 3b = 2c a b λ=- 3a b - b c ⊥λ(2)估计这100名游客对景区满意度评分的40%分位数(得数保留两位小数);(3)若2022年黄山景区累计接待进山游客约140万人,试估计满意度评分不低于70分的人数.20. 已知函数(1)求函数的最小正周期及函数的单调递减区间;(2)求函数在上的值域.21. 如图,为了测量出到河对岸铁塔的距离与铁搭的高,选与塔底B 同在水平面内的两个测点C 与D .在C 点测得塔底B 在北偏东方向,然后向正东方向前进20米到达D ,测得此时塔底B 在北偏东方向.(1)求点D 到塔底B 距离;(2)若在点C 测得塔顶A 的仰角为,求铁塔高.22 已知平面向量,,函数.(1)求的单调增区间.(2)在△ABC 中,a ,b ,c 分别是内角A ,B ,C 所对的边,若,,求△ABC 周长的取值范围.的.()2sin cos f x x x x =+()f x ()f x π0,2⎡⎤⎢⎥⎣⎦45︒15︒BD 30︒AB ()sin a x x = ()2sin ,sin b x x = ()1f x a b =⋅+ ()f x ()4f A =2a =内江一中2023—2024学年高二上学期开学考试试题数学一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)【1题答案】【答案】B【2题答案】【答案】D【3题答案】【答案】B【4题答案】【答案】A【5题答案】【答案】A【6题答案】【答案】C【7题答案】【答案】A【8题答案】【答案】A二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对得2分,有选错的得0分.)【9题答案】【答案】CD【10题答案】【答案】AD【11题答案】【答案】ABD【12题答案】【答案】BCD三、填空题(本题共4小题,每小题5分,共20分.)【13题答案】【答案】【14题答案】【答案】21【15题答案】【答案】 ①.②. 【16题答案】【答案】①③四、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.)【17题答案】【答案】(1(2)【18题答案】【答案】(1)(2)【19题答案】【答案】(1)(2)(3)万人【20题答案】【答案】(1)最小正周期;单调递减区间为, (2)【21题答案】【答案】(1)米213m<<2π32-6λ=0.03x =83.33119π5π11ππ,π1212k k ⎡⎤++⎢⎥⎣⎦()Z k ∈⎡⎤⎢⎥⎣⎦(2)米【22题答案】【答案】(1) (2)⎛ ⎝πππ,π,Z 63k k k ⎡⎤-++∈⎢⎥⎣⎦(]4,6。
山东省临沂市兰临沂第四中学2024-2025学年高二上学期10月月考数学试题(含答案)

山东省临沂市兰临沂第四中学2024-2025学年高二上学期10月月考数学试题(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共58分)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知直线,若,则( )A.-1或2B.1C.1或-2D.-22.过点的直线与线段MN 相交,,则的斜率的取值范围为( )A.B.C.或D.或3.在三棱柱中,记,点满足,则( )A. B. C. D.4.已知点关于直线对称,则对称点的坐标为( )A. B. C. D.5.已知向量,若共面,则( )A.4B.2C.3D.16.点到直线的距离最大时,其最大值以及此时的直线方程分别为( )7.下列命题中正确的是( )A.点关于平面对称的点的坐标是B.若直线的方向向量为,平面的法向量为,则C.若直线的方向向量与平面的法向量的夹角为,则直线与平面所成的角为12:20,:2(1)20l ax y l x a y +-=+++=12//l l a =(3,3)P l (2,3),(3,2)M N ---l k 1665k ≤≤566k ≤≤65k ≤6k ≥16k ≤65k ≥111ABC A B C -1,,AA a AB b AC c === P 12BP PC =AP = 121333a b c -+ 212333a b c ++212333a b c +-121333a b c ++(2,1)P -10x y -+=(0,1)-(0,2)-(1,1)-(2,1)-(2,1,3),(1,4,2),(1,3,)a b c λ=-=--=,,a b c λ=(2,1)P --:(13)(1)240(R)l x y λλλλ+++--=∈310x y -+=40x y +-=250x y +-=310x y -+=(3,2,1)M yOz (3,2,1)--l (1,1,2)e =- α(6,4,1)m =-l α⊥l α120︒l α30︒D.已知为空间任意一点,四点共面,且任意三点不共线,若,则8.在空间直角坐标系中,,点在平面ABC 内,则当|OH |取最小时,点的坐标是( )A. B. C. D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知向量,则( )A.若,则B.若,则C.若,则D.若,则向量在向量上的投影向量10.下列说法正确的是( )A.直线的倾斜角的取值范围是B.“”是“直线与直线互相垂直”的充要条件C.过点且在轴,轴截距相等的直线方程为D.经过平面内任意相异两点的直线都可以用方程.11.已知正方体的棱长为1,E 为线段的中点,点和点分别满足,其中,则下列说法正确的是( )A.平面AECB.AP 与平面所成角的取值范围为C.D.点到直线的距离的最小值为三、填空题:本题共3小题,每小题5分,共15分.O ,,,A B C P 12OP mOA OB OC =-+12m =-O xyz -(1,0,0),(0,2,0),(0,0,2)A B C H H 211,,333⎛⎫ ⎪⎝⎭(2,1,1)(2,1,1),(1,,2)a x b y ==-1,24x y ==-ab ‖1,1x y ==a b⊥1,12x y ==cos ,a b <>= 1,12x y ==ab 112,,333c ⎛⎫=- ⎪⎝⎭sin 20x y α++=θπ3π0,,π44⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭1a =-210a x y -+=20x ay --=(1,2)P x y 30x y +-=()()1122,,,x y x y ()()()()211211x x y y y y x x --=--表示1111ABCD A B C D -1B C F P 11111,D F D C D P D B λμ==,[0,1]λμ∈BP ⊥11BDD B 45,60︒︒⎡⎤⎣⎦PE PF +P 1B C PE =12.在直线上求一点,使它到直线的距离等于原点到的距离,则此点的坐标为________________.13.已知空间向量两两夹角为,且,则__________________.14.如图,两条异面直线a,b 所成的角为,在直线a,b 上分别取点,和点A,F,使,且.已知,则线段的长为_____________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)如图,三棱柱中,底面边长和侧棱长都等于1,.(1)设,用向量表示,(2)并求出的长度;(3)求异面直线与所成角的余弦值.16.(15分)已知点,_________________,从条件①、条件②、条件③中选择一个作为已知条件补充在横线处,并作答(1)求直线的方程;(2)求直线关于直线的对称直线的方程条件①:点关于直线的对称点的坐标为;条件②:点的坐标为,直线过点且与直线PM 平行;210x y -+=:320l x y +-=l ,,a b c 60︒||||||1a b c === |2|a b c -+= θA 'E AA a '⊥AA b '⊥,,A Em AF n EF l '===AA '111ABC A B C -1160BAA CAA ︒∠=∠=1,,AA a AB b AC c === ,,a b c1BC 1BC 1AB 1BC (1,3)P 1l 2:250l x y +-=1l P 1l 1P (1,1)-M (6,2)-1l (2,4)-条件③:点N 的坐标为,直线过点且与直线PN 垂直.注:如果选择多个条件分别解答,按第一个解答计分.17.(15分)已知直线.(1)若坐标原点到直线,求的值;(2)当时,直线过与的交点,且它在两坐标轴上的截距相反,求直线的方程.18.(17分)如图,在四棱锥中,底面ABCD ,底面ABCD 为直角梯形,,分别为线段AD,DC,PB 的中点.(1)证明:平面PEF//平面GAC ;(2)求直线GC 与平面PCD 所成角的正弦值.19.(17分)如图1所示中,分别为PA,PB 中点.将沿DC 向平面ABCD上方翻折至图2所示的位置,使得。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西宁市第四高级中学2017—2018学年第一学期期末试卷
高 二 数 学(文科)
一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选择中,只有一个是符合题目要求的)
1.抛物线28y x =的准线方程是 ( )
A .2-=y
B . 2=y
C . 2x =
D .2x =-
2.已知过点A(-2,m)和B(m ,4)的直线与直线2x+y-1=0垂直,则m 的值为 ( )
A .0
B .2
C .-8
D .10 3.焦点在 x 轴上,虚轴长为12,离心率为
4
5
的双曲线标准方程是( ) A .
22164144x y -= B .2213664x y -= C .2216416y x -= D .22
16436
x y -= 4.“0≠x ”是 “0>x ”的( )
A .充分而不必要
B .充分必要条件
C .必要而不充分条件
D .既不充分也不必要条件 5.若两条平行线L 1:x-y+1=0,与L 2:3x+ay-c=0 (c>0)
则3
a c
-等于( ) A. -2 B. -6 C.2 D.0
6.一个几何体的底面是正三角形,侧棱垂直于底面,它的三视图及其尺寸如下(单位cm ),
则该几何体的表面积为:( )
A.314 cm 2
B.)3824(+ cm 2
2
D. 318 cm
7.命题:“若22
0(,R)a b a b +=∈,则0a b ==”的逆否命题是( )
A.若0(,R)a b a b ≠≠∈,则22
0a b +≠ B.若0(,R)a b a b =≠∈,则22
0a b +≠ C.若0,0(,R)a b a b ≠≠∈且,则22
0a b +≠
正视图
侧视图 俯视图
D.若0,0(,R)a b a b ≠≠∈或,则220a b +≠
8.已知命题:p 所有有理数都是实数,命题:q 正数的对数都是负数,则下列命题中为真命题的是( )
A .()p q ⌝∨
B .()()p q ⌝∨⌝
C .()()p q ⌝∧⌝
D .p q ∧
9.设椭圆C :x2a2+y2
b2=1(a>b>0)的左、右焦点分别为F1,F2,P 是C 上的点,PF2⊥F1F2,
∠PF1F2=30°,则C 的离心率为 ( ) A.
3
3
B.13
C.1
2
D.3
6
10.已知m n ,,是直线,αβγ,,是平面,给出下列命题: ①若αβ⊥,m αβ= ,n m ⊥,则n α⊥或n β⊥. ②若αβ∥,m αγ= ,n βγ= ,则m n ∥. ③ 若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β.
④若m αβ= ,n m ∥且n α⊄,n β⊄,则n αβ∥且n ∥. 其中正确的命题是 ( )
A.○
1,○2 B.○2.○3 C.○2.○4 D.○3,○4 11.由直线1y x =+上的一点向圆2
2
(3)1x y -+=引切线,则切线长的最小值为( )
A.1
B .3
C
D .12.已知圆C :(x+3)2 +y2=100和点B(3,0),P 是圆上一点,线段BP 的垂直平分线交CP 于没M 点,则M 点的轨迹方程是 ( )
A.2
6y x = B .
2212516x y += C 22
12516
x y -= D.2225x y +=
二、填空题:(本大题共4小题,每小题5分,共20分)
13.已知命题:R :∈∃x p ,使322
=+x x ,则p ⌝是 .
14.已知椭圆G 的中心在坐标原点,长轴长在y 轴上,离心率为
2
3
,且G 上
一点到G 的两个焦点的距离之和是12,则椭圆的方程是 .
15.如图ABCD —A 1B 1C 1D 1是棱长为a 的正方体,则AB 1与平面D 1B 1BD 所成角= .
16.已知抛物线2:8C y x =的焦点为F ,准线与x 轴的交点为K ,点A 在抛物线上,且
AK =,o 是坐标原点,则oA =
三、解答题:(本大题共6小题,共70分) 17.(本小题满分10分)
已知圆C :()2
2
19x y -+=内有一点P (2,2),过点P 作直线l 交圆C 于A 、B 两点.
(1)当l 经过圆心C 时,求直线l 的方程; (2)当直线l 的倾斜角为45º时,求弦AB 的长.
18. (本小题满分12分)
若双曲线的焦点在y 轴,实轴长为6,渐近线方程为x y 2
3
±=,求双曲线的标准方程。
19.(本题满分12分)
设p :方程2
10x mx ++=有两个不等的负根,q :方程244(2)10x m x +-+=无实
根,
若p 或q 为真,p 且q 为假,求m 的取值范围.
20. (本小题满分12分)
已知关于x,y 的方程C:04222=+--+m y x y x . (1)当m 为何值时,方程C 表示圆。
(2)若圆C 与直线l:x+2y-4=0相交于M,N 两点,且MN=
5
4,求m 的值。
21.(本小题满分12分)
如图,棱锥P —ABCD 的底面ABCD 是矩形,PA ⊥平面ABCD , PA=AD=2,BD=22. (1)求证:BD ⊥平面P AC ;
(2)求二面角P —CD —B 余弦值的大小;
(3)求点C 到平面PBD 的距离.
22. (本小题满分12分)
已知椭圆C 的中心在原点,焦点在x 轴上,左右焦点分别为12,F F ,且12||2F F =,点(1,2
3)在椭圆C 上.
(1)求椭圆C 的方程;
(2)过1F 的直线l 与椭圆C 相交于,A B 两点,且2AF B ∆
l 的方程.
M
B 1
C 1
N
C
B
A
2017—2018学年第二学期期末考试答案
高 二 数 学(文理)
1—6 DBDCAC 7—12DBACCB
13. 32,R 2
≠+∈∀x x x 14.
19
362
2=+x y 15.o
30 16.52 17.14
92
2=-x y 18.解:(1) 已知圆C :()2
2
19x y -+=的圆心为C (1,0),因直线过点P 、C ,所以直线l
的斜率为2,
直线l 的方程为y=2(x-1),即 2x-y-20
(2) 当直线l 的倾斜角为45º时,斜率为1,直线l 的方程为y-2=x-2 ,即 x-y=0 圆心C 到直线l
,圆的半径为3, 弦AB
19 .解:(1)证明:连BN ,过N 作1BB NM ⊥,垂足为M , ∵N ABB C B 111平面⊥,N ABB BN 1平面⊂, ∴BN C B ⊥11, ………………………2分 又,BC=4,AB=4,BM=AN=4,AN BA ⊥, ∴ 244422=+=
BN ,2
2212144+=+=M B NM N B =24,
∵643232,6482
2121=+=+==BN N B BB ,∴N B BN 1⊥,……………… 4分 ∵N C B N B N C B C B 1111111,平面平面⊂⊂,1111B C B N B =⋂
∴BN 11C B N ⊥平面 ……………………… 6分
(2)连接CN ,3
32
442143131=
⨯⨯⨯⨯=⋅⨯=
∆-ABN ABN C S BC V ,…… 8分 又N ABB C B 111平面⊥,所以平面⊥11C
C B B 平面N ABB 1,且平面 11C CBB 11BB N ABB =,1BB NM ⊥,CB C B NM 11平面⊂,
∴ CB C B NM 11平面⊥, ………9分
3
128
84431311111=
⨯⨯⨯=⋅⨯=
-CB C B CB C B N S NM V 矩形 ………11分 此几何体的体积3
160
312833211=
+=
+=--CB C B N ABN C V V V …12分
20.(1)m<5 (2) 21(理)
(文)
、解:⑴由(
)(
)12F F 、,长轴长为6
得:3c a ==所以1b =
∴椭圆方程为
22
191
x y += …………………………………………………5分 ⑵设1122(,),(,)A x y B x y ,由⑴可知椭圆方程为22
191
x y +=①,
∵直线AB 的方程为
2y x =+②
……………………………
7分
把②代入①得化简并整理得21036270x x ++=
∴12121827,5
10
x x x x +=-= ……………………………10分
又AB 22. 解:(1)22143
x y += 2
2
22
(2):1
34120,(3
4)690
l x t y x y t y t y =-+
-=+--=设代入得
()1221212121222
22
6134,||||||92341,11t y y t y y S F F y y y y t t x y ⎧
+=⎪⎪+∴∴-=∴=-==⎨-⎪=
⎪+⎩
∴=∴-+=所求圆为。
12=t ,故所求直线方程为: 01=+±y x。