高三数学一轮复习优质学案:空间向量及其运算

合集下载

高三数学人教版A版数学(理)高考一轮复习教案空间向量及其运算1

高三数学人教版A版数学(理)高考一轮复习教案空间向量及其运算1

第六节空间向量及其运算空间向量及其应用(1)理解直线的方向向量与平面的法向量.(2)能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.(3)能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理).(4)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用.知识点一空间向量的有关概念1.空间向量的有关概念(1)空间向量:在空间中,具有大小和方向的量叫作空间向量,其大小叫作向量的长度或模.(2)相等向量:方向相同且模相等的向量.(3)共线向量:如果表示空间向量的有向线段所在的直线平行或重合,则这些向量叫作共线向量或平行向量,a平行于b记作a∥b.(4)共面向量:平行于同一平面的向量叫作共面向量.2.空间向量中的有关定理(1)共线向量定理:对空间任意两个向量a,b(b≠0),a∥b⇔存在λ∈R,使a=λb.(2)共面向量定理:若两个向量a,b不共线,则向量p与向量a,b共面⇔存在唯一的有序实数对(x,y),使p=x a+y b.(3)空间向量基本定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在一x,y,z使得p=x a+y b+z c.其中{a,b,c}叫作空间的一个基底.个唯一的有序实数组{}3.两个向量的数量积(1)非零向量a,b的数量积a·b=|a||b|cos〈a,b〉.(2)空间向量数量积的运算律①结合律:(λa)·b=λ(a·b);②交换律:a·b=b·a;③分配律:a·(b+c)=a·b+a·c.易误提醒(1)共线向量与共面向量区别时注意,平行于同一平面的向量才能为共面向量.(2)空间任意三个不共面的向量都可构成空间的一个基底.(3)由于0与任意一个非零向量共线,与任意两个非零向量共面,故0不能作为基向量. (4)基底选定后,空间的所有向量均可由基底唯一表示.[自测练习]1.已知空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM =2MA ,N 为BC 中点,则MN →=( )A.12a -23b +12c B .-23a +12b +12cC.12a +12b -12cD.23a +23b -12c 解析:如图所示, MN →=MA →+AB →+BN → =13OA →+(OB →-OA →)+12BC → =OB →-23OA →+12(OC →-OB →)=12OB →-23OA →+12OC →=-23a +12b +12c .答案:B2.已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则λ与μ的值可以是( ) A .2,12B .-13,12C .-3,2D .2,2解析:∵a ∥b ,∴b =k a ,即(6,2μ-1,2λ)=k (λ+1,0,2), ∴⎩⎪⎨⎪⎧6=k (λ+1),2μ-1=0,2λ=2k ,解得⎩⎪⎨⎪⎧ λ=2,μ=12,或⎩⎪⎨⎪⎧λ=-3,μ=12.答案:A知识点二 空间向量的坐标表示及其应用 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).向量表示 坐标表示 数量积 a ·b a 1b 1+a 2b 2+a 3b 3 共线 a =λb (b ≠0) a 1=λb 1,a 2=λb 2,a 3=λb 3 垂直 a ·b =0(a ≠0,b ≠0)a 1b 1+a 2b 2+a 3b 3=0模 |a |a 21+a 22+a 23夹角 〈a ,b 〉(a ≠0,b ≠0)cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23易误提醒 (1)空间向量的坐标运算与坐标原点的位置选取无关,这是因为一个确定的几何体,其“线线”夹角、“点点”距离都是固定的,坐标系的位置不同,只会影响其计算的繁简.(2)进行向量的运算时,在能建系的情况下尽量建系,将向量运算转化为坐标运算. 必备方法 用空间向量解决几何问题的一般步骤: (1)适当的选取基底{a ,b ,c }. (2)用a ,b ,c 表示相关向量. (3)通过运算完成证明或计算问题.[自测练习]3.在空间直角坐标系中,已知点A (1,0,2),B (1,-3,1),点M 在y 轴上,且M 到A 与到B 的距离相等,则M 的坐标是________.解析:设M (0,y,0),由|MA |=|MB |得(1-0)2+(0-y )2+(2-0)2=(1-0)2+(-3-y )2+(1-0)2,解得y =-1.∴M (0,-1,0).答案:(0,-1,0)考点一 空间向量的线性运算|1.设三棱锥O -ABC 中,OA →=a ,OB →=b ,OC →=c ,G 是△ABC 的重心,则OG →等于( ) A .a +b -c B .a +b +c C.12(a +b +c ) D.13(a +b +c )解析:如图所示,OG →=OA →+AG →=OA →+13(AB →+AC →)=OA →+13(OB →-OA →+OC →-OA →)=13(a +b +c ).答案:D2.如图所示,已知空间四边形O -ABC ,其对角线为OB ,AC ,M ,N 分别为OA 、BC 的中点,点G 在线段MN 上,且MG →=2GN →,若OG →=xOA →+yOB →+zOC →,则x ,y ,z 的值分别为________.解析:∵OG →=OM →+MG →=12OA →+23MN →=12OA →+23(ON →-OM →)=12OA →+23ON →-23OM →=12OA →+23×12(OB →+OC →)-23×12OA →=16OA →+13OB →+13OC →,又OG →=xOA →+yOB →+zOC →, 根据空间向量的基本定理,x =16,y =z =13.答案:16,13,13(1)选定空间不共面的三个向量作基向量,并用它们表示出指定的向量,是用向量解决立体几何问题的基本要求.(2)空间向量问题实质上是转化为平面向量问题来解决的,即把空间向量转化到某一个平面上,利用三角形法则或平行四边形法则来解决.考点二 共线向量与共面向量定理的应用|已知E ,F ,G ,H 分别是空间四边形ABCD 中边AB ,BC ,CD ,DA 的中点. (1)求证:E ,F ,G ,H 四点共面; (2)求证:BD ∥平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任一点O ,有OM →=14(OA →+OB →+OC →+OD →).[证明] (1)连接BG ,则EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH →=EF →+EH →,由共面向量定理知,E ,F ,G ,H 四点共面.(2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →,所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH , 所以BD ∥平面EFGH .(3)任取一点O ,并连接OM ,OA ,OB ,OC ,OD ,OE ,OG . 由(2)知EH →=12BD →,同理FG →=12BD →,所以EH →=FG →,即EH 綊FG , 所以四边形EFGH 是平行四边形, 所以EG ,FH 被点M 平分.故OM →=12(OE →+OG →)=12OE →+12OG →=12⎣⎡⎦⎤12(OA →+OB →)+12⎣⎡⎦⎤12(OC →+OD →)=14(OA →+OB →+OC →+OD →).证明点共面问题可转化为证明向量共面问题,如要证明P ,A ,B ,C 四点共面,只要能证明P A →=xPB →+yPC →或对空间任一点O ,有OA →=OP →+xPB →+yPC →或OP →=xOA →+yOB →+zOC →(x +y +z =1)即可.共面向量定理实际上也是三个非零向量所在直线共面的充要条件.1.已知A 、B 、C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB→+OC →).(1)判断MA →、MB →、MC →三个向量是否共面; (2)判断点M 是否在平面ABC 内. 解:(1)由已知OA →+OB →+OC →=3 OM →, ∴OA →-OM →=(OM →-OB →)+(OM →-OC →), 即MA →=BM →+CM →=-MB →-MC →, ∴MA →,MB →,MC →共面.(2)由(1)知MA →,MB →,MC →共面且过同一点M ,所以四点M ,A ,B ,C 共面,从而点M 在平面ABC 内.考点三 利用空间向量证明平行、垂直|如图所示的长方体ABCD -A 1B 1C 1D 1中,底面ABCD 是边长为2的正方形,O 为AC 与BD 的交点,BB 1=2,M 是线段B 1D 1的中点.(1)求证:BM ∥平面D 1AC ; (2)求证:OD 1⊥平面AB 1C .[证明] (1)建立如图所示的空间直角坐标系,则点O (1,1,0),D 1(0,0,2), ∴OD 1→=(-1,-1,2), 又点B (2,2,0),M (1,1,2), ∴BM →=(-1,-1,2),∴OD 1→=BM →.又∵OD 1与BM 不共线, ∴OD 1∥BM .∵OD 1⊂平面D 1AC ,BM ⊄平面D 1AC , ∴BM ∥平面D 1AC .(2)连接OB 1,点B 1(2,2,2),A (2,0,0),C (0,2,0), ∵OD 1→·OB 1→=(-1,-1,2)·(1,1,2)=0, OD 1→·AC →=(-1,-1,2)·(-2,2,0)=0,∴OD 1→⊥OB 1→, OD 1→⊥AC →,即OD 1⊥OB 1,OD 1⊥AC , 又OB 1∩AC =O ,∴OD 1⊥平面AB 1C .(1)设直线l 1的方向向量为v 1=(a 1,b 1,c 1),l 2的方向向量为v 2=(a 2,b 2,c 2),则l 1∥l 2⇔v 1∥v 2⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)(k ∈R ).(2)设直线l 的方向向量为v =(a 1,b 1,c 1),平面α的法向量为n =(a 2,b 2,c 2),则l ∥α⇔v ⊥n ⇔a 1a 2+b 1b 2+c 1c 2=0,l ⊥α⇔v ∥n ⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)(k ∈R ).(3)设平面α的法向量为n 1=(a 1,b 1,c 1),平面β的法向量为n 2=(a 2,b 2,c 2),则α∥β⇔n 1∥n 2,α⊥β⇔n 1⊥n 2.2.在长方体ABCD -A 1B 1C 1D 1中,AA 1=2AB =2BC ,E ,F ,E 1分别是棱AA 1,BB 1,A 1B 1的中点.(1)求证:CE ∥平面C 1E 1F ; (2)求证:平面C 1E 1F ⊥平面CEF .证明:以D 为原点,DA ,DC ,DD 1所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系D -xyz ,设BC =1,则C (0,1,0),E (1,0,1),C 1(0,1,2),F (1,1,1),E 1⎝⎛⎭⎫1,12,2.(1)设平面C 1E 1F 的法向量n =(x ,y ,z ). ∵C 1E 1→=⎝⎛⎭⎫1,-12,0,FC 1→=(-1,0,1), ∴⎩⎪⎨⎪⎧ n ·C 1E 1→=0,n ·FC 1→=0,即⎩⎪⎨⎪⎧x -12y =0,-x +z =0.令x =1,得n =(1,2,1).∵CE →=(1,-1,1),n ·CE →=1-2+1=0, ∴CE ⊥n .又∵CE ⊄平面C 1E 1F , ∴CE ∥平面C 1E 1F .(2)设平面EFC 的法向量为m =(a ,b ,c ), 由EF →=(0,1,0),FC →=(-1,0,-1), ∴⎩⎪⎨⎪⎧m ·EF →=0,m ·FC →=0,即⎩⎪⎨⎪⎧b =0,-a -c =0.令a =-1,得m =(-1,0,1).∵m ·n =1×(-1)+2×0+1×1=-1+1=0, ∴平面C 1E 1F ⊥平面CEF .16.混淆空间“向量平行”与“向量同向”致错【典例】 已知向量a =(1,2,3),b =(x ,x 2+y -2,y ),并且a ,b 同向,则x ,y 的值分别为________.[解析] 由题意知a ∥b ,所以x 1=x 2+y -22=y 3,即⎩⎪⎨⎪⎧y =3x ,x 2+y -2=2x , 解得⎩⎪⎨⎪⎧ x =1,y =3,或⎩⎪⎨⎪⎧x =-2,y =-6.当⎩⎪⎨⎪⎧x =-2,y =-6,时,b =(-2,-4,-6)=-2a ,所以a ,b 两向量反向,不符合题意,舍去.当⎩⎪⎨⎪⎧ x =1,y =3,时,b =(1,2,3)=a ,a 与b 同向,所以⎩⎪⎨⎪⎧x =1,y =3. [答案] x =1,y =3[易误点评] 只考虑a ∥b ,忽视了同向导致求解多解.[防范措施] 两向量平行和两向量同向不是等价的,同向是平行的一种情况,两向量同向能推出两向量平行,但反之不成立,也就是说两向量同向是两向量平行的充分不必要条件.[跟踪练习] (2015·成都模拟)已知a =(λ+1,0,2),b =(6,2u -1,2λ),若a ∥b ,则λ与u 的值可以是( )A .2,12B .-13,12C .-3,2D .2,2解析:由a ∥b 验证当λ=2,u =12时成立.答案:AA 组 考点能力演练1.(2015·深圳模拟)已知三棱锥O -ABC ,点M ,N 分别为AB ,OC 的中点,且OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示MN →,则MN →等于( )A.12(b +c -a ) B.12(a +b -c ) C.12(a -b +c ) D.12(c -a -b ) 解析:MN →=MA →+AO →+ON →=12(c -a -b ).答案:D2.已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB →>0,则该四边形为( )A .平行四边形B .梯形C .长方形D .空间四边形解析:由AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB →>0,知该四边形一定不是平面图形,故选D.答案:D3.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ).若a ,b ,c 三向量共面,则实数λ等于( )A.627B.637C.607D.657解析:由题意得c =t a +μb =(2t -μ,-t +4μ,3t -2μ),∴⎩⎪⎨⎪⎧7=2t -μ,5=-t +4μ,λ=3t -2μ.∴⎩⎪⎨⎪⎧t =337,μ=177,λ=657.答案:D4.(2016·东营质检)已知A (1,0,0),B (0,-1,1),OA →+λOB →与OB →的夹角为120°,则λ的值为( )A .±66B.66C .-66D .±6解析:OA →+λOB →=(1,-λ,λ), cos 120°=λ+λ1+2λ2·2=-12,得λ=±66.经检验λ=66不合题意,舍去,∴λ=-66. 答案:C5.设A (3,3,1),B (1,0,5),C (0,1,0),AB 的中点为M ,则|CM |等于( ) A.534 B.532 C.532D.132解析:设M (x ,y ,z ),则x =3+12=2,y =3+02=32,z =1+52=3,即M ⎝⎛⎭⎫2,32,3,|CM |=(2-0)2+⎝⎛⎭⎫32-12+(3-0)2=532.故选C. 答案:C6.(2016·合肥模拟)向量a =(2,0,5),b =(3,1,-2),c =(-1,4,0),则a +6b -8c =________. 解析:由a =(2,0,5),b =(3,1,-2),c =(-1,4,0),∴a +6b -8c =(28,-26,-7). 答案:(28,-26,-7)7.已知向量a ,b 满足条件:|a |=2,|b |=2,且a 与2b -a 互相垂直,则a 与b 的夹角为________.解析:由于a 与2b -a 互相垂直,则a ·(2b -a )=0,即2a·b -|a |2=0,所以2|a ||b |cos a ,b -|a |2=0,则42cosa ,b -4=0,则cos a ,b=22,所以a 与b 的夹角为45°. 答案:45°8.空间四边形OABC 中,OB =OC ,且∠AOB =∠AOC =π3,则cos OA →,BC →的值为________.解析:OA →·BC →=OA →·(OC →-OB →)=OA →·OC →-OA →·OB →=|OA →||OC →|cos OA →,OC→-|OA →||OB→|·cos OA →,OB →.∵OB =OC ,∠AOB =∠AOC =π3,∴OA →·BC →=0,即OA →⊥BC →,∴cos OA →,BC →=0.答案:09.(2016·唐山模拟)已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b=AC →.(1)求a 和b 夹角的余弦值.(2)设|c |=3,c ∥BC →,求c 的坐标.解:(1)因为AB →=(1,1,0),AC →=(-1,0,2),所以a ·b =-1+0+0=-1,|a |=2,|b |= 5.所以cos 〈a ,b 〉=a ·b |a ||b |=-12×5=-1010. (2)BC →=(-2,-1,2).设c =(x ,y ,z ),因为|c |=3,c ∥BC →,所以x 2+y 2+z 2=3,存在实数λ使得c =λBC →,即⎩⎪⎨⎪⎧ x =-2λ,y =-λ,z =2λ联立解得⎩⎪⎨⎪⎧ x =-2,y =-1,z =2,λ=1,或⎩⎪⎨⎪⎧ x =2,y =1,z =-2,λ=-1,所以c =±(-2,-1,2).10.(2016·太原模拟)如图,直三棱柱ABC -A 1B 1C 1,底面△ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M ,N 分别是A 1B 1,A 1A 的中点.(1)求BN →的模.(2)求cos 〈BA 1→,CB 1→〉的值.(3)求证:A 1B ⊥C 1M .解:如图,建立空间直角坐标系.(1)依题意得B (0,1,0),N (1,0,1),所以|BN →|=(1-0)2+(0-1)2+(1-0)2= 3.(2)依题意得A 1(1,0,2),B (0,1,0),C (0,0,0),B 1(0,1,2).所以BA 1→=(1,-1,2),CB 1→=(0,1,2),BA 1→·CB 1→=3,|BA 1→|=6,|CB 1→|=5,所以cos 〈BA 1→,CB 1→〉=BA 1→·CB 1→|BA 1→||CB 1→|=11030. (3)依题意,得C 1(0,0,2),M ⎝⎛⎭⎫12,12,2,A 1B →=(-1,1,-2),C 1M →=⎝⎛⎭⎫12,12,0. 所以A 1B →·C 1M →=-12+12+0=0, 所以A 1B →⊥C 1M →.所以A 1B ⊥C 1M .B 组 高考题型专练1.(2014·高考广东卷)已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( )A .(-1,1,0)B .(1,-1,0)C .(0,-1,1)D .(-1,0,1)解析:经检验,选项B 中向量(1,-1,0)与向量a =(1,0,-1)的夹角的余弦值为12,即它们的夹角为60°,故选B.答案:B2.(2014·高考江西卷)如图,在长方体ABCD -A 1B 1C 1D 1中,AB =11,AD =7,AA 1=12.一质点从顶点A 射向点E (4,3,12),遇长方体的面反射(反射服从光的反射原理),将第i -1次到第i 次反射点之间的线段记为L i (i =2,3,4),L 1=AE ,将线段L 1,L 2,L 3,L 4竖直放置在同一水平线上,则大致的图形是( )解析:由对称性知质点经点E 反射到平面ABCD 的点E 1(8,6,0)处.在坐标平面xAy 中,直线AE 1的方程为y =34x ,与直线DC 的方程y =7联立得F ⎝⎛⎭⎫283,7,0.由两点间的距离公式得E 1F =53, ∵tan ∠E 2E 1F =tan ∠EAE 1=125,∴E 2F =E 1F ·tan ∠E 2E 1F =4.∴E 2F 1=12-4=8.∴L 3L 4=E 1E 2E 2E 3=E 2F E 2F 1=48=12.故选C.答案:C3.(2015·高考浙江卷)已知e 1,e 2是空间单位向量,e 1·e 2=12.若空间向量b 满足b ·e 1=2,b ·e 2=52,且对于任意x ,y ∈R ,|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),则x 0=________,y 0=________,|b |=________.解析:∵e 1,e 2是单位向量,e 1·e 2=12,∴cos 〈e 1,e 2〉=12,又∵0°≤〈e 1,e 2〉≤180°,∴〈e 1,e 2〉=60°.不妨把e 1,e 2放到空间直角坐标系O -xyz 的平面xOy 中,设e 1=(1,0,0),则e 2=⎝⎛⎭⎫12,32,0,再设OB →=b =(m ,n ,r ),由b ·e 1=2,b ·e 2=52,得m =2,n =3,则b =(2,3,r ).而x e 1+y e 2是平面xOy 上任一向量,由|b -(x e 1+y e 2)|≥1知点B (2,3,r )到平面xOy 的距离为1,故可得r =1.则b =(2,3,1),∴|b |=2 2.又由|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1知x 0e 1+y 0e 2=(2,3,0),解得x 0=1,y 0=2. 答案:1,2,22。

[精品]新人教版A版高考数学理科一轮复习7.6 空间向量及其运算优质课教案

[精品]新人教版A版高考数学理科一轮复习7.6 空间向量及其运算优质课教案

第六节空间向量及其运算空间向量及其应用(1)理解直线的方向向量与平面的法向量.(2)能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.(3)能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理).(4)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用.知识点一空间向量的有关概念1.空间向量的有关概念(1)空间向量:在空间中,具有大小和方向的量叫作空间向量,其大小叫作向量的长度或模.(2)相等向量:方向相同且模相等的向量.(3)共线向量:如果表示空间向量的有向线段所在的直线平行或重合,则这些向量叫作共线向量或平行向量,a平行于b记作a∥b.(4)共面向量:平行于同一平面的向量叫作共面向量.2.空间向量中的有关定理(1)共线向量定理:对空间任意两个向量a,b(b≠0),a∥b⇔存在λ∈R ,使a =λb .(2)共面向量定理:若两个向量a ,b 不共线,则向量p 与向量a ,b 共面⇔存在唯一的有序实数对(x ,y ),使p =x a +y b .(3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组{}x ,y ,z 使得p =x a +y b +z c .其中{a ,b ,c }叫作空间的一个基底.3.两个向量的数量积(1)非零向量a ,b 的数量积a ·b =|a ||b |cos 〈a ,b 〉. (2)空间向量数量积的运算律 ①结合律:(λa )·b =λ(a ·b ); ②交换律:a ·b =b ·a ;③分配律:a ·(b +c )=a ·b +a ·c .易误提醒 (1)共线向量与共面向量区别时注意,平行于同一平面的向量才能为共面向量.(2)空间任意三个不共面的向量都可构成空间的一个基底. (3)由于0与任意一个非零向量共线,与任意两个非零向量共面,故0不能作为基向量.(4)基底选定后,空间的所有向量均可由基底唯一表示.[自测练习]1.已知空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM =2MA ,N 为BC 中点,则MN →=( )A.12a -23b +12c B .-23a +12b +12cC.12a +12b -12cD.23a +23b -12c 解析:如图所示,MN →=MA →+AB →+BN → =13OA →+(OB →-OA →)+12BC → =OB →-23OA →+12(OC →-OB →)=12OB →-23OA →+12OC → =-23a +12b +12c .答案:B2.已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则λ与μ的值可以是( )A .2,12B .-13,12C .-3,2D .2,2解析:∵a ∥b ,∴b =k a ,即(6,2μ-1,2λ)=k (λ+1,0,2),∴⎩⎪⎨⎪⎧6=k λ+,2μ-1=0,2λ=2k ,解得⎩⎪⎨⎪⎧λ=2,μ=12,或⎩⎪⎨⎪⎧λ=-3,μ=12.答案:A知识点二 空间向量的坐标表示及其应用 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).易误提醒(1)空间向量的坐标运算与坐标原点的位置选取无关,这是因为一个确定的几何体,其“线线”夹角、“点点”距离都是固定的,坐标系的位置不同,只会影响其计算的繁简.(2)进行向量的运算时,在能建系的情况下尽量建系,将向量运算转化为坐标运算.必备方法用空间向量解决几何问题的一般步骤:(1)适当的选取基底{a,b,c}.(2)用a,b,c表示相关向量.(3)通过运算完成证明或计算问题.[自测练习]3.在空间直角坐标系中,已知点A(1,0,2),B(1,-3,1),点M 在y轴上,且M到A与到B的距离相等,则M的坐标是________.解析:设M(0,y,0),由|MA|=|MB|得(1-0)2+(0-y)2+(2-0)2=(1-0)2+(-3-y)2+(1-0)2,解得y=-1.∴M(0,-1,0).答案:(0,-1,0)考点一 空间向量的线性运算|1.设三棱锥O ­ABC 中,OA →=a ,OB →=b ,OC →=c ,G 是△ABC 的重心,则OG →等于( )A .a +b -cB .a +b +c C.12(a +b +c ) D.13(a +b +c )解析:如图所示,OG →=OA →+AG →=OA →+13(AB →+AC →)=OA →+13(OB →-OA →+OC →-OA →)=13(a +b +c ).答案:D2.如图所示,已知空间四边形O ­ABC ,其对角线为OB ,AC ,M ,N 分别为OA 、BC 的中点,点G 在线段MN 上,且MG →=2GN →,若OG →=xOA →+yOB→+zOC →,则x ,y ,z 的值分别为________.解析:∵OG →=OM →+MG →=12OA →+23MN →=12OA →+23(ON →-OM →)=12OA →+23ON →-23OM → =12OA →+23×12(OB →+OC →)-23×12OA →=16OA →+13OB →+13OC →,又OG →=xOA →+yOB→+zOC →, 根据空间向量的基本定理,x =16,y =z =13.答案:16,13,13(1)选定空间不共面的三个向量作基向量,并用它们表示出指定的向量,是用向量解决立体几何问题的基本要求.(2)空间向量问题实质上是转化为平面向量问题来解决的,即把空间向量转化到某一个平面上,利用三角形法则或平行四边形法则来解决.考点二 共线向量与共面向量定理的应用|已知E ,F ,G ,H 分别是空间四边形ABCD 中边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面; (2)求证:BD ∥平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任一点O ,有OM →=14(OA→+OB →+OC →+OD →).[证明] (1)连接BG ,则EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH→=EF →+EH →,由共面向量定理知,E ,F ,G ,H 四点共面.(2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →,所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH , 所以BD ∥平面EFGH .(3)任取一点O ,并连接OM ,OA ,OB ,OC ,OD ,OE ,OG . 由(2)知EH →=12BD →,同理FG →=12BD →,所以EH →=FG →,即EH 綊FG , 所以四边形EFGH 是平行四边形, 所以EG ,FH 被点M 平分.故OM →=12(OE →+OG →)=12OE →+12OG →=12⎣⎢⎡⎦⎥⎤12OA →+OB →+12⎣⎢⎡⎦⎥⎤12OC →+OD →=14(OA →+OB →+OC →+OD →).证明点共面问题可转化为证明向量共面问题,如要证明P ,A ,B ,C 四点共面,只要能证明PA →=xPB →+yPC →或对空间任一点O ,有OA →=OP →+xPB →+yPC →或OP →=xOA →+yOB →+zOC →(x +y +z =1)即可.共面向量定理实际上也是三个非零向量所在直线共面的充要条件.1.已知A 、B 、C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB →+OC →).(1)判断MA →、MB →、MC →三个向量是否共面; (2)判断点M 是否在平面ABC 内. 解:(1)由已知OA →+OB →+OC →=3 OM →, ∴OA →-OM →=(OM →-OB →)+(OM →-OC →), 即MA →=BM →+CM →=-MB →-MC →, ∴MA →,MB →,MC→共面. (2)由(1)知MA →,MB →,MC →共面且过同一点M ,所以四点M ,A ,B ,C 共面,从而点M 在平面ABC 内.考点三 利用空间向量证明平行、垂直|如图所示的长方体ABCD ­A 1B 1C 1D 1中,底面ABCD 是边长为2的正方形,O 为AC 与BD 的交点,BB 1=2,M 是线段B 1D 1的中点.(1)求证:BM ∥平面D 1AC ; (2)求证:OD 1⊥平面AB 1C .[证明] (1)建立如图所示的空间直角坐标系,则点O (1,1,0),D 1(0,0,2),∴OD1→=(-1,-1,2), 又点B (2,2,0),M (1,1,2), ∴BM →=(-1,-1,2), ∴OD 1→=BM →.又∵OD 1与BM 不共线, ∴OD 1∥BM .∵OD 1⊂平面D 1AC ,BM ⊄平面D 1AC , ∴BM ∥平面D 1AC .(2)连接OB 1,点B 1(2,2,2),A (2,0,0),C (0,2,0), ∵OD1→·OB 1→=(-1,-1,2)·(1,1,2)=0, OD 1→·AC →=(-1,-1,2)·(-2,2,0)=0, ∴OD 1→⊥OB 1→, OD 1→⊥AC →,即OD 1⊥OB 1,OD 1⊥AC , 又OB 1∩AC =O ,∴OD 1⊥平面AB 1C .(1)设直线l 1的方向向量为v 1=(a 1,b 1,c 1),l 2的方向向量为v 2=(a 2,b 2,c 2),则l 1∥l 2⇔v 1∥v 2⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)(k ∈R ).(2)设直线l 的方向向量为v =(a 1,b 1,c 1),平面α的法向量为n =(a 2,b 2,c 2),则l ∥α⇔v ⊥n ⇔a 1a 2+b 1b 2+c 1c 2=0,l ⊥α⇔v ∥n ⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)(k ∈R ).(3)设平面α的法向量为n 1=(a 1,b 1,c 1),平面β的法向量为n 2=(a 2,b 2,c 2),则α∥β⇔n 1∥n 2,α⊥β⇔n 1⊥n 2.2.在长方体ABCD ­A 1B 1C 1D 1中,AA 1=2AB =2BC ,E ,F ,E 1分别是棱AA 1,BB 1,A 1B 1的中点.(1)求证:CE ∥平面C 1E 1F ; (2)求证:平面C 1E 1F ⊥平面CEF .证明:以D 为原点,DA ,DC ,DD 1所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系D ­xyz ,设BC =1,则C (0,1,0),E (1,0,1),C 1(0,1,2),F (1,1,1),E 1⎝⎛⎭⎪⎫1,12,2.(1)设平面C 1E 1F 的法向量n =(x ,y ,z ).∵C 1E 1→=⎝⎛⎭⎪⎫1,-12,0,FC 1→=(-1,0,1),∴⎩⎨⎧n ·C 1E 1→=0,n ·FC1→=0,即⎩⎪⎨⎪⎧x -12y =0,-x +z =0.令x =1,得n =(1,2,1).∵CE →=(1,-1,1),n ·CE →=1-2+1=0, ∴CE ⊥n .又∵CE ⊄平面C 1E 1F , ∴CE ∥平面C 1E 1F .(2)设平面EFC 的法向量为m =(a ,b ,c ), 由EF →=(0,1,0),FC →=(-1,0,-1),∴⎩⎨⎧m ·EF →=0,m ·FC →=0,即⎩⎪⎨⎪⎧b =0,-a -c =0.令a =-1,得m =(-1,0,1).∵m ·n =1×(-1)+2×0+1×1=-1+1=0, ∴平面C 1E 1F ⊥平面CEF .16.混淆空间“向量平行”与“向量同向”致错【典例】 已知向量a =(1,2,3),b =(x ,x 2+y -2,y ),并且a ,b 同向,则x ,y 的值分别为________.[解析] 由题意知a ∥b ,所以x 1=x 2+y -22=y3,即⎩⎪⎨⎪⎧y =3x ,x 2+y -2=2x ,解得⎩⎪⎨⎪⎧x =1,y =3,或⎩⎪⎨⎪⎧x =-2,y =-6.当⎩⎪⎨⎪⎧x =-2,y =-6,时,b =(-2,-4,-6)=-2a ,所以a ,b 两向量反向,不符合题意,舍去.当⎩⎪⎨⎪⎧x =1,y =3,时,b =(1,2,3)=a ,a 与b 同向,所以⎩⎪⎨⎪⎧x =1,y =3.[答案] x =1,y =3[易误点评] 只考虑a ∥b ,忽视了同向导致求解多解. [防范措施] 两向量平行和两向量同向不是等价的,同向是平行的一种情况,两向量同向能推出两向量平行,但反之不成立,也就是说两向量同向是两向量平行的充分不必要条件.[跟踪练习] (2015·成都模拟)已知a =(λ+1,0,2),b =(6,2u -1,2λ),若a ∥b ,则λ与u 的值可以是( )A .2,12B .-13,12C .-3,2D .2,2解析:由a ∥b 验证当λ=2,u =12时成立.答案:AA 组 考点能力演练1.(2015·深圳模拟)已知三棱锥O ­ABC ,点M ,N 分别为AB ,OC 的中点,且OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示MN →,则MN →等于( )A.12(b +c -a ) B.12(a +b -c ) C.12(a -b +c ) D.12(c -a -b ) 解析:MN →=MA →+AO →+ON →=12(c -a -b ). 答案:D2.已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB →>0,则该四边形为( )A .平行四边形B .梯形C .长方形D .空间四边形解析:由AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB →>0,知该四边形一定不是平面图形,故选D.答案:D3.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ).若a ,b ,c 三向量共面,则实数λ等于( )A.627B.637C.607D.657解析:由题意得c =t a +μb =(2t -μ,-t +4μ,3t -2μ),∴⎩⎪⎨⎪⎧7=2t -μ,5=-t +4μ,λ=3t -2μ.∴⎩⎪⎨⎪⎧t =337,μ=177,λ=657.答案:D4.(2016·东营质检)已知A (1,0,0),B (0,-1,1),OA →+λOB →与OB →的夹角为120°,则λ的值为( )A .±66B.66 C .-66D .± 6解析:OA →+λOB →=(1,-λ,λ), cos 120°=λ+λ1+2λ2·2=-12,得λ=±66. 经检验λ=66不合题意,舍去,∴λ=-66.答案:C5.设A (3,3,1),B (1,0,5),C (0,1,0),AB 的中点为M ,则|CM |等于( )A.534B.532C.532D.132解析:设M (x ,y ,z ),则x =3+12=2,y =3+02=32,z =1+52=3,即M ⎝ ⎛⎭⎪⎫2,32,3,|CM |=-2+⎝ ⎛⎭⎪⎫32-12+-2=532.故选C.答案:C6.(2016·合肥模拟)向量a =(2,0,5),b =(3,1,-2),c =(-1,4,0),则a +6b -8c =________.解析:由a =(2,0,5),b =(3,1,-2),c =(-1,4,0),∴a +6b -8c =(28,-26,-7).答案:(28,-26,-7)7.已知向量a ,b 满足条件:|a |=2,|b |=2,且a 与2b -a 互相垂直,则a 与b 的夹角为________.解析:由于a 与2b -a 互相垂直,则a ·(2b -a )=0,即2a·b-|a |2=0,所以2|a ||b a ,b -|a |2=0,则42a ,b-4=0,则a ,b=22,所以a 与b 的夹角为45°. 答案:45°8.空间四边形OABC 中,OB =OC ,且∠AOB =∠AOC =π3,则OA →,BC →的值为________.解析:OA →·BC →=OA →·(OC →-OB →)=OA →·OC →-OA →·OB →=|OA →||OC→OA →,OC→-|OA →||OB→OA →,OB →.∵OB =OC ,∠AOB =∠AOC =π3,∴OA →·BC →=0, 即OA →⊥BC →,∴OA →,BC →=0.答案:09.(2016·唐山模拟)已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →.(1)求a 和b 夹角的余弦值. (2)设|c |=3,c ∥BC→,求c 的坐标. 解:(1)因为AB →=(1,1,0),AC →=(-1,0,2), 所以a ·b =-1+0+0=-1,|a |=2,|b |= 5.所以cos 〈a ,b 〉=a ·b |a ||b |=-12×5=-1010.(2)BC →=(-2,-1,2).设c =(x ,y ,z ),因为|c |=3,c ∥BC →, 所以x 2+y 2+z 2=3,存在实数λ使得c =λBC →,即⎩⎪⎨⎪⎧x =-2λ,y =-λ,z =2λ联立解得⎩⎪⎨⎪⎧x =-2,y =-1,z =2,λ=1,或⎩⎪⎨⎪⎧x =2,y =1,z =-2,λ=-1,所以c =±(-2,-1,2).10.(2016·太原模拟)如图,直三棱柱ABC ­A 1B 1C 1,底面△ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M ,N 分别是A 1B 1,A 1A 的中点.(1)求BN →的模.(2)求cos 〈BA1→,CB 1→〉的值.(3)求证:A 1B ⊥C 1M .解:如图,建立空间直角坐标系.(1)依题意得B (0,1,0),N (1,0,1),所以|BN →|=-2+-2+-2= 3.(2)依题意得A 1(1,0,2),B (0,1,0),C (0,0,0),B 1(0,1,2).所以BA 1→=(1,-1,2),CB 1→=(0,1,2),BA 1→·CB 1→=3,|BA 1→|=6,|CB 1→|=5,所以cos 〈BA 1→,CB 1→〉=BA1→·CB 1→|BA1→||CB 1→|=11030.(3)依题意,得C 1(0,0,2),M ⎝ ⎛⎭⎪⎫12,12,2,A 1B →=(-1,1,-2),C 1M →=⎝ ⎛⎭⎪⎫12,12,0. 所以A 1B →·C 1M →=-12+12+0=0, 所以A 1B →⊥C 1M →.所以A 1B ⊥C 1M .B 组 高考题型专练1.(2014·高考广东卷)已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( )A .(-1,1,0)B .(1,-1,0)C .(0,-1,1)D .(-1,0,1)解析:经检验,选项B 中向量(1,-1,0)与向量a =(1,0,-1)的夹角的余弦值为12,即它们的夹角为60°,故选B.答案:B2.(2014·高考江西卷)如图,在长方体ABCD ­A 1B 1C 1D 1中,AB =11,AD =7,AA 1=12.一质点从顶点A 射向点E (4,3,12),遇长方体的面反射(反射服从光的反射原理),将第i -1次到第i 次反射点之间的线段记为L i (i =2,3,4),L 1=AE ,将线段L 1,L 2,L 3,L 4竖直放置在同一水平线上,则大致的图形是( )解析:由对称性知质点经点E 反射到平面ABCD 的点E 1(8,6,0)处.在坐标平面xAy 中,直线AE 1的方程为y =34x ,与直线DC 的方程y =7联立得F ⎝ ⎛⎭⎪⎫283,7,0.由两点间的距离公式得E 1F =53,∵tan ∠E 2E 1F =tan ∠EAE 1=125,∴E 2F =E 1F ·tan∠E 2E 1F =4.∴E 2F 1=12-4=8.∴L 3L 4=E 1E 2E 2E 3=E 2F E 2F 1=48=12.故选C.答案:C3.(2015·高考浙江卷)已知e 1,e 2是空间单位向量,e 1·e 2=12.若空间向量b 满足b ·e 1=2,b ·e 2=52,且对于任意x ,y ∈R ,|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),则x 0=________,y 0=________,|b |=________.解析:∵e 1,e 2是单位向量,e 1·e 2=12,∴cos 〈e 1,e 2〉=12,又∵0°≤〈e 1,e 2〉≤180°,∴〈e 1,e 2〉=60°.不妨把e 1,e 2放到空间直角坐标系O ­xyz 的平面xOy 中,设e 1=(1,0,0),则e 2=⎝ ⎛⎭⎪⎪⎫12,32,0,再设OB →=b =(m ,n ,r ),由b ·e 1=2,b ·e 2=52,得m=2,n =3,则b =(2,3,r ).而x e 1+y e 2是平面xOy 上任一向量,由|b -(x e 1+y e 2)|≥1知点B (2,3,r )到平面xOy 的距离为1,故可得r =1.则b =(2,3,1),∴|b |=2 2.又由|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1知x 0e 1+y 0e 2=(2,3,0),解得x 0=1,y 0=2.答案:1,2,2 2。

灌南高级中学高三数学复习导学案:空间向量及其运算

灌南高级中学高三数学复习导学案:空间向量及其运算

一:教学目的:1.理解空间向量的概念,掌握空间向量的加法、减法和数乘运算2.用空间向量的运算意义、运算律以及共线、共面向量定理解决立几问题二:自主导学问题1:空间向量的相关概念有哪些?(1)向量的基本要素:(2)向量的表示:(3)向量的长度:(4)特殊的向量:(5)相等的向量:(6)平行向量(共线向量):问题2平面向量的加减法,数与向量的乘积及其各运算的坐标表示和性质如下表,其适用问题3:共线向量共面向量注:“空间任意两个向量都是共面向量,所以它们可用同一平面内的两条有向线段表示。

因此凡是只涉及空间任意两个向量的问题,平面向量中有关结论仍适用于它们”这句话正确吗?为什么?问题4:平面共线向量定理?空间共线向量定理空间共面向量定理三:典例分析:CD题型一 空间向量的线性运算例2 已知空间四边形A B C D ,连结,A C B D ,设,M G 分别是,B C C D的中点,化简下列各表达式,并标出化简结果向量:(1)AB BC CD ++;(2)1()2AB BD BC ++ ;(3)1()2AG AB AC -+ .题型二 共线、共面向量定理的应用例3已知E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA 的中点, (1)求证:E 、F 、G 、H 四点共面; (2)求证:BD ∥平面EFGH ;四:当堂达标如图,在空间四边形ABCD 中,,E F 分别是AD 与BC 的中点,求证:1()2EF AB DC =+ .五:拓展延伸:如图设A 是△BCD 所在平面外的一点,G 是△BCD 的重心求证:1()3AG AB AC AD =++BC DMGA BCDEFA。

高考一轮复习 空间向量运算 知识点+例题+练习

高考一轮复习 空间向量运算 知识点+例题+练习

1.空间向量的有关概念及定理(1)空间向量:在空间中,具有________和________的量叫做空间向量.(2)相等向量:方向________且模________的向量.(3)共线向量定理对空间任意两个向量a ,b (a ≠0),b 与a 共线的充要条件是________________________.(4)共面向量定理如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在有序实数对(x ,y ),使得p =x a +y b ,推论的表达式为MP →=xMA →+yMB →或对空间任意一点O 有,OP →=________________或OP →=xOA →+yOB →+zOM →,其中x +y +z =____.(5)空间向量基本定理如果三个向量e 1,e 2,e 3不共面,那么对空间任一向量p ,存在惟一的有序实数组(x ,y ,z ),使得p =________________________,把{e 1,e 2,e 3}叫做空间的一个基底.2.空间向量的坐标表示及应用(1)数量积的坐标运算若a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a·b =__________________________________________________________________.(2)共线与垂直的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),若b ≠0,则a ∥b ⇔________⇔__________,________,______________,a ⊥b ⇔__________⇔________________________(a ,b 均为非零向量).(3)模、夹角和距离公式设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则|a |=a·a =________________________________,cos 〈a ,b 〉=a·b |a||b|=______________________________________________________. 若A (a 1,b 1,c 1),B (a 2,b 2,c 2),则|AB →|=______________________________.3.利用空间向量证明空间中的位置关系若直线l ,l 1,l 2的方向向量分别为v ,v 1,v 2,平面α,β的法向量分别为n 1,n 2,利用向量证明空间中平行关系与垂直关系的基本方法列表如下: 平行 垂直直线 与直线 l 1∥l 2⇔v 1∥v 2⇔v 1=λv 2(λ为非零实数)l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0 直线 与平面 ①l ∥α⇔v ⊥n 1⇔v ·n 1=0②l ∥α⇔v =x v 1+y v 2其中v 1,v 2为平面α内不共线向量,x , y 均为实数l ⊥α⇔v ∥n 1⇔v =λn 1(λ为非零实数)平面 与平面 α∥β⇔n 1∥n 2⇔n 1=λn 2(λ为非零实数)α⊥β⇔n 1⊥n 2⇔n 1·n 2=0自我检测1.若a =(2x,1,3),b =(1,-2y,9),且a ∥b ,则x =______________________,y =________.2.如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则B 1M →用a ,b ,c 表示为________.3.在平行六面体ABCD —A ′B ′C ′D ′中,已知∠BAD =∠A ′AB =∠A ′AD =60°,AB =3,AD =4,AA ′=5,则|AC ′→|=________.4.下列4个命题:①若p =x a +y b ,则p 与a 、b 共面;②若p 与a 、b 共面,则p =x a +y b ;③若MP →=xMA →+yMB →,则P 、M 、A 、B 共面;④若P 、M 、A 、B 共面,则MP →=xMA →+yMB →.其中真命题是________(填序号).5.A (1,0,1),B (4,4,6),C (2,2,3),D (10,14,17)这四个点________(填共面或不共面).探究点一 空间基向量的应用例1 已知空间四边形OABC 中,M 为BC 的中点,N 为AC 的中点,P 为OA 的中点,Q 为OB 的中点,若AB =OC ,求证:PM ⊥QN .变式迁移1如图,在正四面体ABCD中,E、F分别为棱AD、BC的中点,则异面直线AF和CE所成角的余弦值为________.探究点二利用向量法判断平行或垂直例2两个边长为1的正方形ABCD与正方形ABEF相交于AB,∠EBC=90°,点M、N分别在BD、AE上,且AN=DM.(1)求证:MN∥平面EBC;(2)求MN长度的最小值.变式迁移2如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1,M是线段EF的中点.求证:(1)AM∥平面BDE;(2)AM⊥面BDF.探究点三利用向量法解探索性问题例3如图,平面P AC⊥平面ABC,△ABC是以AC为斜边的等腰直角三角形,E,F,O分别为P A,PB,AC的中点,AC=16,P A=PC=10.(1)设G是OC的中点,证明FG∥平面BOE;(2)在△AOB内是否存在一点M,使FM⊥平面BOE?若存在,求出点M到OA,OB的距离;若不存在,说明理由.变式迁移3已知在直三棱柱ABC—A1B1C1中,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D为A1C1的中点,E为B1C的中点.(1)求直线BE与A1C所成的角的余弦值;(2)在线段AA1上是否存在点F,使CF⊥平面B1DF?若存在,求出AF;若不存在,请说明理由.探究点三 利用向量法求二面角例3 如图,ABCD 是直角梯形,∠BAD =90°,SA ⊥平面ABCD ,SA =BC =BA =1,AD =12,求面SCD 与面SBA 所成角的余弦值大小.变式迁移3 如图,在三棱锥S —ABC 中,侧面SAB 与侧面SAC 均为等边三角形,∠BAC =90°,O 为BC 中点.(1)证明:SO ⊥平面ABC ;(2)求二面角A —SC —B 的余弦值.探究点四综合应用例4如图所示,在三棱锥A—BCD中,侧面ABD、ACD是全等的直角三角形,AD 是公共的斜边,且AD=3,BD=CD=1,另一个侧面ABC是正三角形.(1)求证:AD⊥BC;(2)求二面角B-AC-D的余弦值;(3)在线段AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定点E的位置;若不存在,说明理由.变式迁移4 (2011·山东,19)在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC,AB=2EF.(1)若M是线段AD的中点,求证:GM∥平面ABFE;(2)若AC=BC=2AE,求二面角A-BF-C的大小.1、如图所示,已知ABCD —A 1B 1C 1D 1是棱长为3的正方体,点E 在AA 1上,点F 在CC 1上,且AE =FC 1=1.(1)求证:E 、B 、F 、D 1四点共面;(2)若点G 在BC 上,BG =23,点M 在BB 1上,GM ⊥BF ,垂足为H ,求证:EM ⊥平面BCC 1B 1.2、如图,四边形ABCD 是边长为1的正方形,MD ⊥平面ABCD ,NB ⊥平面ABCD ,且MD =NB =1,E 为BC 的中点.(1)求异面直线NE 与AM 所成角的余弦值;(2)在线段AN 上是否存在点S ,使得ES ⊥平面AMN ?若存在,求线段AS 的长;若不存在,请说明理由.3、如图所示,已知空间四边形ABCD的各边和对角线的长都等于a,点M、N分别是AB、CD的中点.(1)求证:MN⊥AB,MN⊥CD;(2)求MN的长;(3)求异面直线AN与CM所成角的余弦值.4、如图所示,AF、DE分别是⊙O、⊙O1的直径,AD与两圆所在的平面均垂直,AD =8.BC是⊙O的直径,AB=AC=6,OE∥AD.(1)求二面角B-AD-F的大小;(2)求直线BD与EF所成的角的余弦值.。

高考数学一轮复习 第8章 立体几何 6 第6讲 空间向量及其运算教案 理-高三全册数学教案

高考数学一轮复习 第8章 立体几何 6 第6讲 空间向量及其运算教案 理-高三全册数学教案

第6讲 空间向量及其运算1.空间向量的有关定理(1)共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在唯一的实数λ,使得a =λb .(2)共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a+y b .(3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c .其中{a ,b ,c }叫做空间的一个基底.2.两个向量的数量积(与平面向量基本相同)(1)两向量的夹角:已知两个非零向量a ,b ,在空间中任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉.通常规定0≤〈a ,b 〉≤π.若〈a ,b 〉=π2,则称向量a ,b 互相垂直,记作a ⊥b .(2)两向量的数量积两个非零向量a ,b 的数量积a ·b =|a ||b |cos 〈a ,b 〉. (3)向量的数量积的性质①a ·e =|a |cos 〈a ,e 〉(其中e 为单位向量); ②a ⊥b ⇔a ·b =0; ③|a |2=a ·a =a 2;④|a ·b |≤|a ||b |.(4)向量的数量积满足如下运算律 ①(λa )·b =λ(a ·b ); ②a ·b =b ·a (交换律);③a ·(b +c )=a ·b +a ·c (分配律). 3.空间向量的坐标运算(1)设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).a +b =(a 1+b 1,a 2+b 2,a 3+b 3), a -b =(a 1-b 1,a 2-b 2,a 3-b 3),λa =(λa 1,λa 2,λa 3),a ·b =a 1b 1+a 2b 2+a 3b 3, a ⊥b ⇔a 1b 1+a 2b 2+a 3b 3=0,a ∥b ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R ),cos 〈a ,b 〉=a ·b |a |·|b |=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23. (2)设A (x 1,y 1,z 1),B (x 2,y 2,z 2), 则AB →=OB →-OA →=(x 2-x 1,y 2-y 1,z 2-z 1). 4.直线的方向向量与平面的法向量的确定(1)直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB →为直线l 的方向向量,与AB →平行的任意非零向量也是直线l 的方向向量,显然一条直线的方向向量可以有无数个. (2)平面的法向量①定义:与平面垂直的向量,称做平面的法向量.一个平面的法向量有无数多个,任意两个都是共线向量.②确定:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n·a =0,n·b =0.5.空间位置关系的向量表示位置关系向量表示直线l 1,l 2的方向向量分别为n 1,n 2l 1∥l 2 n 1∥n 2⇔n 1=λn 2 l 1⊥l 2 n 1⊥n 2⇔n 1·n 2=0 直线l 的方向向量为n ,平面α的法向量为m l ∥α n ⊥m ⇔n ·m =0 l ⊥α n ∥m ⇔n =λm 平面α,β的法向量分别为n ,mα∥β n ∥m ⇔n =λm α⊥βn ⊥m ⇔n ·m =0判断正误(正确的打“√”,错误的打“×”) (1)空间中任意两非零向量a ,b 共面.( )(2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).( ) (3)对于非零向量b ,由a ·b =b ·c ,则a =c .( )(4)若{a ,b ,c }是空间的一个基底,则a ,b ,c 中至多有一个零向量.( )(5)两向量夹角的范围与两异面直线所成角的范围相同.( ) (6)若A 、B 、C 、D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.( )答案:(1)√ (2)× (3)× (4)× (5)× (6)√在空间直角坐标系中,已知A(1,-2,1),B(2,2,2),点P 在z 轴上,且满足|PA|=|PB|,则P 点坐标为( )A .(3,0,0)B .(0,3,0)C .(0,0,3)D .(0,0,-3)解析:选C .设P(0,0,z),则有 (1-0)2+(-2-0)2+(1-z )2=(2-0)2+(2-0)2+(2-z )2,解得z =3. (教材习题改编)在平行六面体ABCD­A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是( ) A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c 解析:选A.由题意,根据向量运算的几何运算法则,BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .(教材习题改编)已知a =(2,4,x ),b =(2,y ,2),若|a |=6,且a ⊥b ,则x +y 的值为________.解析:因为a =(2,4,x ),|a |=6,则x =±4, 又b =(2,y ,2),a ⊥b , 当x =4时,y =-3,x +y =1. 当x =-4时,y =1,x +y =-3.答案:1或-3若平面α的一个法向量为u 1=(-3,y ,2),平面β的一个法向量为u 2=(6,-2,z ),且α∥β,则y +z =________. 解析:因为α∥β,所以u 1∥u 2,所以-36=y -2=2z ,所以y =1,z =-4,所以y +z =-3. 答案:-3空间向量的线性运算[典例引领]如图,在长方体ABCD ­A 1B 1C 1D 1中,O 为AC 的中点.(1)化简A 1O →-12AB →-12AD →=________.(2)用AB →,AD →,AA1→表示OC 1→,则OC 1→=________.【解析】 (1)A 1O →-12AB →-12AD →=A 1O →-12(AB →+AD →)=A 1O →-AO →=A 1O →+OA →=A 1A →.(2)因为OC →=12AC →=12(AB →+AD →).所以OC 1→=OC →+CC 1→=12(AB →+AD →)+AA1→=12AB →+12AD →+AA 1→.【答案】 (1)A 1A → (2)12AB →+12AD →+AA 1→ 若本例条件不变,结论改为:设E 是棱DD 1上的点,且DE →=23DD 1→,若EO →=xAB →+yAD →+zAA 1→,试求x ,y ,z 的值.解:EO →=ED →+DO → =-23DD 1→+12(DA →+DC →)=12AB →-12AD →-23AA 1→, 由条件知,x =12,y =-12,z =-23.用已知向量表示某一向量的方法[通关练习]1.在空间四边形ABCD 中,若AB →=(-3,5,2),CD →=(-7,-1,-4),点E ,F 分别为线段BC ,AD 的中点,则EF →的坐标为( )A .(2,3,3)B .(-2,-3,-3)C .(5,-2,1)D .(-5,2,-1)解析:选B.因为点E ,F 分别为线段BC ,AD 的中点,O 为坐标原点,所以EF →=OF →-OE →,OF →=12(OA →+OD →),OE →=12(OB →+OC →).所以EF →=12(OA →+OD →)-12(OB →+OC →)=12(BA →+CD →) =12[(3,-5,-2)+(-7,-1,-4)] =12(-4,-6,-6)=(-2,-3,-3). 2.在三棱锥O ­ABC 中,M ,N 分别是OA ,BC 的中点,G 是△ABC 的重心,用基向量OA →,OB →,OC →表示(1)MG →;(2)OG →. 解:(1)MG →=MA →+AG → =12OA →+23AN → =12OA →+23(ON →-OA →) =12OA →+23[12(OB →+OC →)-OA →] =-16OA →+13OB →+13OC →.(2)OG →=OM →+MG → =12OA →-16OA →+13OB →+13OC → =13OA →+13OB →+13OC →. 共线、共面向量定理的应用[典例引领]已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,求证: (1)E ,F ,G ,H 四点共面; (2)BD ∥平面EFGH .【证明】 (1)连接BG (图略), 则EG →=EB →+BG →=EB →+12(BC →+BD →) =EB →+BF →+EH →=EF →+EH→,由共面向量定理的推论知,E ,F ,G ,H 四点共面. (2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →,所以EH ∥BD . 又EH ⊂平面EFGH ,BD ⊄平面EFGH , 所以BD ∥平面EFGH .(1)证明空间三点P 、A 、B 共线的方法 ①PA →=λPB →(λ∈R );②对空间任一点O ,OP →=OA →+tAB →(t ∈R ); ③对空间任一点O ,OP →=xOA →+yOB →(x +y =1). (2)证明空间四点P 、M 、A 、B 共面的方法 ①MP →=xMA→+yMB →;②对空间任一点O ,OP →=OM →+xMA→+yMB →;③对空间任一点O ,OP →=xOM →+yOA →+zOB →(x +y +z =1); ④PM →∥AB →(或PA →∥MB →或PB →∥AM→). [通关练习]1.已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则λ与μ的值可以是( )A .2,12B .-13,12C .-3,2D .2,2解析:选A.因为a ∥b ,所以b =k a ,即(6,2μ-1,2λ)=k (λ+1,0,2),所以⎩⎪⎨⎪⎧6=k (λ+1),2μ-1=0,2λ=2k ,解得⎩⎪⎨⎪⎧λ=2,μ=12或⎩⎪⎨⎪⎧λ=-3,μ=12. 2.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB →+OC →).(1)判断MA →,MB →,MC →三个向量是否共面; (2)判断点M 是否在平面ABC 内. 解:(1)由题知OA →+OB →+OC →=3OM →, 所以OA →-OM →=(OM →-OB →)+(OM →-OC →), 即MA →=BM →+CM →=-MB →-MC →, 所以MA →,MB →,MC →共面.(2)由(1)知,MA →,MB →,MC →共面且基线过同一点M , 所以M ,A ,B ,C 四点共面,从而点M 在平面ABC 内. 空间向量的数量积[典例引领]如图,在平行六面体ABCD ­A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°.(1)求AC1→的长; (2)求BD 1→与AC →夹角的余弦值.【解】 (1)记AB →=a ,AD →=b ,AA1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, 所以a ·b =b ·c =c ·a =12.|AC1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×⎝ ⎛⎭⎪⎫12+12+12=6,所以|AC1→|=6,即AC 1的长为 6.(2)BD 1→=b +c -a ,AC →=a +b , 所以|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1,所以cos 〈BD 1→,AC →〉=BD 1→·AC→|BD 1→||AC →|=66.即BD 1→与AC →夹角的余弦值为66.(1)空间向量数量积计算的两种方法①基向量法:a ·b =|a ||b |cos 〈a ,b 〉.②坐标法:设a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),则a ·b =x 1x 2+y 1y 2+z 1z 2.(2)利用数量积解决有关垂直、夹角、长度问题 ①a ≠0,b ≠0,a ⊥b ⇔a ·b =0. ②|a |=a 2.③cos 〈a ,b 〉=a ·b|a ||b |.[通关练习]1.已知a =(-2,1,3),b =(-1,2,1),若a ⊥(a -λb ),则实数λ的值为( ) A .-2 B .-143C.145D .2解析:选D.由题意知a ·(a -λb )=0,即a 2-λa ·b =0, 所以14-7λ=0,解得λ=2.2.已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4).设a =AB →,b =AC →. (1)求a 和b 夹角的余弦值;(2)设|c |=3,c ∥BC→,求c 的坐标. 解:(1)因为AB →=(1,1,0),AC →=(-1,0,2), 所以a ·b =-1+0+0=-1,|a |=2,|b |=5,所以cos 〈a ,b 〉=a ·b |a ||b |=-12×5=-1010.(2)BC →=(-2,-1,2).设c =(x ,y ,z ), 因为|c |=3,c ∥BC →,所以x 2+y 2+z 2=3,存在实数λ使得c =λBC→,即⎩⎪⎨⎪⎧x =-2λ,y =-λ,z =2λ,联立解得⎩⎪⎨⎪⎧x =-2,y =-1,z =2,λ=1,或⎩⎪⎨⎪⎧x =2,y =1,z =-2,λ=-1,所以c =(-2,-1,2)或c =(2,1,-2).利用空间向量证明平行和垂直(高频考点)空间几何中的平行与垂直问题是高考试题中的热点问题.考查形式灵活多样,可以是小题,也可以是解答题的一部分,或解答题的某个环节,是高考中的重要得分点.高考对空间向量解决此类问题常有以下两个命题角度: (1)证明平行问题; (2)证明垂直问题.[典例引领]角度一 证明平行问题如图所示,平面PAD ⊥平面ABCD ,ABCD 为正方形,△PAD 是直角三角形,且PA =AD =2,E ,F ,G 分别是线段PA ,PD ,CD 的中点.求证: (1)PB ∥平面EFG . (2)平面EFG ∥平面PBC .【证明】 (1)因为平面PAD ⊥平面ABCD ,且ABCD 为正方形, 所以AB ,AP ,AD 两两垂直.以A 为坐标原点,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).法一:EF →=(0,1,0),EG →=(1,2,-1),设平面EFG 的法向量为n =(x ,y ,z ), 则⎩⎨⎧n ·EF →=0,n ·EG →=0,即⎩⎪⎨⎪⎧y =0,x +2y -z =0,令z =1,则n =(1,0,1)为平面EFG 的一个法向量, 因为PB →=(2,0,-2), 所以PB →·n =0,所以n ⊥PB →,因为PB ⊄平面EFG ,所以PB ∥平面EFG .法二:PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1). 设PB →=sFE→+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),所以⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2.所以PB →=2FE →+2FG →,又因为FE →与FG →不共线,所以PB →,FE →与FG →共面. 因为PB ⊄平面EFG ,所以PB ∥平面EFG . (2)因为EF →=(0,1,0),BC →=(0,2,0), 所以BC →=2EF →, 所以BC ∥EF .又因为EF ⊄平面PBC ,BC ⊂平面PBC , 所以EF ∥平面PBC ,同理可证GF ∥PC ,从而得出GF ∥平面PBC . 又EF ∩GF =F ,EF ⊂平面EFG ,GF ⊂平面EFG , 所以平面EFG ∥平面PBC . 角度二 证明垂直问题如图,在三棱锥P ­ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3.试证明平面AMC ⊥平面BMC .【证明】 (1)如图所示,以O 为坐标原点,以射线OD 为y 轴正半轴,射线OP 为z 轴的正半轴建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4).于是AP →=(0,3,4),BC →=(-8,0,0), 所以AP →·BC →=(0,3,4)·(-8,0,0)=0, 所以AP →⊥BC →,即AP ⊥BC .(2)由(1)知AP =5,又AM =3,且点M 在线段AP 上, 所以AM →=35AP →=⎝ ⎛⎭⎪⎫0,95,125,又BA →=(-4,-5,0),所以BM →=BA →+AM →=⎝⎛⎭⎪⎫-4,-165,125,则AP →·BM →=(0,3,4)·⎝⎛⎭⎪⎫-4,-165,125=0,所以AP →⊥BM →,即AP ⊥BM , 又根据(1)的结论知AP ⊥BC ,所以AP ⊥平面BMC ,于是AM ⊥平面BMC . 又AM ⊂平面AMC ,故平面AMC ⊥平面BMC .(1)利用空间向量解决平行、垂直问题的一般步骤①建立空间直角坐标系,建系时,要尽可能地利用已知图形中的垂直关系;②建立空间图形与空间向量之间的关系,用空间向量表示出问题中所涉及的点、直线、平面的要素;③通过空间向量的坐标运算研究平行、垂直关系;④根据运算结果解释相关问题.(2)空间线面位置关系的坐标表示设直线l,m的方向向量分别为a=(a1,b1,c1),b=(a2,b2,c2),平面α,β的法向量分别为u=(a3,b3,c3),v=(a4,b4,c4).①线线平行l∥m⇔a∥b⇔a=k b⇔a1=ka2,b1=kb2,c1=kc2.②线线垂直l⊥m⇔a⊥b⇔a·b=0⇔a1a2+b1b2+c1c2=0.③线面平行(l⊄α)l∥α⇔a⊥u⇔a·u=0⇔a1a3+b1b3+c1c3=0.④线面垂直l⊥α⇔a∥u⇔a=k u⇔a1=ka3,b1=kb3,c1=kc3.⑤面面平行α∥β⇔u∥v⇔u=k v⇔a3=ka4,b3=kb4,c3=kc4.⑥面面垂直α⊥β⇔u⊥v⇔u·v=0⇔a3a4+b3b4+c3c4=0.[通关练习]1.如图,正方体ABCD­A1B1C1D1的棱长为a,M,N分别为A 1B 和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是( ) A .相交 B .平行 C .垂直 D .不能确定解析:选B.因为正方体棱长为a ,A 1M =AN =2a3,所以MB →=23A 1B →,CN →=23CA →, 所以MN →=MB →+BC →+CN →=23A 1B →+BC →+23CA →=23(A 1B 1→+B 1B →)+BC →+23(CD →+DA →)=23B 1B →+13B 1C 1→. 又因为CD 是平面B 1BCC 1的法向量,且MN →·CD →=⎝ ⎛⎭⎪⎫23B 1B →+13B 1C 1→·CD →=0,所以MN →⊥CD →,又MN ⊄平面B 1BCC 1, 所以MN ∥平面B 1BCC 1.2.在正三棱柱ABC ­A 1B 1C 1中,侧棱长为2,底面边长为1,M 为BC 的中点,C 1N →=λNC →,且AB 1⊥MN ,则λ的值为________.解析:如图所示,取B 1C 1的中点P ,连接MP ,以MC →,MA →,MP →的方向为x ,y ,z 轴正方向建立空间直角坐标系,因为底面边长为1,侧棱长为2,则A ⎝⎛⎭⎪⎪⎫0,32,0,B 1(-12,0,2),C ⎝ ⎛⎭⎪⎫12,0,0,C 1⎝ ⎛⎭⎪⎫12,0,2,M (0,0,0),设N ⎝ ⎛⎭⎪⎫12,0,t , 因为C 1N →=λNC →,所以N ⎝ ⎛⎭⎪⎫12,0,21+λ, 所以AB 1→=⎝ ⎛⎭⎪⎪⎫-12,-32,2,MN →=⎝ ⎛⎭⎪⎫12,0,21+λ. 又因为AB 1⊥MN ,所以AB 1→·MN →=0. 所以-14+41+λ=0,所以λ=15.答案:153.在四棱锥P ­ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E ,F 分别是AB ,PB 的中点. (1)求证:EF ⊥CD ;(2)在平面PAD 内是否存在一点G ,使GF ⊥平面PCB ?若存在,求出点G 坐标;若不存在,试说 明理由.解:(1)证明:由题意知,DA ,DC ,DP 两两垂直.如图,以DA ,DC ,DP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,设AD =a ,则D (0,0,0),A (a ,0,0),B (a ,a ,0),C (0,a ,0),E ⎝ ⎛⎭⎪⎫a ,a 2,0,P (0,0,a ),F ⎝ ⎛⎭⎪⎫a 2,a 2,a 2.EF →=⎝ ⎛⎭⎪⎫-a 2,0,a 2,DC →=(0,a ,0).因为EF →·DC →=0,所以EF →⊥DC →,从而得EF ⊥CD . (2)假设存在满足条件的点G ,设G (x ,0,z ),则FG →=⎝⎛⎭⎪⎫x -a 2,-a 2,z -a 2,若使GF ⊥平面PCB ,则由FG →·CB →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2·(a ,0,0)=a ⎝⎛⎭⎪⎫x -a 2=0,得x =a2;由FG →·CP →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2·(0,-a ,a )=a 22+a ⎝⎛⎭⎪⎫z -a 2=0,得z =0. 所以G点坐标为⎝ ⎛⎭⎪⎫a 2,0,0,故存在满足条件的点G ,且点G 为AD 的中点.建立空间直角坐标系的原则(1)合理利用几何体中的垂直关系,特别是面面垂直. (2)尽可能地让相关点落在坐标轴或坐标平面上. 利用空间向量坐标运算求解问题的方法用空间向量解决立体几何中的平行或共线问题一般用向量共线定理;求两点间距离或某一线段的长度,一般用向量的模来解决;解决垂直问题一般可转化为向量的数量积为零;求异面直线所成的角,一般可转化为两向量的夹角,但要注意两种角的范围不同,最后应进行转化. 易错防范(1)注意向量夹角与两直线夹角的区别.(2)共线向量定理中a ∥b ⇔存在唯一的实数λ∈R ,使a =λb 易忽视b ≠0.(3)在利用MN →=xAB →+yAC →①证明MN∥平面ABC 时,必须说明M 点或N 点不在面ABC 内(因为①式只表示MN →与AB →,AC →共面).(4)找两个向量的夹角,应使两个向量具有同一起点,不要误找成它的补角.(5)a ·b <0不等价为〈a ,b 〉为钝角,因为〈a ,b 〉可能为180°;a ·b >0不等价为〈a ,b 〉为锐角,因为〈a ,b 〉可能为0°.1.已知三棱锥O ­ABC ,点M ,N 分别为AB ,OC 的中点,且OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示MN →,则MN →等于( ) A.12(b +c -a ) B.12(a +b +c ) C.12(a -b +c ) D.12(c -a -b ) 解析:选D.MN →=MA →+AO →+ON →=12(c -a -b ). 2.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于( ) A.627 B .9 C.647D.657解析:选D.由题意知存在实数x ,y 使得c =x a +y b , 即(7,5,λ)=x (2,-1,3)+y (-1,4,-2), 由此得方程组⎩⎪⎨⎪⎧7=2x -y ,5=-x +4y ,λ=3x -2y .解得x =337,y =177,所以λ=997-347=657.3.已知A (1,0,0),B (0,-1,1),O 为坐标原点,OA →+λOB →与OB →的夹角为120°,则λ的值为( ) A .±66B.66C .-66D .±6解析:选 C.OA →+λOB →=(1,-λ,λ),cos 120°=λ+λ1+2λ2·2=-12,得λ=±66.经检验λ=66不合题意,舍去,所以λ=-66.4.已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB →>0,则该四边形为( ) A .平行四边形 B .梯形C .长方形D .空间四边形解析:选D.由AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB →>0,知该四边形一定不是平面图形.5.(2018·唐山统考)已知正方体ABCD ­A 1B 1C 1D 1的棱长为a ,点M 在AC 1上且AM →=12MC →1,N 为B 1B 的中点,则|MN →|为( )A.216aB.66aC.156aD.153a解析:选A.以D 为原点建立如图所示的空间直角坐标系Dxyz , 则A (a ,0,0),C 1(0,a ,a ),N ⎝⎛⎭⎪⎫a ,a ,a 2.设M (x ,y ,z ),因为点M 在AC 1上且AM →=12MC 1→,所以(x -a ,y ,z )=12(-x ,a -y ,a -z ),所以x =23a ,y =a 3,z =a3.所以M ⎝ ⎛⎭⎪⎫2a 3,a 3,a 3,所以|MN →|=⎝ ⎛⎭⎪⎫a -23a 2+⎝ ⎛⎭⎪⎫a -a 32+⎝ ⎛⎭⎪⎫a 2-a 32=216a . 6.已知空间四边形OABC ,点M 、N 分别是OA 、BC 的中点,且OA →=a ,OB →=b ,OC →=c ,用a 、b 、c 表示向量MN →=________. 解析:如图所示,MN →=12(MB →+MC →)=12[(OB →-OM →)+(OC →-OM →)]=12(OB →+OC →-2OM →)=12(OB →+OC →-OA →)=12(b +c -a ).答案:12(b +c -a )7.如图所示,已知空间四边形OABC ,OB =OC ,且∠AOB =∠AOC =π3,则cos 〈OA →,BC →〉的值为________. 解析:设OA →=a ,OB →=b ,OC →=c ,由已知条件〈a ,b 〉=〈a ,c 〉=π3,且|b |=|c |,OA →·BC →=a ·(c -b )=a ·c -a ·b =12|a ||c |-12|a ||b |=0, 所以OA →⊥BC →,所以cos 〈OA →,BC →〉=0. 答案:08.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________.解析:因为AB →·AP →=0,AD →·AP →=0, 所以AB ⊥AP ,AD ⊥AP ,则①②正确. 又AB →与AD→不平行, 所以AP →是平面ABCD 的法向量,则③正确.因为BD →=AD →-AB →=(2,3,4),AP →=(-1,2,-1), 所以BD →与AP →不平行,故④错. 答案:①②③9.已知a =(1,-3,2),b =(-2,1,1),点A (-3,-1,4),B (-2,-2,2).(1)求|2a +b |;(2)在直线AB 上,是否存在一点E ,使得OE →⊥b ?(O 为原点) 解:(1)2a +b =(2,-6,4)+(-2,1,1)=(0,-5,5), 故|2a +b |=02+(-5)2+52=5 2. (2)令AE →=tAB →(t ∈R ), 所以OE →=OA →+AE →=OA →+tAB → =(-3,-1,4)+t (1,-1,-2) =(-3+t ,-1-t ,4-2t ), 若OE →⊥b ,则OE →·b =0,所以-2(-3+t )+(-1-t )+(4-2t )=0,解得t =95.所以-3+t =-65,-1-t =-145,4-2t =25,因此存在点E ,使得OE →⊥b ,此时E 点的坐标为(-65,-145,25).10.已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5). (1)求以AB ,AC 为边的平行四边形的面积;(2)若|a |=3,且a 分别与AB →,AC →垂直,求向量a 的坐标.解:(1)由题意可得:AB →=(-2,-1,3),AC →=(1,-3,2),所以cos 〈AB →,AC →〉=AB →·AC→|AB →||AC →|=-2+3+614×14=714=12.所以sin 〈AB →,AC→〉=32,所以以AB ,AC 为边的平行四边形的面积为 S =2×12|AB →|·|AC →|·sin 〈AB →,AC →〉=14×32=7 3.(2)设a =(x ,y ,z ),由题意得⎩⎪⎨⎪⎧x 2+y 2+z 2=3,-2x -y +3z =0,x -3y +2z =0,解得⎩⎪⎨⎪⎧x =1,y =1,z =1或⎩⎪⎨⎪⎧x =-1,y =-1,z =-1,所以向量a 的坐标为(1,1,1)或(-1,-1,-1).1.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为( ) A .(1,1,1)B.⎝ ⎛⎭⎪⎪⎫23,23,1C.⎝ ⎛⎭⎪⎪⎫22,22,1D.⎝⎛⎭⎪⎪⎫24,24,1 解析:选C.设M 点的坐标为(x ,y ,1),因为AC ∩BD =O ,所以O ⎝⎛⎭⎪⎪⎫22,22,0, 又E (0,0,1),A (2,2,0),所以OE →=⎝ ⎛⎭⎪⎪⎫-22,-22,1,AM →=(x -2,y -2,1), 因为AM ∥平面BDE ,所以OE →∥AM →,所以⎩⎪⎨⎪⎧x -2=-22,y -2=-22,⇒⎩⎪⎨⎪⎧x =22,y =22,所以M点的坐标为⎝⎛⎭⎪⎪⎫22,22,1. 2.已知ABCD ­A 1B 1C 1D 1为正方体,给出下列四个命题: ①(A 1A →+A 1D 1→+A 1B 1→)2=3A 1B 1→2; ②A 1C →·(A 1B 1→-A 1A →)=0;③向量AD 1→与向量A 1B →的夹角是60°;④正方体ABCD ­A 1B 1C 1D 1的体积为|AB →·AA 1→·AD →|.其中正确命题的序号是________.解析:①中(A 1A →+A 1D 1→+A 1B 1→)2=A 1A →2+A 1D 1→2+A 1B 1→2=3A 1B 1→2,故①正确;②中A 1B 1→-A 1A →=AB 1→,因为AB 1⊥A 1C ,故②正确;③中A 1B 与AD 1两异面直线所成角为60°,但AD 1→与A 1B →的夹角为120°,故③不正确;④中|AB →·AA 1→·AD →|=0,故④也不正确. 答案:①②3.如图,在多面体ABC ­A 1B 1C 1中,四边形A 1ABB 1是正方形,AB =AC ,BC =2AB ,B 1C 1綊12BC ,二面角A 1­AB ­C是直二面角.求证:(1)A 1B 1⊥平面AA 1C ; (2)AB 1∥平面A 1C 1C .证明:因为二面角A 1­AB ­C 是直二面角, 四边形A 1ABB 1为正方形, 所以AA 1⊥平面BAC .又因为AB =AC ,BC =2AB , 所以∠CAB =90°, 即CA ⊥AB ,所以AB ,AC ,AA 1两两互相垂直. 建立如图所示的空间直角坐标系Axyz ,设AB =2,则A (0,0,0),B 1(0,2,2),A 1(0,0,2),C (2,0,0),C 1(1,1,2).(1)A 1B 1→=(0,2,0),A 1A →=(0,0,-2),AC →=(2,0,0), 设平面AA 1C 的一个法向量n =(x ,y ,z ), 则⎩⎨⎧n ·A 1A →=0,n ·AC →=0,即⎩⎪⎨⎪⎧-2z =0,2x =0,即⎩⎪⎨⎪⎧x =0,z =0,取y =1,则n =(0,1,0).所以A 1B 1→=2n , 即A 1B 1→∥n .所以A 1B 1⊥平面AA 1C .(2)易知AB 1→=(0,2,2),A 1C 1→=(1,1,0),A 1C →=(2,0,-2), 设平面A 1C 1C 的一个法向量m =(x 1,y 1,z 1),则⎩⎨⎧m ·A 1C 1→=0,m ·A 1C →=0,即⎩⎪⎨⎪⎧x 1+y 1=0,2x 1-2z 1=0,令x 1=1,则y 1=-1,z 1=1, 即m =(1,-1,1).所以AB 1→·m =0×1+2×(-1)+2×1=0,所以AB1→⊥m , 又AB 1⊄平面A 1C 1C , 所以AB 1∥平面A 1C 1C .4.如图所示,四棱锥S ­ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点. (1)求证:AC ⊥SD .(2)若SD ⊥平面PAC ,侧棱SC 上是否存在一点E ,使得BE ∥平面PAC ?若存在,求SE ∶EC 的值;若不存在,试说明理由.解:(1)证明:连接BD ,设AC 交BD 于点O ,连接SO ,则AC ⊥BD . 由题意知SO ⊥平面ABCD .以O 为坐标原点,OB →,OC →,OS →分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系,如图. 设底面边长为a ,则高SO =62a ,于是S ⎝ ⎛⎭⎪⎪⎫0,0,62a ,D ⎝⎛⎭⎪⎪⎫-22a ,0,0, B ⎝⎛⎭⎪⎪⎫22a ,0,0,C ⎝⎛⎭⎪⎪⎫0,22a ,0, OC →=⎝ ⎛⎭⎪⎪⎫0,22a ,0,SD →=⎝ ⎛⎭⎪⎪⎫-22a ,0,-62a , 则OC →·SD →=0. 故OC ⊥SD . 从而AC ⊥SD .(2)棱SC 上存在一点E ,使BE ∥平面PAC . 理由如下:由已知条件知DS →是平面PAC 的一个法向量,且DS →=⎝ ⎛⎭⎪⎪⎫22a ,0,62a ,CS →=⎝ ⎛⎭⎪⎪⎫0,-22a ,62a , BC →=⎝ ⎛⎭⎪⎪⎫-22a ,22a ,0. 设CE →=tCS →,则BE →=BC →+CE →=BC →+tCS→ =⎝ ⎛⎭⎪⎪⎫-22a ,22a (1-t ),62at , 而BE →·DS→=0, 解得t =13. 即当SE ∶EC =2∶1时,BE →⊥DS →. 而BE ⊄平面PAC ,故BE ∥平面PAC .。

高三数学高考第一轮复习向量复习教案:空间向量及其运算强化训练

高三数学高考第一轮复习向量复习教案:空间向量及其运算强化训练

第三课时 空间向量及其运算强化训练一、复习目标:1、了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;2、 掌握空间向量的线性运算及其坐标表示;3、 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直;4、通过本课强化训练,使学生进一步熟练理解和掌握上述概念和运算方法,提高学生的灵活和综合运用能力。

二、重难点:空间向量及其运算的综合运用。

三、教学方法:讲练结合,探析归纳。

四、教学过程 (一)、基础自测(分组训练、共同交流) 1.有4个命题:①若p =x a +y b ,则p 与a 、b 共面;②若p 与a 、b 共面,则p =x a +y b ; ③若MP =x MA +y MB ,则P 、M 、A 、B 共面;④若P 、M 、A 、B 共面,则MP =x MA +y MB . 其中真命题的个数是( B )。

A.1 B.2 C.3 D.4 2.下列命题中是真命题的是( D )。

A.分别表示空间向量的有向线段所在的直线是异面直线,则这两个向量不是共面向量B.若|a |=|b |,则a ,b 的长度相等而方向相同或相反C.若向量AB ,CD 满足|AB |>|CD |,且AB 与CD 同向,则AB >CDD.若两个非零向量AB 与CD 满足AB +CD =0,则AB ∥CD 3.若a =(2x,1,3),b =(1,-2y,9),且a ∥b ,则( C )。

A.x=1,y=1B.x=21,y=-21C.x=61,y=-23D.x=-61,y=234.已知A (1,2,3),B (2,1,2),P (1,1,2),点Q 在直线OP 上运动,当QA ·QB 取最小值时,点Q 的坐标是 . 答案 ⎪⎭⎫ ⎝⎛38,34,345.在四面体O-ABC 中,OA =a ,OB =b , OC =c ,D 为BC 的中点,E 为AD 的中点,则OE = (用a ,b ,c 表示).答案 21a +41b +41c(二)、典例探析例1、如图所示,在平行六面体ABCD-A 1B 1C 1D 1中,设1AA =a ,AB =b ,AD =c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量: (1)AP ;(2)N A 1;(3)MP +1NC .解 (1)∵P 是C 1D 1的中点,∴AP =1AA +11D A +P D 1=a +AD +2111C D =a +c +21AB =a +c +21b . (2)∵N 是BC 的中点,∴N A 1=A A 1+AB +BN =-a +b +21BC =-a +b +21AD =-a +b +21c . (3)∵M 是AA 1的中点,∴MP =MA +AP =21A A 1+AP =-21a +(a +c +21b )= 21a +21b +c , 又1NC =NC +1CC =21BC +1AA =21AD +1AA =21c +a ,∴MP +1NC =(21a +21b +c)+(a +21c )=23a +21b +23c . 例2、如图所示,已知空间四边形ABCD 的各边和对角线的长都等于a ,点M 、N分别是AB 、CD 的中点.(1)求证:MN ⊥AB ,MN ⊥CD ;(2)求MN 的长; (3)求异面直线AN 与CM 夹角的余弦值. (1)证明 设AB =p , AC =q ,AD =r .由题意可知:|p |=|q |=|r |=a ,且p 、q 、r 三向量两两夹角均为60°.MN =AN -AM =21(AC +AD )-21AB =21(q +r -p ),∴MN ·AB =21(q +r -p )·p =21(q ·p +r ·p -p 2)=21(a 2·cos60°+a 2·cos60°-a 2)=0. ∴MN ⊥AB,同理可证MN ⊥CD.(2)解 由(1)可知MN =21(q +r -p )∴|MN |2=MN 2=41(q +r -p )2=41[q 2+r 2+p 2+2(q ·r -p ·q -r ·p )]=41[a 2+a 2+a 2+2(22a -22a -22a )] =41×2a 2=22a . ∴|MN |=22a,∴MN 的长为22a. (3)解 设向量AN 与MC 的夹角为θ.∵AN =21(AC +AD )=21(q +r ), MC =AC -AM =q -21p ,∴AN ·MC =21(q +r )·(q -21p )=21(q 2-21q ·p +r ·q -21r ·p )=21(a 2-21a 2·cos60°+a 2·cos60°-21a 2·cos60°)=21(a 2-42a +22a -42a )=22a .又∵|AN |=|MC |=a 23,∴AN ·MC =|AN |·|MC |·cos θ=a 23·a 23·cos θ=22a . ∴cos θ=32, ∴向量AN 与MC 的夹角的余弦值为32,从而异面直线AN 与CM 夹角的余弦值为32.例3、 (1)求与向量a =(2,-1,2)共线且满足方程a ·x =-18的向量x 的坐标;(2)已知A 、B 、C 三点坐标分别为(2,-1,2),(4,5,-1),(-2,2,3),求点P 的坐标使得AP =21(AB -AC ); (3)已知a =(3,5,-4),b =(2,1,8),求:①a ·b ;②a 与b 夹角的余弦值;③确定λ,μ的值使得λa +μb 与z 轴垂直,且(λa +μb )·(a +b )=53.解 (1)∵x 与a 共线,故可设x =k a ,由a ·x =-18得a ·k a =k|a |2=k (414++)2=9k ,∴9k=-18,故k=-2. ∴x =-2a =(-4,2,-4).(2)设P (x ,y ,z ),则AP =(x-2,y+1,z-2), AB =(2,6,-3),AC =(-4,3,1),∵AP =21(AB -AC ). ∴(x-2,y+1,z-2)=21[(2,6,-3)-(-4,3,1)]=21(6,3,-4)=(3,23,-2)∴⎪⎪⎩⎪⎪⎨⎧-=-=+=-2223132z y x ,解得⎪⎪⎩⎪⎪⎨⎧===0215z y x ∴P 点坐标为(5,21,0).(3)①a ·b =(3,5,-4)·(2,1,8)=3×2+5×1-4×8=-21. ②∵|a |=222)4(53-++=52, |b |=222812++=69,∴cos 〈a ,b 〉=b b a a ⋅ =692521⋅-=-2301387.∴a 与b 夹角的余弦值为-2301387.③取z 轴上的单位向量n =(0,0,1),a +b =(5,6,4).依题意()()()⎩⎨⎧=+⋅+=⋅+530b b b a a a a μλμλ 即()()()()⎩⎨⎧=⋅+-++=⋅+-++534,6,584,5,2301,0,084,5,23μλμλμλμλμλμλ 故⎩⎨⎧=+=+-531829084μλμλ 解得⎪⎩⎪⎨⎧==211μλ. (三)、强化训练:如图所示,正四面体V —ABC 的高VD 的中点为O ,VC 的中点为M. (1)求证:AO 、BO 、CO 两两垂直; (2)求〈DM ,AO 〉.(1)证明 设VA =a ,VB =b , VC =c ,正四面体的棱长为1, 则VD =31(a +b +c ),AO =61(b +c -5a ),BO =61(a +c-5b ), CO =61(a +b -5c ) ∴AO ·BO =361(b +c -5a )·(a +c -5b )=361(18a ·b -9|a |2) =361(18×1×1·cos60°-9)=0.∴AO ⊥BO ,∴AO ⊥BO ,同理AO ⊥CO ,BO ⊥CO , ∴AO 、BO 、CO 两两垂直.(2)解 DM =DV +VM =-31(a +b +c )+21c =61(-2a -2b +c ).∴|DM |=()22261⎥⎦⎤⎢⎣⎡+--c b a =21,|AO |=()2561⎥⎦⎤⎢⎣⎡-+a c b =22,DM ·AO =61(-2a -2b +c )·61(b +c -5a )=41,∴cos 〈DM ,AO 〉=222141⋅=22,∵〈DM ,AO 〉∈(0,π),∴〈DM , AO 〉=45°. (四)、小结:本节主要有空间向量的坐标表示,空间向量的坐标运算,平行向量,垂直向量坐标之间的关系以及中点公式,要充分利用空间图形中已有的直线的关系和性质;空间向量的坐标运算同平面向量类似,具有类似的运算法则.一个向量在不同空间的表达方式不一样,实质没有改变.因而运算的方法和运算规律结论没变。

高三数学一轮复习精品教案1:空间向量及其运算(理)教学设计

高三数学一轮复习精品教案1:空间向量及其运算(理)教学设计

第6节空间向量及其运算和空间位置关系1.空间向量及其有关概念 语言描述共线向量 (平行向量) 表示空间向量的有向线段所在的直线互相平行或重合共面向量平行于同一平面的向量共线向量定理 对空间任意两个向量a ,b (b≠0),a ∥b ⇔存在λ∈R ,使a =λb 共面向量定理若两个向量a ,b 不共线,则向量p 与向量a ,b 共面⇔存在唯一的有序实数对(x ,y ),使p =xa +yb空间向量 基本定理定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z }使得p =x a +y b +z c推论:设O 、A 、B 、C 是不共面的四点,则对平面ABC 内任一点P 都存在唯一的三个有序实数x 、y 、z ,使OP =x OA +y OB +z OC 且x +y +z =12.数量积及坐标运算 (1)两个向量的数量积: ①a·b =|a||b|cos 〈a ,b 〉;②a ⊥b ⇔a·b =0(a ,b 为非零向量); ③|a |2=a 2,|a |=x 2+y 2+z 2. (2)向量的坐标运算:a=(a 1,a 2,a 3),b =(b 1,b 2,b 3) 向量和 a +b =(a 1+b 1,a 2+b 2,a 3+b 3) 向量差 a -b =(a 1-b 1,a 2-b 2,a 3-b 3)数量积 a ·b =a 1b 1+a 2b 2+a 3b 3共线 a ∥b ⇒a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R ,b ≠0)垂直 a ⊥b ⇔a 1b 1+a 2b 2+a 3b 3=0 夹角 公式cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23b 21+b 22+b 231.共线向量定理中a ∥b ⇔存在λ∈R ,使a =λb 易忽视b ≠0. 2.共面向量定理中,注意有序实数对(x ,y )是唯一存在的.3.一个平面的法向量有无数个,但要注意它们是共线向量,不要误为是共面向量. 『试一试』1.有以下命题:①如果向量a ,b 与任何向量不能构成空间向量的一个基底,那么a ,b 的关系是不共线;②O ,A ,B ,C 为空间四点,且向量OA ―→,OB ―→,OC ―→不构成空间的一个基底,那么点O ,A ,B ,C 一定共面;③已知向量a ,b ,c 是空间的一个基底,则向量a +b ,a -b ,c 也是空间的一个基底.其中正确的命题是________(写出所有正确命题的序号).『解析』对于①,“如果向量a ,b 与任何向量不能构成空间向量的一个基底,那么a ,b 的关系一定是共线”,所以①错误.②③正确.『答案』②③ 2.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面; ③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p =xa +yb +zc .其中正确命题的个数是________.『解析』a 与b 共线,a ,b 所在直线也可能重合,故①不正确;据空间向量的意义知,a ,b 所在直线异面,则a ,b 必共面,故②错误;三个向量a ,b ,c 中任两个一定共面,但它们却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =xa +yb +zc ,故④不正确.综上可知四个命题中正确的个数为0.『答案』01.直线的方向向量与平面的法向量的确定(1)直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB ―→为直线l 的方向向量,与AB ―→平行的任意非零向量也是直线l 的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n·a =0,n·b =0.2.建立空间直角坐标系的原则:(1)合理利用几何体中的垂直关系,特别是面面垂直; (2)尽可能地让相关点落在坐标轴或坐标平面上.3.利用空间向量坐标运算求解问题的方法:用空间向量解决立体几何中的平行或共线问题一般用向量共线定理;求两点间距离或某一线段的长度,一般用向量的模来解决;解决垂直问题一般可转化为向量的数量积为零;求异面直线所成的角,一般可以转化为两向量的夹角,但要注意两种角的范围不同,最后应进行转化.『练一练』1.已知点A ,B ,C 的坐标分别为(0,1,0),(-1,0,-1),(2,1,1),点P 的坐标是(x,0,y ),若P A ⊥平面ABC ,则点P 的坐标是________.『解析』PA =(-x,1,-y ),AB =(-1,-1,-1),AC =(2,0,1),∵P A ⊥平面ABC , ∴PA ⊥AB ,PA ⊥AC ,即PA ·AB =x +y -1=0,PA ·AC =2x +y =0, ∴x =-1,y =2,故P 点的坐标是(-1,0,2). 『答案』(-1,0,2)2.已知a =(cos θ,1,sin θ),b =(sin θ,1,cos θ),则向量a +b 与a -b 的夹角是________. 『解析』∵(a +b )·(a -b )=a 2-b 2=|a |2-|b |2 =(cos 2θ+1+sin 2θ)-(sin 2θ+1+cos 2θ)=0,∴(a +b )⊥(a -b ),即向量a +b 与a -b 的夹角为90°. 『答案』90°3.如图,在正方体ABCD ­A 1B 1C 1D 1中,M ,N 分别是CD ,CC 1的中点,则异面直线A 1M 与DN 所成角的大小是________.『解析』建立空间直角坐标系如图所示,设正方体的棱长为1,则D (0,0,0),A 1(1,0,1),M ⎝⎛⎭⎫0,12,0,N ⎝⎛⎭⎫0,1,12,则1A M =⎝⎛⎭⎫-1,12,-1,DN =⎝⎛⎭⎫0,1,12,所以cos 〈1A M ,DN 〉=1A M ·DN|1A M |·|DN |=0,所以1A M ⊥DN ,故异面直线A 1M 与DN 所成角的大小为90°.『答案』90°考点一空间向量的线性运算1.在四面体O ­ABC 中,OA =a ,OB =b ,OC =c ,D 为BC 的中点,E 为AD 的中点,则OE =________(用a ,b ,c 表示).『解析』OE =12(OD +OA )=12⎣⎡⎦⎤12OC +OB+OA=12a +14b +14c . 『答案』12a +14b +14c2.如图,在长方体ABCD ­A 1B 1C 1D 1中,O 为AC 的中点. (1)化简1A O -12AB -12AD =________;(2)用AB ,AD ,1AA 表示1OC ,则1OC =________. 『解析』(1) 1A O -12AB -12AD =1A O -12(AB +AD )=1A O -AO =1A O +OA =1A A . (2)OC =12AC =12(AB +AD ),∴1OC =OC +1CC =12(AB +AD )+1AA=12AB +12AD +1AA . 『答案』(1)1A A (2)12AB +12AD +1AA『备课札记』2题中条件不变,结论改为:设E 是棱DD 1上的点,且DE =231DD ,若EO =x AB +y AD +z 1AA .试求x ,y ,z 的值. 『解』EO =ED +DO =-231DD +12(DA +DC )=12AB -12AD -231AA ,由条件知,x =12,y =-12,z =-23.考点二共线、共面向量定理的应用『典例』 已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,用向量方法,求证:(1)E ,F ,G ,H 四点共面; (2)BD ∥平面EFGH . 『证明』 (1)连结BG , 则EG =EB +BG =EB +12(BC +BD )=EB +BF +EH =EF +EH , 由共面向量定理知: E ,F ,G ,H 四点共面. (2)因为EH =AH -AE=12AD -12AB =12(AD -AB )=12BD , 因为E ,H ,B ,D 四点不共线,所以EH ∥BD . 又EH ⊂平面EFGH ,BD ⊄平面EFGH , 所以BD ∥平面EFGH .『备课札记』 『类题通法』1.将四点共面问题,转化为三个向量共面问题,利用共面向量定理来解决. 2.利用向量共线说明两线平行时注意说明四点不共线,否则不一定正确. 『针对训练』已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM =13(OA +OB+OC ).(1)判断MA ,MB ,MC 三个向量是否共面; (2)判断点M 是否在平面ABC 内. 『解』(1)由OA +OB +OC =3OM , ∴OA -OM =(OM -OB )+(OM -OC )即MA =BM +CM =-MB -MC ∴MA ,MB ,MC 共面. (2)由(1)知MA ,MB ,MC 共面,且共过同一点M ,∴四点M ,A ,B ,C 共面.从而点M 在平面ABC 内.考点三利用空间向量证明平行或垂直『典例』 (2014·汕头模拟)如图所示的长方体ABCD ­A 1B 1C 1D 1中,底面ABCD 是边长为2的正方形,O 为AC 与BD 的交点,BB 1=2,M 是线段B 1D 1的中点.(1)求证:BM ∥平面D 1AC ; (2)求证:D 1O ⊥平面AB 1C ;『证明』 (1)建立如图所示的空间直角坐标系,则点O (1,1,0),D 1(0,0,2),∴1OD =(-1,-1,2). 又点B (2,2,0),M (1,1,2), ∴BM =(-1,-1,2),∴1OD =BM .又∵OD 1与BM 不共线, ∴OD 1∥BM .又OD 1⊂平面D 1AC ,BM ⊄平面D 1AC , ∴BM ∥平面D 1AC .(2)连结OB 1,点B 1(2,2,2),A (2,0,0),C (0,2,0),∵1OD ·1OB =(-1,-1,2)·(1,1,2)=0,1OD ·AC =(-1,-1,2)·(-2,2,0)=0,∴1OD ⊥1OB ,1OD ⊥AC ,即OD 1⊥OB 1,OD 1⊥AC , 又OB 1∩AC =O ,∴D 1O ⊥平面AB 1C .『备课札记』 『类题通法』利用直线的方向向量与平面的法向量,可以判定直线与直线、直线与平面、平面与平面的平行和垂直(1)设直线l 1的方向向量v 1=(a 1,b 1,c 1),l 2的方向向量v 2=(a 2,b 2,c 2). 则l 1∥l 2⇔v 1∥v 2⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)(k ∈R).l 1⊥l 2⇔v 1⊥v 2⇔a 1a 2+b 1b 2+c 1c 2=0.(2)设直线l 的方向向量为v =(a 1,b 1,c 1),平面α的法向量为n =(a 2,b 2,c 2),则l ∥α⇔v⊥n ⇔a 1a 2+b 1b 2+c 1c 2=0.l ⊥α⇔v ∥n ⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2).(3)设平面α的法向量n 1=(a 1,b 1,c 1),β的法向量为n 2=(a 2,b 2,c 2),则α∥β⇔n 1∥n 2,α⊥β⇔n 1⊥n 2.『针对训练』已知在正四棱柱ABCD ­A 1B 1C 1D 1中,AB =1,AA 1=2,点E 是CC 1的中点,点F 为BD 1的中点.(1)证明AC 1∥平面BDE ; (2)证明平面BDE ⊥平面AA 1C 1C . 证明:(1)以C 为原点,建立如图所示的空间直角坐标系C ­xyz ,则B (0,1,0),D (1,0,0),D 1(1,0,2),F (12,12,1), C 1(0,0,2),E (0,0,1),A (1,1,0). 则BD =(1,-1,0),DE =(-1,0,1), 设平面EBD 的一个法向量为n =(x ,y,1),由⎩⎨⎧n ·BD =x -y =0,n ·DE =-x +1=0,解得⎩⎪⎨⎪⎧x =1,y =1.故平面EBD 的一个法向量为n =(1,1,1). 又1AC =(-1,-1,2),则1AC ·n =(-1,-1,2)·(1,1,1)=-1-1+2=0,所以1AC ⊥n ,即直线AC 1的方向向量与平面BDE 的一个法向量垂直, 又AC 1不在平面BDE 内,故AC 1∥平面BDE .(2)由(1)知平面BDE 的一个法向量n =(1,1,1),又BD 为平面AA 1C 1C 的一个法向量且BD =(1,-1,0).又BD ·n =(1,-1,0)·(1,1,1)=0,所以BD ⊥n ,即两个平面的法向量互相垂直. 所以平面BDE ⊥平面AA 1C 1C .『课堂练通考点』1.在空间四边形ABCD 中,AB ·CD +AC ·DB +AD ·BC =________. 『解析』如图,令AB =a ,AC =b ,AD =c , 则AB ·CD +AC ·DB +AD ·BC =a ·(c -b )+b ·(a -c )+c ·(b -a ) =a·c -a·b +b·a -b·c +c·b -c·a =0 『答案』02.A ,B ,C ,D 是空间四点,有以下条件:①OD =OA +12OB +13OC ;②OD =12OA+13OB +14OC ;③OD =12OA +13OB +15OC ;④OD =12OA +13OB +16OC .能使A ,B ,C ,D 四点一定共面的条件是________.(填序号)『解析』对于共面四点A ,B ,C ,D ,当能写成OD =x OA +y OB +z OC 时,应有x +y +z =1.经检验只有④满足.『答案』④3.(2014·上饶模拟)正方体ABCD ­A 1B 1C 1D 1的棱长为a ,点M 在AC 1上且AM =121MC ,N 为B 1B 的中点,则|MN |=________.『解析』以D 为原点建立如图所示的空间直角坐标系D -xyz , 则A (a,0,0),C 1(0,a ,a ),N ⎝⎛⎭⎫a ,a ,a2.设M (x ,y ,z ) ∵点M 在AC 1上且AM =121MC ,∴(x -a ,y ,z )=12(-x ,a -y ,a -z )∴x =23a ,y =a 3,z =a3.∴M ⎝⎛⎭⎫2a 3,a 3,a 3, ∴|MN |= ⎝⎛⎭⎫a -23a 2+⎝⎛⎭⎫a -a 32+⎝⎛⎭⎫a 2-a 32 =216a . 『答案』216a 4.在空间四边形ABCD 中,G 为CD 的中点,则AB +12(BD +BC )=________.『解析』依题意有AB +12(BD +BC )=AB +12×2BG =AB +BG =AG .『答案』AG5.如图,在空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,求OA 与BC 所成角的余弦值. 『解』∵BC =AC -AB , ∴OA ·BC =OA ·(AC -AB ) =OA ·AC -OA ·AB=|OA ||AC |cos 〈OA ,AC 〉-|OA ||AB |cos 〈OA ,AB 〉 =8×4×cos 135°-8×6×cos 120°=24-16 2. ∴cos 〈OA ,BC 〉=OA ·BC |OA ||BC |=24-1628×5=3-225.故OA 与BC 夹角的余弦值为3-225,即直线OA 与BC 所成角的余弦值为3-225.。

高三数学高考第一轮复习向量复习教案空间向量的坐标运算

高三数学高考第一轮复习向量复习教案空间向量的坐标运算

空间向量与立体几何第二课时 空间向量的坐标运算一、复习目标:1、理解空间向量坐标的概念;2、掌握空间向量的坐标运算; 3.掌握用直角坐标计算空间向量数量积的公式;掌握空间两点间的距离公式.二、重难点:掌握空间向量的坐标运算;掌握用直角坐标计算空间向量数量积的公式;掌握空间两点间的距离公式. 三:教学方法:探析类比归纳,讲练结合四、教学过程(一)、基础知识过关(学生完成下列填空题)、空间直角坐标系:(1)若空间的一个基底的三个基向量互相垂直,{,,}i j k 表示;({,,}i j k ,以点O 为原点,分别以,,i j k 的方向为正方向建立三条数轴:轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系O xyz -,点O ,,i j k 都叫坐标向量.xOy 平面,yOz ),,(321a a a ),,(321b b b (1) a ±b = 。

(2) λa = .(3) a ·b = .(4) a ∥b ⇔ ;a ⊥b ⇔ .(5)模长公式:若123(,,)a a a a =, 则2||a a a a =⋅=+ 2||||a b a b a b a ⋅⋅==⋅+两点间的距离公式:若111(,,)A x y z ,22(,B x y 2||(AB A B x ==),,(),,,(222111z y x B z y x A ==则= ,= .AB 的中点M 的坐标为 .4、直线的方向向量的定义为 。

如何求直线的方向向量?5、平面的法向量的定义为 。

如何求平面的法向量?(二)典型题型探析题型1:空间向量的坐标例1、(1)已知两个非零向量a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),它们平行的充要条件是( )A. a :|a |=b :|b |B.a 1·b 1=a 2·b 2=a 3·b 3C.a 1b 1+a 2b 2+a 3b 3=0D.存在非零实数k ,使a =k b(2)已知向量a =(2,4,x ),b =(2,y ,2),若|a |=6,a ⊥b ,则x+y 的值是( )A. -3或1B.3或-1C. -3D.1(3)下列各组向量共面的是( )A. a =(1,2,3),b =(3,0,2),c =(4,2,5)B. a =(1,0,0),b =(0,1,0),c =(0,0,1)C. a =(1,1,0),b =(1,0,1),c =(0,1,1)D. a =(1,1,1),b =(1,1,0),c =(1,0,1)解析:(1)D ;点拨:由共线向量定线易知;(2)A 点拨:由题知⎪⎩⎪⎨⎧=++=++024*******x y x ⇒⎩⎨⎧-==3,4y x 或⎩⎨⎧=-=.1,4y x ;(3)A 点拨:由共面向量基本定理可得。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.空间向量的有关概念(1)共线向量定理空间两个向量a 与b (b ≠0)共线的充要条件是存在实数λ,使得a =λb . (2)共面向量定理共面向量定理的向量表达式:p =________,其中x ,y ∈R ,a ,b 为不共线向量. (3)空间向量基本定理如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =________,{a ,b ,c }叫做空间的一个基底. 3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a ,b 的夹角,记作________,其范围是____________,若〈a ,b 〉=π2,则称a 与b ________________,记作a ⊥b . ②两向量的数量积已知空间两个非零向量a ,b ,则________叫做向量a ,b 的数量积,记作________,即a ·b =________.(2)空间向量数量积的运算律 ①结合律:(λa )·b =________; ②交换律:a ·b =________; ③分配律:a ·(b +c )=________. 4.空间向量的坐标表示及其应用 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).1.向量三点共线定理:在平面中A 、B 、C 三点共线的充要条件是:OA →=xOB →+yOC →(其中x +y =1),O 为平面内任意一点.2.向量四点共面定理:在空间中P 、A 、B 、C 四点共面的充要条件是:OP →=xOA →+yOB →+zOC →(其中x +y +z =1),O 为空间中任意一点. 『思考辨析』判断下列结论是否正确(请在括号中打“√”或“×”) (1)空间中任意两非零向量a ,b 共面.( ) (2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).( ) (3)对于非零向量b ,由a ·b =b ·c ,则a =c .( )(4)两向量夹角的范围与两异面直线所成角的范围相同.( )(5)若A 、B 、C 、D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.( )1.已知正四面体ABCD 的棱长为a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为( ) A .a 2 B.12a 2 C.14a 2 D.34a 22.(2016·大连模拟)向量a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2),下列结论正确的是( )A .a ∥b ,a ∥cB .a ∥b ,a ⊥cC .a ∥c ,a ⊥bD .以上都不对3.与向量(-3,-4,5)共线的单位向量是__________________________________.4.如图,在四面体O -ABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=________.(用a ,b ,c 表示)5.(教材改编)正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 中点,则EF 的长为________.题型一 空间向量的线性运算例1 (1)如图所示,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________________.(2)三棱锥O -ABC 中,M ,N 分别是OA ,BC 的中点,G 是△ABC 的重心,用基向量OA →,OB →,OC →表示MG →,OG →.思维升华 用已知向量表示某一向量的方法用已知向量来表示未知向量,一定要结合图形,以图形为指导是解题的关键.要正确理解向量加法、减法与数乘运算的几何意义.首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量.在立体几何中三角形法则、平行四边形法则仍然成立.(2016·青岛模拟)如图所示,在空间几何体ABCD -A 1B 1C 1D 1中,各面为平行四边形,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →; (2)MP →+NC 1→.题型二 共线定理、共面定理的应用例2 (2016·天津模拟)如图,已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)求证:BD ∥平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任一点O ,有OM →=14(OA →+OB →+OC →+OD →).思维升华 (1)证明空间三点P ,A ,B 共线的方法 ①P A →=λPB →(λ∈R );②对空间任一点O ,OP →=OA →+tAB →(t ∈R ); ③对空间任一点O ,OP →=xOA →+yOB →(x +y =1). (2)证明空间四点P ,M ,A ,B 共面的方法 ①MP →=xMA →+yMB →;②对空间任一点O ,OP →=OM →+xMA →+yMB →;③对空间任一点O ,OP →=xOM →+yOA →+zOB →(x +y +z =1); ④PM →∥AB →(或P A →∥MB →或PB →∥AM →).已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB →+OC →).(1)判断MA →,MB →,MC →三个向量是否共面; (2)判断点M 是否在平面ABC 内.题型三空间向量数量积的应用例3(2017·济南月考)如图,已知平行六面体ABCD-A1B1C1D1中,底面ABCD是边长为1的正方形,AA1=2,∠A1AB=∠A1AD=120°.(1)求线段AC1的长;(2)求异面直线AC1与A1D所成角的余弦值;(3)求证:AA1⊥BD.思维升华(1)利用向量的数量积可证明线段的垂直关系,也可以利用垂直关系,通过向量共线确定点在线段上的位置;(2)利用夹角公式,可以求异面直线所成的角,也可以求二面角;(3)可以通过|a|=a2,将向量的长度问题转化为向量数量积的问题求解.如图,在平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°.(1)求AC 1→的长;(2)求BD 1→与AC →夹角的余弦值.18.坐标法在立体几何中的应用典例 (12分)如图,已知直三棱柱ABC -A 1B 1C 1,在底面△ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M ,N 分别是A 1B 1,A 1A 的中点.(1)求BN →的模;(2)求cos 〈BA 1→,CB 1→〉的值; (3)求证:A 1B ⊥C 1M .思想方法指导 利用向量解决立体几何问题时,首先要将几何问题转化成向量问题,通过建立坐标系利用向量的坐标进行求解. 规范解答:提醒:完成作业 第八章 §8.6答案精析基础知识 自主学习知识梳理1.0 1 相同 相等 相反 相等 平行或重合 平面2.(2)x a +y b (3)x a +y b +z c3.(1)①〈a ,b 〉 0≤〈a ,b 〉≤π 互相垂直 ②|a ||b |cos 〈a ,b 〉 a ·b |a ||b |cos 〈a ,b 〉(2)①λ(a ·b ) ②b ·a ③a ·b +a ·c4.a 1b 1+a 2b 2+a 3b 3 a 1=λb 1,a 2=λb 2,a 3=λb 3a 1b 1+a 2b 2+a 3b 3=0 a 21+a 22+a 23思考辨析(1)√ (2)× (3)× (4)× (5)√考点自测1.C 2.C3.⎝⎛⎭⎫3210,225,-22和⎝⎛⎭⎫-3210,-225,224.12a +14b +14c 5. 2题型分类 深度剖析例1 (1)12AB →+12AD →+AA 1→(2)MG →=-16OA →+13OB →+13OC →OG →=13OA →+13OB →+13OC →跟踪训练1 解 (1)因为P 是C 1D 1的中点,所以AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→=a +c +12AB →=a +c +12b .(2)因为M 是AA 1的中点,所以MP →=MA →+AP →=12A 1A →+AP →=-12a +(a +c +12b )=12a +12b +c .又NC 1→=NC →+CC 1→=12BC →+AA 1→ =12AD →+AA 1→=12c +a , 所以MP →+NC 1→=(12a +12b +c )+(a +12c ) =32a +12b +32c . 例2 证明 (1)连接BG ,则EG →=EB →+BG →=EB →+12(BC →+BD →) =EB →+BF →+EH →=EF →+EH →,由共面向量定理的推论知E ,F ,G ,H 四点共面.(2)因为EH →=AH →-AE →=12AD →-12AB → =12(AD →-AB →)=12BD →, 所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH ,所以BD ∥平面EFGH .(3)找一点O ,并连接OM ,OA ,OB ,OC ,OD ,OE ,OG .由(2)知EH →=12BD →, 同理FG →=12BD →, 所以EH →=FG →,即EH 綊FG ,所以四边形EFGH 是平行四边形,所以EG ,FH 交于一点M 且被M 平分.故OM →=12(OE →+OG →) =12OE →+12OG → =12『12(OA →+OB →)』+12『12(OC →+OD →)』 =14(OA →+OB →+OC →+OD →). 跟踪训练2 解 (1)由题意知OA →+OB →+OC →=3OM →,∴OA →-OM →=(OM →-OB →)+(OM →-OC →)即MA →=BM →+CM →=-MB →-MC →,∴MA →,MB →,MC →共面.(2)由(1)知MA →,MB →,MC →共面且基线过同一点M ,∴M ,A ,B ,C 四点共面.从而点M 在平面ABC 内.例3 (1)解 设AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=1,|c |=2,a ·b =0,c ·a =c ·b=2×1×cos 120°=-1.∵AC 1→=AC →+CC 1→=AB →+AD →+AA 1→=a +b +c ,∴|AC 1→|=|a +b +c |=(a +b +c )2 =|a |2+|b |2+|c |2+2(a ·b +b ·c +c ·a ) =12+12+22+2(0-1-1)= 2.∴线段AC 1的长为 2.(2)解 设异面直线AC 1与A 1D 所成的角为θ,则cos θ=|cos 〈AC 1→,A 1D →〉|=⎪⎪⎪⎪⎪⎪AC 1→·A 1D →|AC 1→||A 1D →|. ∵AC 1→=a +b +c ,A 1D →=b -c ,∴AC 1→·A 1D →=(a +b +c )·(b -c )=a ·b -a ·c +b 2-c 2=0+1+12-22=-2,|A 1D →|=(b -c )2 =|b |2-2b ·c +|c |2 =12-2×(-1)+22=7.∴cos θ=⎪⎪⎪⎪⎪⎪AC 1→·A 1D →|AC 1→||A 1D →=|-22×7| =147. 故异面直线AC 1与A 1D 所成角的余弦值为147. (3)证明 ∵AA 1→=c ,BD →=b -a ,∴AA 1→·BD →=c ·(b -a )=c ·b -c ·a =(-1)-(-1)=0, ∴AA 1→⊥BD →,∴AA 1⊥BD .跟踪训练3 解 (1)记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,∴a ·b =b ·c =c ·a =12. |AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×(12+12+12)=6, ∴|AC 1→|=6,即AC 1的长为 6.(2)BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1,∴cos 〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66. 即BD 1→与AC →夹角的余弦值为66. 思想与方法系列典例 (1)解 如图,建立空间直角坐标系.依题意得B (0,1,0),N (1,0,1),所以|BN →|=(1-0)2+(0-1)2+(1-0)2= 3.『2分』(2)解 依题意得A 1(1,0,2),B (0,1,0),C (0,0,0),B 1(0,1,2).所以BA 1→=(1,-1,2),CB 1→=(0,1,2), BA 1→·CB 1→=3,|BA 1→|=6,|CB 1→|=5,所以cos 〈BA 1→,CB 1→〉=BA 1→·CB 1→|BA 1→||CB 1→|=3010.『6分』 (3)证明 依题意得C 1(0,0,2), M (12,12,2), A 1B →=(-1,1,-2),C 1M →=(12,12,0).『9分』 所以A 1B →·C 1M →=-12+12+0=0, 所以A 1B →⊥C 1M →,即A 1B ⊥C 1M .『12分』。

相关文档
最新文档