高三数学空间向量及其坐标运算

合集下载

空间向量的坐标运算

空间向量的坐标运算
2 2 2
(x2 x1 ) (y2 y1 ) (z2 z1 ) ;
例3 已知A(3,3,1),B(1,0,5)求
线段 AB的中点坐标和长度.
z 解:设M(x,y,z)是AB的中点,则 B(1,0,5)
OM=
M
1 2
(OA+OB)
AM=MB
o y
x
d A, B 1 3 0 3 5 1 29
2 2 2
A(3,3,1)
例4 已知A(3,3,1),B(1,0,5)求 到A,B两点距离相等的点P(x,y,z)的坐
标x,y,z满足的条件. 解:设点P到A,B的距离相等,则
2 2 2 2 2
( x 3) y 3 z 1 x 1 y 0 z 5
例2 已知向量a=(-2,2,0),b=(-2,0,2), 求向 量n使n⊥a,且n⊥b. 解:设n=(x, y, z,)则 n•a=(x, y, z,)•(-2,2,0)=-2x+2y=0 n•b=(x, y, z,)•(-2,0,2)=-2x+2z=0 所以y=x, z=x
于是n= (x, x, x)=x(1,1,1),
C 1 A1 N C A B
B1
M
课后作业
课本:P94 练习
P97 练习
z
D1
A1
F1 E1
B1
C1
D(0,0,0)
1 F1(O, 4
,1)
O D
A
C
y
x
B (1,,1) E1 3
4
思考题:直三棱柱ABC A1B1C1 , 底面ABC中, CA=CB=1,BCA=90o,棱AA1=2,M , N 分别为A1B1 ,AA1的中点. (1)求BN的长; (2)求 cos BA1 , CB1 的值; (3)求证:A1 B C1M .

2024年高考数学总复习第八章《立体几何与空间向量》空间向量及其运算

2024年高考数学总复习第八章《立体几何与空间向量》空间向量及其运算

2024年高考数学总复习第八章《立体几何与空间向量》§8.5空间向量及其运算最新考纲1.经历向量及其运算由平面向空间推广的过程.2.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.3.掌握空间向量的线性运算及其坐标表示.4.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.1.空间向量的有关概念名称概念表示零向量模为0的向量0单位向量长度(模)为1的向量相等向量方向相同且模相等的向量a =b相反向量方向相反且模相等的向量a 的相反向量为-a共线向量表示空间向量的有向线段所在的直线互相平行或重合的向量a ∥b 共面向量平行于同一个平面的向量2.空间向量中的有关定理(1)共线向量定理空间两个向量a 与b (b ≠0)共线的充要条件是存在实数λ,使得a =λb .(2)共面向量定理共面向量定理的向量表达式:p =x a +y b ,其中x ,y ∈R ,a ,b 为不共线向量.(3)空间向量基本定理如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,{a ,b ,c }叫做空间的一个基底.3.空间向量的数量积及运算律(1)数量积及相关概念①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a ,b的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b .②两向量的数量积已知空间两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做向量a ,b 的数量积,记作a ·b ,即a ·b =|a ||b |cos 〈a ,b 〉.(2)空间向量数量积的运算律①(λa )·b =λ(a ·b );②交换律:a ·b =b ·a ;③分配律:a ·(b +c )=a ·b +a ·c .4.空间向量的坐标表示及其应用设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).向量表示坐标表示数量积a·ba 1b 1+a 2b 2+a 3b 3共线a =λb (b ≠0,λ∈R )a 1=λb 1,a 2=λb 2,a 3=λb 3垂直a ·b =0(a ≠0,b ≠0)a 1b 1+a 2b 2+a 3b 3=0模|a |a 21+a 22+a 23夹角〈a ,b 〉(a ≠0,b ≠0)cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23概念方法微思考1.共线向量与共面向量相同吗?提示不相同.平行于同一平面的向量就为共面向量.2.零向量能作为基向量吗?提示不能.由于零向量与任意一个非零向量共线,与任意两个非零向量共面,故零向量不能作为基向量.3.空间向量的坐标运算与坐标原点的位置选取有关吗?提示无关.这是因为一个确定的几何体,其“线线”夹角、“点点”距离都是固定的,坐标系的位置不同,只会影响其计算的繁简,不会影响结果.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)空间中任意两个非零向量a ,b 共面.(√)(2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).(×)(3)对于非零向量b ,由a ·b =b ·c ,则a =c .(×)(4)两向量夹角的范围与两异面直线所成角的范围相同.(×)(5)若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.(√)(6)若a·b <0,则〈a ,b 〉是钝角.(×)题组二教材改编2.如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是()A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c 答案A解析BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .3.正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 的中点,则EF 的长为________.答案2解析|EF →|2=EF →2=(EC →+CD →+DF →)2=EC →2+CD →2+DF →2+2(EC →·CD →+EC →·DF →+CD →·DF →)=12+22+12+2(1×2×cos 120°+0+2×1×cos 120°)=2,∴|EF →|=2,∴EF 的长为2.题组三易错自纠4.在空间直角坐标系中,已知A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是()A .垂直B .平行C .异面D .相交但不垂直答案B解析由题意得,AB →=(-3,-3,3),CD →=(1,1,-1),∴AB →=-3CD →,∴AB →与CD →共线,又AB 与CD 没有公共点,∴AB ∥CD .5.已知a =(2,3,1),b =(-4,2,x ),且a ⊥b ,则|b |=________.答案26解析∵a ⊥b ,∴a ·b =2×(-4)+3×2+1·x =0,∴x =2,∴|b |=(-4)2+22+22=2 6.6.O 为空间中任意一点,A ,B ,C 三点不共线,且OP →=34OA →+18OB →+tOC →,若P ,A ,B ,C四点共面,则实数t =______.答案18解析∵P ,A ,B ,C 四点共面,∴34+18+t =1,∴t =18.题型一空间向量的线性运算例1如图所示,在空间几何体ABCD -A 1B 1C 1D 1中,各面为平行四边形,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)MP →+NC 1→.解(1)因为P 是C 1D 1的中点,所以AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→=a +c +12AB →=a +c +12b .(2)因为M 是AA 1的中点,所以MP →=MA →+AP →=12A 1A →+AP→=-12a +c +12b =12a +12b +c .又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a ,所以MP →+NC 1→+12b ++12c =32a +12b +32c .思维升华用基向量表示指定向量的方法(1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来.跟踪训练1(1)如图所示,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________________.答案12AB →+12AD →+AA 1→解析∵OC →=12AC →=12(AB →+AD →),∴OC 1→=OC →+CC 1→=12(AB →+AD →)+AA 1→=12AB →+12AD →+AA 1→.(2)如图,在三棱锥O —ABC 中,M ,N 分别是AB ,OC 的中点,设OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示NM →,则NM →等于()A.12(-a +b +c )B.12(a +b -c )C.12(a -b +c )D.12(-a -b +c )答案B解析NM →=NA →+AM →=(OA →-ON →)+12AB→=OA →-12OC →+12(OB →-OA →)=12OA →+12OB →-12OC→=12(a +b -c ).题型二共线定理、共面定理的应用例2如图,已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)求证:BD ∥平面EFGH .证明(1)连接BG ,则EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH→=EF →+EH →,由共面向量定理的推论知E ,F ,G ,H 四点共面.(2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →,所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH ,所以BD ∥平面EFGH .思维升华证明三点共线和空间四点共面的方法比较三点(P ,A ,B )共线空间四点(M ,P ,A ,B )共面PA →=λPB →且同过点P MP →=xMA →+yMB→对空间任一点O ,OP →=OA →+tAB →对空间任一点O ,OP →=OM →+xMA →+yMB →对空间任一点O ,OP →=xOA →+(1-x )OB→对空间任一点O ,OP →=xOM →+yOA →+(1-x -y )OB→跟踪训练2如图所示,已知斜三棱柱ABC —A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM →=kAC 1→,BN →=kBC →(0≤k ≤1).(1)向量MN →是否与向量AB →,AA 1→共面?(2)直线MN 是否与平面ABB 1A 1平行?解(1)∵AM →=kAC 1→,BN →=kBC →,∴MN →=MA →+AB →+BN →=kC 1A →+AB →+kBC →=k (C 1A →+BC →)+AB →=k (C 1A →+B 1C 1→)+AB →=kB 1A →+AB →=AB →-kAB 1→=AB →-k (AA 1→+AB →)=(1-k )AB →-kAA 1→,∴由共面向量定理知向量MN →与向量AB →,AA 1→共面.(2)当k =0时,点M ,A 重合,点N ,B 重合,MN 在平面ABB 1A 1内,当0<k ≤1时,MN 不在平面ABB 1A 1内,又由(1)知MN →与AB →,AA 1→共面,∴MN ∥平面ABB 1A 1.综上,当k =0时,MN 在平面ABB 1A 1内;当0<k ≤1时,MN ∥平面ABB 1A 1.题型三空间向量数量积的应用例3如图所示,已知空间四边形ABCD 的各边和对角线的长都等于a ,点M ,N 分别是AB ,CD 的中点.(1)求证:MN ⊥AB ,MN ⊥CD ;(2)求异面直线AN 与CM 所成角的余弦值.(1)证明设AB →=p ,AC →=q ,AD →=r .由题意可知,|p |=|q |=|r |=a ,且p ,q ,r 三个向量两两夹角均为60°.MN →=AN →-AM →=12(AC →+AD →)-12AB→=12(q +r -p ),∴MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2cos 60°+a 2cos 60°-a 2)=0.∴MN →⊥AB →,即MN ⊥AB .同理可证MN ⊥CD .(2)解设向量AN →与MC →的夹角为θ.∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,∴AN →·MC →=12(q +r -12p2-12q ·p +r ·q -12r ·2-12a 2cos 60°+a 2cos 60°-12a 2cos2-a 24+a 22-=a 22.又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →||MC →|cos θ=32a ×32a ×cos θ=a 22.∴cosθ=23.∴向量AN →与MC →的夹角的余弦值为23,从而异面直线AN 与CM 所成角的余弦值为23.思维升华(1)利用向量的数量积可证明线段的垂直关系,也可以利用垂直关系,通过向量共线确定点在线段上的位置.(2)利用夹角公式,可以求异面直线所成的角,也可以求二面角.(3)可以通过|a |=a 2,将向量的长度问题转化为向量数量积的问题求解.跟踪训练3如图,在平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°.(1)求AC 1→的长;(2)求BD 1→与AC →夹角的余弦值.解(1)记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2+12+6,∴|AC 1→|=6,即AC 1的长为6.(2)BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1,∴cos 〈BD 1→,AC →〉=BD 1,→·AC →|BD 1→||AC →|=66.即BD 1→与AC →夹角的余弦值为66.1.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于()A .(0,3,-6)B .(0,6,-20)C .(0,6,-6)D .(6,6,-6)答案B解析由b =12x -2a ,得x =4a +2b =(8,12,-16)+(-8,-6,-4)=(0,6,-20).2.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面;③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p =x a +y b +z c .其中正确命题的个数是()A .0B .1C .2D .3答案A解析a 与b 共线,a ,b 所在的直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a ,b 都共面,故②不正确;三个向量a ,b ,c 中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0,故选A.3.已知向量a =(2m +1,3,m -1),b =(2,m ,-m ),且a ∥b ,则实数m 的值等于()A.32B .-2C .0 D.32或-2答案B解析当m =0时,a =(1,3,-1),b =(2,0,0),a 与b 不平行,∴m ≠0,∵a ∥b ,∴2m +12=3m =m -1-m ,解得m =-2.4.在空间直角坐标系中,已知A (1,-2,1),B (2,2,2),点P 在z 轴上,且满足|PA |=|PB |,则P 点坐标为()A .(3,0,0)B .(0,3,0)C .(0,0,3)D .(0,0,-3)答案C 解析设P (0,0,z ),则有(1-0)2+(-2-0)2+(1-z )2=(2-0)2+(2-0)2+(2-z )2,解得z =3.5.已知a =(1,0,1),b =(x ,1,2),且a·b =3,则向量a 与b 的夹角为()A.5π6 B.2π3 C.π3 D.π6答案D解析∵a·b =x +2=3,∴x =1,∴b =(1,1,2),∴cos 〈a ,b 〉=a·b |a||b |=32×6=32,又∵〈a ,b 〉∈[0,π],∴a 与b 的夹角为π6,故选D.6.如图,在大小为45°的二面角A -EF -D 中,四边形ABFE ,CDEF 都是边长为1的正方形,则B ,D 两点间的距离是()A.3B.2C .1 D.3-2答案D 解析∵BD →=BF →+FE →+ED →,∴|BD →|2=|BF →|2+|FE →|2+|ED →|2+2BF →·FE →+2FE →·ED →+2BF →·ED →=1+1+1-2=3-2,故|BD→|=3-2.7.已知a=(2,1,-3),b=(-1,2,3),c=(7,6,λ),若a,b,c三向量共面,则λ=________.答案-9解析由题意知c=x a+y b,即(7,6,λ)=x(2,1,-3)+y(-1,2,3),x-y=7,+2y=6,3x+3y=λ,解得λ=-9.8.已知a=(x,4,1),b=(-2,y,-1),c=(3,-2,z),a∥b,b⊥c,则c=________.答案(3,-2,2)解析因为a∥b,所以x-2=4y=1-1,解得x=2,y=-4,此时a=(2,4,1),b=(-2,-4,-1),又因为b⊥c,所以b·c=0,即-6+8-z=0,解得z=2,于是c=(3,-2,2).9.已知V为矩形ABCD所在平面外一点,且VA=VB=VC=VD,VP→=13VC→,VM→=23VB→,VN→=23VD→.则VA与平面PMN的位置关系是________.答案平行解析如图,设VA→=a,VB→=b,VC→=c,则VD→=a+c-b,由题意知PM→=23b-13c,PN→=23VD→-13VC→=23a-23b+13c.因此VA→=32PM→+32PN→,∴VA→,PM→,PN→共面.又VA⊄平面PMN,∴VA∥平面PMN.10.已知ABCD -A 1B 1C 1D 1为正方体,①(A 1A →+A 1D 1→+A 1B 1→)2=3A 1B 1→2;②A 1C →·(A 1B 1→-A 1A →)=0;③向量AD 1→与向量A 1B →的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB →·AA 1→·AD →|.其中正确的序号是________.答案①②解析①中,(A 1A →+A 1D 1→+A 1B 1→)2=A 1A →2+A 1D 1→2+A 1B 1→2=3A 1B 1→2,故①正确;②中,A 1B 1→-A 1A →=AB 1→,因为AB 1⊥A 1C ,故②正确;③中,两异面直线A 1B 与AD 1所成的角为60°,但AD 1→与A 1B →的夹角为120°,故③不正确;④中,|AB →·AA 1→·AD →|=0,故④也不正确.11.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB →+OC →).(1)判断MA →,MB →,MC →三个向量是否共面;(2)判断点M 是否在平面ABC 内.解(1)由题意知OA →+OB →+OC →=3OM →,∴OA →-OM →=(OM →-OB →)+(OM →-OC →),即MA →=BM →+CM →=-MB →-MC →,∴MA →,MB →,MC →共面.(2)由(1)知MA →,MB →,MC →共面且过同一点M ,∴M ,A ,B ,C 四点共面.∴点M 在平面ABC 内.12.已知a =(1,-3,2),b =(-2,1,1),A (-3,-1,4),B (-2,-2,2).(1)求|2a +b |;(2)在直线AB 上,是否存在一点E ,使得OE →⊥b ?(O 为原点)解(1)2a +b =(2,-6,4)+(-2,1,1)=(0,-5,5),故|2a +b |=02+(-5)2+52=5 2.(2)令AE →=tAB →(t ∈R ),所以OE →=OA →+AE →=OA →+tAB→=(-3,-1,4)+t (1,-1,-2)=(-3+t ,-1-t ,4-2t ),若OE →⊥b ,则OE →·b =0,所以-2(-3+t )+(-1-t )+(4-2t )=0,解得t =95.因此存在点E ,使得OE →⊥b ,此时E -65,-145,13.如图,已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别为OA ,BC 的中点,点G 在线段MN 上,且MG →=2GN →,若OG →=xOA →+yOB →+zOC →,则x +y +z =________.答案56解析连接ON ,设OA →=a ,OB →=b ,OC →=c ,则MN →=ON →-OM →=12(OB →+OC →)-12OA →=12b +12c -12a ,OG →=OM →+MG →=12OA →+23MN →=12a+12c -12a =16a +13b +13c .又OG →=xOA →+yOB →+zOC →,所以x =16y =13,z =13,因此x +y +z =16+13+13=56.14.A ,B ,C ,D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,M 为BC 中点,则△AMD 是()A .钝角三角形B .锐角三角形C .直角三角形D .不确定答案C 解析∵M 为BC 中点,∴AM →=12(AB →+AC →),∴AM →·AD →=12(AB →+AC →)·AD →=12AB →·AD →+12AC →·AD →=0.∴AM ⊥AD ,△AMD 为直角三角形.15.已知O (0,0,0),A (1,2,1),B (2,1,2),P (1,1,2),点Q 在直线OP 上运动,当QA →·QB→取最小值时,点Q 的坐标是________.答案(1,1,2)解析由题意,设OQ →=λOP →,则OQ →=(λ,λ,2λ),即Q (λ,λ,2λ),则QA →=(1-λ,2-λ,1-2λ),QB →=(2-λ,1-λ,2-2λ),∴QA →·QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(1-2λ)(2-2λ)=6λ2-12λ+6=6(λ-1)2,当λ=1时取最小值,此时Q 点坐标为(1,1,2).16.如图,在直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为棱AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值.(1)证明设CA →=a ,CB →=b ,CC ′→=c ,根据题意得|a |=|b |=|c |,且a ·b =b ·c =c ·a =0,∴CE →=b +12c ,A ′D →=-c +12b -12a ,∴CE →·A ′D →=-12c 2+12b 2=0,∴CE →⊥A ′D →,即CE ⊥A ′D .(2)解∵AC ′→=-a +c ,|AC ′→|=2|a |,|CE →|=52|a |,AC ′→·CE →=(-a +c +12c =12c 2=12|a |2,∴cos 〈AC ′→,CE →〉=AC ′,→·CE →|AC ′→||CE →|=12|a |22×52|a |2=1010,即异面直线CE 与AC ′所成角的余弦值为1010.。

空间向量数量积及坐标运算

空间向量数量积及坐标运算

空间向量数量积及坐标运算在空间解析几何中,向量是研究的重要对象之一,而向量的数量积和坐标运算是向量运算中的基本概念。

本文将介绍空间向量的数量积及其坐标运算方法。

一、空间向量的数量积空间中的向量可以用其坐标表示,记作a = (x1, y1, z1)和b = (x2, y2,z2),其中a、b分别是空间中的两个向量,xi、yi、zi为它们在笛卡尔坐标系中的坐标。

向量的数量积(又称点积或内积)定义为两个向量的对应坐标的乘积之和,即:a ·b = x1 * x2 + y1 * y2 + z1 * z2其中·表示数量积运算。

性质:1.数量积是实数。

2.数量积的结果等于向量乘积和坐标乘积之和。

3.数量积满足交换律:a · b = b · a。

4.数量积满足分配率:(a + b) · c = a · c + b · c。

二、向量的坐标运算1. 向量的加法设a = (x1, y1, z1)和b = (x2, y2, z2)是空间中的两个向量,它们的和记为c,则c的坐标为:x = x1 + x2y = y1 + y2z = z1 + z2即向量的和的每个坐标等于对应向量的坐标之和。

性质:1.向量的加法满足交换律:a + b = b + a。

2.向量的加法满足结合律:(a + b) + c = a + (b + c)。

2. 向量的减法设a = (x1, y1, z1)和b = (x2, y2, z2)是空间中的两个向量,它们的差记为c,则c的坐标为:x = x1 - x2y = y1 - y2z = z1 - z2即向量的差的每个坐标等于对应向量的坐标之差。

3. 向量的数乘设k为实数,a = (x, y, z)是空间中的一个向量,ka为向量a的数乘,即ka 的坐标为:x' = k * xy' = k * yz' = k * z性质:1.数乘满足结合律:k(ka) = (k * k')a。

空间向量及其运算的坐标表示_课件

空间向量及其运算的坐标表示_课件

数量积

b
_____a_1_b__1+__a__2b__2_+_______ a3b3
已知a=(1,-2,1),a-b=(-1,2,-1),则b 等于( )
A.(2,-4,2)
B.(-2,4,-2)
C.(-2,0,-2)
D.(2,1,-3)
解析 依题意,得b=a-(-1,2,-1)=a+(1,-2,1)=2(1,-2,1) =(2,-4,245°), ∠yOz=90°,如下图
空间直角坐标系
空间直角坐标系
坐标表示:对于空间任意一个向量p,存在有序实数组{x,y,z} , 使得p=xi+yj+zk,则把x,y,z称作向量p在单位正交基底i,j , k下的坐标,记作p=(x,y,z),其中数x就叫做点P的横坐标,数 y就叫做点P的纵坐标,数z就叫做点P的竖坐标
在棱长为1的正方体ABCD—A1B1C1D1中,E,F分别是D1D , B中D点的,中试点建,立点适G当在的棱坐CD标上系,,且写|C出GE|=,F|,CDG|,,HH的坐 标.
解 建立如图所示的空间直角坐标系 . 点E在z轴上,它的横坐标、纵坐标均为0
, 而过EF作为FDMD⊥1的A中D点, F故N⊥其D坐C标, 由为平面几何知识 ,
空间向量运算的坐标表示
空间向量a,b,其坐标形式为a=(a1,a2,a3),b=(b1,b2,
b3). 向量运算
向量表示
坐标表示
加法 减法 数乘
a+b a-b λa
(_a_1_+__b__1,___a_2_+__b_2_,__a_3_+___ b_(_3a)_1_-_b__1,__a__2-_b__2,___a_3_-_b_3_)_ _____(λ__a_1_,__λ_a_2_,__λ_a__3)____

空间向量及其坐标运算

空间向量及其坐标运算

高三第一轮复习数学---空间向量的坐标运算一、教学目标::向量的坐标运算和建系意识. 二、教学重点:向量的坐标运算 三、教学过程:(一)主要知识: 1.空间直角坐标在空间选定一点O 和一个单位正交基底{ī,j ,k },以点O 为原点,分别以ī,j ,k 的正方向建立三条坐标轴: x 轴,y 轴,z 轴,使∠xOy=135°(或45°),∠yOz=90°,就建立了一个空间直角坐标系O-xyz 。

点O 叫原点,ī,j ,k 叫坐标向量,一般作右手直角坐标系。

任一点A 对应一个向量OA ,存在唯一的实数组x 、y 、z. =OA x ī+y j+z k . 记为A (x 、y 、z ),叫空间直角坐标系中的坐标。

其中x 叫点A 的横坐标,y 叫点A 的纵坐标,z 叫点A 的竖坐标2.向量的直角坐标运算 (1)设a=(a 1,a 2,a 3),b=(b 1,b 2,b 3)则a+b =( a 1 +b 1 ,a 2 +b 2,a 3+b 3) a-b =( a 1 -b 1 ,a 2 -b 2,a 3-b 3) λa=(λa 1,λa 2,λa 3)(λ∈R ) a·b =a 1b 1+a 2b 2+a 3b 3a ∥b ↔ a 1 =λb 1 ,a 2=λb 2,a 3=λb 3(λ∈R ) a ⊥b ↔ a 1b 1+ a 2b 2 +a 3b 3=0 (2)设A (a 1,a 2,a 3),B (b 1,b 2,b 3)则=-=OA OB AB (b 1,b 2,b 3)-(a 1,a 2,a 3)=( b 1 -a 1 ,b 2-a 2,b 3-a 3)。

即一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。

3.夹角和距离公式设a=(a 1,a 2,a 3),b=(b 1,b 2,b 3)则232221a a a a a a ++=⋅=232221b b b b b b ++=⋅=a·b = a 1b 1+a 2 b 2+a 3b 3 232221232221332211b a b a b a cosbb b a a a ba ++⋅++++=⋅已知),,(111z y x A ,),,(222z y x B 则()()()221221221z z y y x x -+-+-==空间两点间距离公式4.如果表示向量a 的有向线段所在的直线垂直于平面α,则称这个向量垂直于平面α,记为α⊥a 如果α⊥a ,那么向量a 叫做平面α的法向量 5. 设A (a 1,a 2,a 3),B (b 1,b 2,b 3)则AB 中点坐标为)2,2,2(332211b a b a b a +++6.向量位置与立体几何中位置对照:⑴AB//CD CD AB CD AB λ=⇔⇔// ⑵0=⋅⇔⊥CD AB CD AB⑶证A 、B 、C 、D 四点共面可通过证1=++++=+=r q p OD r OC q OB p OA AD y AC x AB 且或⑷AB ==⑸线线角即为两向量的夹角或其补角⑹线面角即为线所在向量与面的法向量的夹角的余角或再减90⑺面面角即为两面的法向量的夹角或其补角 ⑻距离可通过求在法向量上投影的长度得到(二)例题分析:例1(1) 已知直角坐标系内三点A (2,4,1),B (3,7,5),C (4,10,9),判断A 、B 、C 三点是否共线?(2)已知直角坐标系内四点A (2,3,1),B (4,1,-2),C (6,3,7),D (-5,4,8),判断A 、B 、C 、D 四点是否共线?解:(1)),8,6,2(),4,3,1(==AC AB 可见AB AC AB AC 和故,2=共线,即A,B,C 三点共线。

空间向量的直角坐标及其运算

空间向量的直角坐标及其运算
证:(1)∵ AP AB 1,2,12,1,4 0, AP AD 1,2,14,2,0 0 ,
∴ AP AB , AP AD,又 AB AD A , AP 平面 ABCD,
∴ AP 是平面 ABCD的法向量; 解:(2) AB 22 12 42 21 , AD 42 22 02 2 5 ,
∴ SABC
1 2
AB
AC
sin
A
101 。 2
7、在棱长为1的正方体 ABCD A1B1C1D1 中,E, F 分别是 DD1、DB 中点,G 在棱CD 上,
CG
1 4
CD

H

C1G
的中点;
(1)求证: EF B1C ;(2)求 EF 与C1G 所成的角的余弦;(3)求 FH 的长。
解:如图以 D 为原点建立直角坐标系 D xyz ,
(3)证明线面平行:若直线的方向向量与平面的一个法向量垂直,则这直线与该平面平行;
(4)证明面面平行:若两个不重合平面的法向量平行,则这两个平面就互相平行。 11、用向量求异面直线所成角:
找出两条异面直线各自的一个方向向量,计算这两个向量的夹角 ,则 (或 的补角)
即为两条异面直线所成的角。
设 a、b 是异面直线, d1 是直线 a 的一个方向向量, d2 是直线b 的一个方向向量,异面
一、基本概念:
1、空间直角坐标系:
(1)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用 i, j,k
表示;
(2)在空间选定一点O 和一个单位正交基底 i, j,k ,以点O 为原点,分别以 i, j,k 的方向
为正方向建立三条数轴:x 轴、 y 轴、z 轴,它们都叫坐标轴;我们称建立了一个空间 直角坐标系 O xyz ,点O 叫原点,向量 i, j, k 都叫单位向量;通过每两个坐标轴的平

空间向量的坐标和运算

空间向量的坐标和运算

空间向量的坐标和运算一、空间向量的坐标和运算1.空间直角坐标系在单位正方体$oabc$-$d$′$a$′$b$′$c$′中,以$o$点为原点,分别以射线$oa$,$oc$,$od$′的方向为正方向,以线段$oa$,$oc$,$od$′的长为单位长,建立三条数轴:$x$轴、$y$轴、$z$轴。

这时我们说建立了一个空间直角坐标系$oxyz$,其中点$o$叫做坐标原点,$x$轴、$y$轴、$z$轴叫做坐标轴。

通过每两个坐标轴的平面叫做坐标平面,分别称为$xoy$平面、$yoz$平面、$xoz$平面。

2.空间矢量的坐标一个向量在空间直角坐标系中的坐标等于表示向量的有向线段的终点坐标减去起点坐标。

如果$a(x_1,y_1,z_1)$,$B(x_2,y_2,z_2)$,那么$\overrightarrow{AB}=\overrightarrow{ob}-\overrightarrow{OA}$=$(x_2-x_1$,$y_2-y_1$,$z_2-z_1)$。

3、空间向量的坐标运算设置$\boldsymbol(x_1,y_1,z_1)$,$\boldsymbol B(x_2,y_2,z_2)$,然后(1)$\boldsymbola+\boldsymbolb$=$(x_1+x_2,y_1+y_2,z_1+z_2)$。

(2) $\boldsymbola-\boldsymbolb$=$(x_1-x_2,y_1-y_2,z_1-z_2)$(3)$\boldsymbola·\boldsymbolb$=$x_1x_2+y_1y_2+z_1z_2$。

(4) $|\boldsymbola |=\sqrt{x^2_1+y^2_1+z^2_1}$(5)$λ\boldsymbola=(λx_1,λy_1,λz_1)$。

4.平行(共线)和垂直空间向量的充要条件设非零向量$\boldsymbola(x_1,y_1,z_1)$,$\boldsymbolb(x_2,y_2,z_2)$,则$\boldsymbola∥\boldsymbolb\leftrightarrow\frac{x_1}{x_2}=\frac{y_1}{y_2}=\frac{z_1}{z_2}=λ(λ∈\mathbf{r})$$\boldsymbola⊥\boldsymbolb\leftrightarrow\boldsymbola·\boldsymbolb=0\leftrig htarrow$$x_1x_2+y_1y_2+z_1z_2=0$。

高三数学空间向量及其坐标运算

高三数学空间向量及其坐标运算
免费视频网
[单选]VCO电路中,通过改变回路电抗元件参数改变频率,此可变器件为()。A.电感B.电容C.变容二极管 [单选]甲与乙订立了一份合同,约定甲供给乙狐皮围脖200条,总价6万元,但合同未规定狐皮围脖的质量标准和等级,也未封存样品。甲如期发货,乙验收后支付了货款。后乙因有20条围脖未能销出,便以产品质量不合格为由,向法院起诉,其诉讼代理人在审理过程中又主张合同无效。本案中, [单选]下面哪种病一般不引起血性白带()A.宫颈癌B.子宫内膜癌C.宫颈息肉D.重度宫颈靡烂E.阴道炎 [单选]下列属于颈椎病X线表现的有()A.可伴有小关节面硬化B.椎体边缘骨质增生、硬化C.椎间孔狭窄D.椎间隙变窄E.以上都是 [单选,A2型题,A1/A2型题]女性,60岁,颈后局限性肿痛6天,伴有畏寒、发热38.5℃,来急诊时已用抗生素治疗3天。体格检查见颈后发际下方肿胀,皮肤红肿,质地坚韧,界限不清,中央多个小脓头伴坏死组织,白细胞数16×10/L,中性粒细胞0.90(90%)。此时最恰当的治疗是选择()A.继 [单选]在保险合同履行过程中,按照约定交付保险费义务的人是()。A.受益人B.被保险人C.利益关系人D.投保人 [单选]患者咳嗽剧烈,气粗,喉燥咽痛,咯痰不爽,痰粘色黄,常伴鼻塞流黄涕,口渴,头痛,发热恶风,舌苔薄黄,脉浮数。其证属()A.痰湿犯肺B.痰热郁肺C.风热犯肺D.风寒袭肺E.风燥伤肺 [单选]操作员判定为无正当理由的超时车,系统默认为(),操作员可根据实际情况输入入口收费站的代码,确认后收取相应通行费。A.最近入口的收费站B.随机选择收费站C.相应路程入口的收费站D.最远入口收费站 [单选,A1型题]提示膀胱损伤的表现是()A.血尿B.假性尿失禁C.排尿障碍而膀胱空虚D.导尿管不易插入E.下腹部腹膜刺激征 [单选]能源效率标识中等级的数字越小,标明该用能产品能源效率()。A.越
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1918年冬,在北京大学组织马尔克斯研究会。邀请几位教授参加,“它的对内活动是研究马克思学说,对外则是举办一些演讲会”。A.张申府B.陈独秀C.李大钊 手术室应设有工作人员出入通道、患者出入通道,物流做到洁污分开,流向合理。A.正确B.错误 与财务报告相关的控制活动一般由一系列手工控制和所组成。A.人工控制B.自动控制C.内嵌控制D.外环控制 冲击面积 关于日本血吸虫的描述下列不正确的是A.是一种人畜共患病B.雌雄异体,合抱寄生C.分布于长江沿岸及以南地区D.钉螺为中间宿主E.成虫及分泌物致病,虫卵不致病 依据WHO标准可诊为Crohn病的是A.区域性肠道病变,黏膜呈铺路石样改变B.非连续性肠道病变,伴纵行溃疡C.全层性炎症性肠道病变伴肿块及狭窄D.节段性肠道病变,纵行溃疡E.非连续性肠道病变,全层性炎及非干酪性肉芽肿 疟疾的传播方式为。A.血液传播B.母婴传播C.性接触传播D.哺乳传播E.按蚊传播 简述人体最简单的五大排毒方法? 下列哪项是正常产褥期的表现A.产后第一天,宫底平脐B.产后10天为血性恶露C.产后脉搏一般偏快D.产褥早期白细胞即恢复正常E.产后12小时体温可超过38℃ ABC会计师事务所为防止同一主任会计师或者经授权签字的注册会计师,由于长期执行某一被审计单位的鉴证业务可能对独立性产生不利影响,应当制定政策和程序,将由于关系密切造成的产生不利影响降至可接受的低水平。A.对所有实体财务报表审计,按照国家有关规定定期轮换项目合伙人B.对 财务报表审计,按照国家有关规定定期轮换注册会计师C.对所有的上市实体财务报表审计,按照国家有关规定定期轮换项目合伙人D.对所有的上市实体财务报表审计,按照国家有关规定定期轮换鉴证小组成员 颅内动脉瘤最好发于A.后交通动脉起始部B.穿支动脉C.脉络膜前动脉D.大脑中动脉E.基底动脉 有人曾对日本的胃癌进行过移民流行病学调查研究,发现胃癌在日本高发,在美国低发。在美国出生的第二代日本移民胃癌的死亡率高于美国人,但低于日本国内的日本人,说明A.环境因素对胃癌的发生有较大关系B.遗传因素对胃癌的发生有较大关系C.遗传和环境交互作用D.很难判断E.以上均不正 尸斑出现的时间,是在患者死亡后()A.1小时B.2~4小时C.5~6小时D.12~24小时E.25~48小时 药物的首过消除最可能发生于A.口服给药后B.吸入给药后C.舌下给药后D.静脉注射后E.皮下注射后 大量的SiO2(硅酸盐)试样的测定应选择:。A.重量法B.碘量法C.分光光度法 在股道有中间道岔的情况下,接车进路的最末一个道岔区段是指。 银行承兑汇票手续费标准是A、非基本结算类服务价格B、基本结算类服务价格C、由我行自行确定的D、不是由人民银行统一确定的 短期融资券的期限最长不超过天?A、180B、270C、365D、720 局域网的主要功能和特点是。A.设备之间相距较远B.相互之间可以传输数据C.网内设备实现资源共享D.用特定的设备和传输媒体相连E.有特定的软件管理 B型题]分隔心脏左、右心房的解剖结构是。A.房间隔B.膈肌C.三尖瓣环D.二尖瓣环E.室间隔 对于表现为肾病综合征的老年患者,应首先考虑A.高血压肾小动脉硬化症B.慢性肾小球肾炎C.急性肾小球肾炎D.IgA肾病E.多发性骨髓瘤或其他肿瘤相关性肾病 心肌梗死超急性期的心电图表现是A.T波高耸,无ST段抬高和病理性Q波出现B.T波高耸,随即出现ST段抬高,无病理性Q波出现C.ST段弓背向上抬高,T波对称倒置,出现病理性Q波D.抬高的ST段回到等电位线,T波倒置变深,存在坏死型Q波E.ST-T基本恢复正常,存在坏死型Q波存在 以下设备哪些是无源设备?A.功分器B.耦合器C.衰减器D.以上都是 金属钠比金属钾。A.金属性强B.还原性弱C.原子半径大D.熔点低 数字出版产品的特点不包括。A.超链接B.开放性C.多样性D.互动性 凡埋弧焊补长度大于的,需打两遍点。 血K+浓度升高时,分泌增加的激素是A.心房钠尿肽B.血管紧张素ⅡC.肾素D.醛固酮E.抗利尿激素 细胞外可溶性黏附分子主要测定法是A.ELISAB.酶免疫组化法C.荧光免疫法D.流式细胞仪测定法E.时间分辨荧光免疫法 外胚间充质组织不包括A.鳃弓软骨B.牙骨质C.血管平滑肌D.血管周细胞E.横纹肌 人地关系“适应论” 炎症早期用热可()A.促进炎症局限B.促进炎性渗出物的吸收和消散C.使白细胞吞噬功能下降D.使新陈代谢降低E.使组胺类物质堆积 可以干扰降压药作用的药物有A.三环类抗抑郁剂(如多虑乎)B.口服避孕药C.拟交感胺类药物(如芬氟拉明)D.糖皮质激素E.非甾体类抗炎药(如乙酰水杨酸) 下列关于高中数学课程中促进多元化评价的说法不正确的是。A.评价应以尊重被评价对象为前提,评价主体要参与学校数学教育活动,并注意主体间的沟通B.定性评价可采取评语或成长记录等形式,评语或成长记录中应使用激励性语言全面、客观地描述学生的状况C.要重视学生做数学的过程,充分 作业在学生评价中的作用D.不提倡使用计算器、计算机等现代教育技术手段在评价学生学习中的运用 格塞尔提出的儿童适应性行为,主要包括。A.知觉、定向行动、姿势、移动、运动等发育B.知觉、定向行动、手指操作能力、注意、智力等发育C.知觉、定向行动、模仿能力等发育D.知觉、定向行动、人与人之间的交流能力等发育E.知觉、定向行动、相互理解沟通能力等发育 借记卡密码重置的交易代码为A.4216B.3057C.3000D.3027 销售培训:
ቤተ መጻሕፍቲ ባይዱ
相关文档
最新文档