空间向量坐标运算
空间向量的坐标运算

a b a1b1 a2b2 a3b3 a // b a1 b1,a2 b2,a3 b3( R)
a b a1b1 a2b2 a3b3 0.
若A(x1,y1,z1),B(x2,y2,z2), 则
无罪,该负责任的是那些劝说我的人。世上有很多很好的鞋,但要看适不适合你的脚。在这里,所有的经验之谈都无济于事,你只需在半夜时分,倾听你脚的感觉。 看到好位赤着脚参加世界田径大赛的南非女子的风采,我报以会心一笑:没有鞋也一样能破世界纪录!脚会长,鞋却
不变,于是鞋与脚,就成为一对永恒的矛盾。鞋与脚的力量,究竟谁的更大些?我想是脚。只见有磨穿了的鞋,没有磨薄了的脚。鞋要束缚脚的时候,脚趾就把鞋面挑开一个洞,到外面去凉快。 脚终有不长的时候,那就是我们开始成熟的年龄。认真地选择一种适合自己的鞋吧!一
这是从远古传下来的手艺,博物馆描述猿人生活的图画,都绘着腰间绑着兽皮的女人,低垂着乳房,拨弄篝火,准备食物。可见烹饪对于女人,先于时装和一切其他行业。汤不一定鲜美,却要热;饼不一定酥软,却要圆。无论从爱自己还是爱他人的角度想,“食”都是一件大事。一个不
爱做饭的女人,像风干的葡萄干,可能更甜,却失了珠圆玉润的本相。 ? 我喜欢爱读书的女人。书不是胭脂,却会使女人心颜常驻。书不是棍棒,却会使女人铿锵有力。书不是羽毛,却会使女人飞翔。书不是万能的,却会使女人千变万化。不读书的女人,无论她怎样冰雪聪明,只有一
只脚是男人,一只脚是女人,鞋把他们联结为相似而又绝不相同的一双。从此,世人在人生的旅途上,看到的就不再是脚印,而是鞋印了。 削足适履是一种愚人的残酷,郑人买履是一种智者的迂腐;步履维艰时,鞋与脚要精诚团结;平步青云时切不要将鞋儿抛弃…… 当然,脚
空间向量的坐标运算

(x2 x1 ) (y2 y1 ) (z2 z1 ) ;
例3 已知A(3,3,1),B(1,0,5)求
线段 AB的中点坐标和长度.
z 解:设M(x,y,z)是AB的中点,则 B(1,0,5)
OM=
M
1 2
(OA+OB)
AM=MB
o y
x
d A, B 1 3 0 3 5 1 29
2 2 2
A(3,3,1)
例4 已知A(3,3,1),B(1,0,5)求 到A,B两点距离相等的点P(x,y,z)的坐
标x,y,z满足的条件. 解:设点P到A,B的距离相等,则
2 2 2 2 2
( x 3) y 3 z 1 x 1 y 0 z 5
例2 已知向量a=(-2,2,0),b=(-2,0,2), 求向 量n使n⊥a,且n⊥b. 解:设n=(x, y, z,)则 n•a=(x, y, z,)•(-2,2,0)=-2x+2y=0 n•b=(x, y, z,)•(-2,0,2)=-2x+2z=0 所以y=x, z=x
于是n= (x, x, x)=x(1,1,1),
C 1 A1 N C A B
B1
M
课后作业
课本:P94 练习
P97 练习
z
D1
A1
F1 E1
B1
C1
D(0,0,0)
1 F1(O, 4
,1)
O D
A
C
y
x
B (1,,1) E1 3
4
思考题:直三棱柱ABC A1B1C1 , 底面ABC中, CA=CB=1,BCA=90o,棱AA1=2,M , N 分别为A1B1 ,AA1的中点. (1)求BN的长; (2)求 cos BA1 , CB1 的值; (3)求证:A1 B C1M .
课件2:3.1.4空间向量的直角坐标运算

研一研·问题探究、课堂更高效
小结 已知两个向量的坐标,证明这两个向量平行或垂 直,就是根据 a⊥b⇔a·b=0⇔a1b1+a2b2+a3b3=0,c∥d⇔c =xd⇔c1=xd1,c2=xd2,c3=xd3 (x∈R,x≠0)来证明.
研一研·问题探究、课堂更高效
跟踪训练 2 将本例中“若向量 ka+b 与 ka-2b 互相垂
练一练·当堂检测、目标达成落实处
3.若 ABCD 为平行四边形,且 A(4,1,3),B(2,-5,1),
C(-3,7,-5),则顶点 D 的坐标为
(D )
A.72,4,-1
B.(2,3,1)
C.(-3,1,5)
研一研·问题探究、课堂更高效
例 2 已知空间三点 A(-2,0,2),B(-1,1,2),C(-3,0,4),设 a =A→B,b=A→C.若向量 ka+b 与 ka-2b 互相垂直,求 k 的值.
解 a=(-1+2,1-0,2-2)=(1,1,0), b=(-3+2,0-0,4-2)=(-1,0,2), ∴ka+b=(k,k,0)+(-1,0,2)=(k-1,k,2), ka-2b=(k,k,0)-(-2,0,4)=(k+2,k,-4), ∴(k-1,k,2)·(k+2,k,-4)=(k-1)(k+2)+k2-8, 即 2k2+k-10=0,∴k=-52或 k=2.
=(2,1,2)-λ(1,1,2)=(2-λ,1-λ,2-2λ),
研一研·问题探究、课堂更高效
则Q→A·Q→B=(1-λ,2-λ,3-2λ)·(2-λ,1-λ,2-2λ) =(1-λ)(2-λ)+(2-λ)(1-λ)+(3-2λ)(2-2λ) =6λ2-16λ+10, ∴当 λ=43时,Q→A·Q→B取得最小值. 又O→Q=λO→P=43(1,1,2)=43,43,83. 所以,所求点 Q 的坐标为43,43,83.
空间向量数量积及坐标运算

空间向量数量积及坐标运算在空间解析几何中,向量是研究的重要对象之一,而向量的数量积和坐标运算是向量运算中的基本概念。
本文将介绍空间向量的数量积及其坐标运算方法。
一、空间向量的数量积空间中的向量可以用其坐标表示,记作a = (x1, y1, z1)和b = (x2, y2,z2),其中a、b分别是空间中的两个向量,xi、yi、zi为它们在笛卡尔坐标系中的坐标。
向量的数量积(又称点积或内积)定义为两个向量的对应坐标的乘积之和,即:a ·b = x1 * x2 + y1 * y2 + z1 * z2其中·表示数量积运算。
性质:1.数量积是实数。
2.数量积的结果等于向量乘积和坐标乘积之和。
3.数量积满足交换律:a · b = b · a。
4.数量积满足分配率:(a + b) · c = a · c + b · c。
二、向量的坐标运算1. 向量的加法设a = (x1, y1, z1)和b = (x2, y2, z2)是空间中的两个向量,它们的和记为c,则c的坐标为:x = x1 + x2y = y1 + y2z = z1 + z2即向量的和的每个坐标等于对应向量的坐标之和。
性质:1.向量的加法满足交换律:a + b = b + a。
2.向量的加法满足结合律:(a + b) + c = a + (b + c)。
2. 向量的减法设a = (x1, y1, z1)和b = (x2, y2, z2)是空间中的两个向量,它们的差记为c,则c的坐标为:x = x1 - x2y = y1 - y2z = z1 - z2即向量的差的每个坐标等于对应向量的坐标之差。
3. 向量的数乘设k为实数,a = (x, y, z)是空间中的一个向量,ka为向量a的数乘,即ka 的坐标为:x' = k * xy' = k * yz' = k * z性质:1.数乘满足结合律:k(ka) = (k * k')a。
空间向量的3种坐标运算洋葱数学

空间向量的3种坐标运算洋葱数学摘要:1.空间向量的概念及坐标表示2.空间向量的加法运算3.空间向量的减法运算4.空间向量的数乘运算5.空间向量的坐标运算应用举例正文:一、空间向量的概念及坐标表示空间向量是指在三维空间中的有向线段,它可以用来表示空间中的物体和运动。
空间向量通常用有序的三元组(x, y, z) 来表示,其中x, y, z 分别代表向量在x, y, z 三个坐标轴上的分量。
二、空间向量的加法运算空间向量的加法是指将两个空间向量相加,得到一个新的空间向量。
空间向量的加法满足平行四边形法则,即两个向量的和等于以这两个向量为邻边的平行四边形的对角线。
设向量A = (x1, y1, z1) 和向量B = (x2, y2, z2),则向量A 和向量B 的和为:A +B = (x1 + x2, y1 + y2, z1 + z2)三、空间向量的减法运算空间向量的减法是指将两个空间向量相减,得到一个新的空间向量。
空间向量的减法也满足平行四边形法则,即两个向量的差等于以这两个向量为邻边的平行四边形的对角线。
设向量A = (x1, y1, z1) 和向量B = (x2, y2, z2),则向量A 和向量B 的差为:A -B = (x1 - x2, y1 - y2, z1 - z2)四、空间向量的数乘运算空间向量的数乘是指将一个向量与一个标量相乘,得到一个新的空间向量。
数乘运算满足分配律和结合律。
设向量A = (x, y, z) 和标量k,则向量A 与标量k 的乘积为:kA = (kx, ky, kz)五、空间向量的坐标运算应用举例假设有一个空间直角坐标系,原点为O,向量A = (2, 3, 4) 和向量B = (1, 2, 3)。
现在需要求解向量A 和向量B 的和、差以及向量A 与向量B 的数乘。
空间向量的直角坐标及其运算

∴ AP AB , AP AD,又 AB AD A , AP 平面 ABCD,
∴ AP 是平面 ABCD的法向量; 解:(2) AB 22 12 42 21 , AD 42 22 02 2 5 ,
∴ SABC
1 2
AB
AC
sin
A
101 。 2
7、在棱长为1的正方体 ABCD A1B1C1D1 中,E, F 分别是 DD1、DB 中点,G 在棱CD 上,
CG
1 4
CD
,
H
是
C1G
的中点;
(1)求证: EF B1C ;(2)求 EF 与C1G 所成的角的余弦;(3)求 FH 的长。
解:如图以 D 为原点建立直角坐标系 D xyz ,
(3)证明线面平行:若直线的方向向量与平面的一个法向量垂直,则这直线与该平面平行;
(4)证明面面平行:若两个不重合平面的法向量平行,则这两个平面就互相平行。 11、用向量求异面直线所成角:
找出两条异面直线各自的一个方向向量,计算这两个向量的夹角 ,则 (或 的补角)
即为两条异面直线所成的角。
设 a、b 是异面直线, d1 是直线 a 的一个方向向量, d2 是直线b 的一个方向向量,异面
一、基本概念:
1、空间直角坐标系:
(1)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用 i, j,k
表示;
(2)在空间选定一点O 和一个单位正交基底 i, j,k ,以点O 为原点,分别以 i, j,k 的方向
为正方向建立三条数轴:x 轴、 y 轴、z 轴,它们都叫坐标轴;我们称建立了一个空间 直角坐标系 O xyz ,点O 叫原点,向量 i, j, k 都叫单位向量;通过每两个坐标轴的平
向量的坐标表示与运算公式

向量的坐标表示与运算公式向量的坐标表示:1. 在二维平面中,一个向量可以用有序实数对 (x, y) 表示,其中 x 和 y 分别表示向量的横坐标和纵坐标。
2. 在三维空间中,一个向量可以用有序实数三元组 (x, y, z) 表示,其中 x、y 和 z 分别表示向量的三个坐标分量。
向量的运算公式:1. 向量的加法:- 定义:如果向量 A = (x₁, y₁) 和向量 B = (x₂, y₂),则 A + B = (x₁ + x₂, y₁ + y₂)。
- 几何意义:向量加法就是把两个向量的起点放在一起,然后把两个向量终点连起来的向量。
2. 向量的数乘:- 定义:对于任意实数 k,如果向量 A = (x, y),则 kA = (kx, ky)。
- 几何意义:数乘就是把向量按比例放大或缩小。
3. 向量的减法:- 定义:如果向量 A = (x₁, y₁) 和向量 B = (x₂, y₂),则 A - B = (x₁ - x₂, y₁- y₂)。
- 几何意义:向量减法就是从第一个向量的终点指向第二个向量的终点的向量。
4. 向量的数量积(点乘):- 定义:如果向量 A = (x, y) 和向量 B = (x', y'),则A · B = xx' + yy'。
- 几何意义:数量积等于两向量的长度之积和它们夹角的余弦值的乘积。
5. 向量的向量积(叉乘):- 定义:如果向量 A = (x, y) 和向量 B = (x', y'),则A × B 是一个垂直于A 和B 的向量,其大小等于A × B × sin(θ),其中θ 是 A 和 B 之间的夹角,方向按照右手定则确定。
- 几何意义:向量积表示一个向量相对于另一个向量的旋转。
以上是向量的基本坐标表示和运算公式,是解析几何和线性代数中的基础概念。
1.3.2空间向量运算的坐标表示

坐标表示
2.空间向量的坐标与其端点坐标的关系:
设A(x1,y1,z1),B(x2,y2,z2),则
=(x2-x1,y2-y1,z2-z1).
即一个空间向量的坐标等于表示此向量的有向线段的终点坐标减
去起点坐标.
3.空间向量平行与垂直条件的坐标表示
若向量a=(a1,a2,a3),b=(b1,b2,b3),则
一、空间向量运算的坐标表示
1.空间向量运算法则设向量a=(a1,a2,a3),b=(b1,b2,b3),λ∈R,那么
向量运算
向量表示
加法
a+b
(a1+b1,a2+b2,a3+b3)
减法
a-b
(a1-b1,a2-b2,a3-b3)
数乘
λa
(λa1,λa2,λa3)
数量积
a·b
a1b1+a2b2+a3b3
若向量a=(a1,a2,a3),b=(b1,b2,b3),则
21 + 22
(1)|a|= ·=
(2)cos<a,b>=
·
||||
+ 23
z
P1
k
;
1 1 + 2 2 + 3 3
=
;
12 + 22 + 32 12 + 22 + 32
(3)若 P1(x1,y1,z1),P2(x2,y2,z2),则 P1,P2 两点间的距离为
1
3
1,- ,-
1,1),c=
2
2 ,则它们之间的关系是( A )
A.a⊥b 且 a∥c
B.a⊥b 且 a⊥c
C.a∥b 且 a⊥c
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1、在正方体
ABCD—A1B1 C1D1 中 E、F 分别是 BB1 、 CD 的中点 , 求证: D1F 平面ADE
Z
D1
A1
D A
X
C1 B1
E
F
C Y
B
练习一:
1.求下列两个向量的夹角的余弦:
(1) a (2 , 3 , 3) , b (1 , 0 , 0) ;
(2) a (1 , 1 , 1) , b (1 , 0 , 1) ;
单位正交基底:如果空间的一个基底的三个基向量互相
垂直,且长都为1,则这个基底叫做单位正交基底,常用 i , j ,
k 来表示.
空间直角坐标系:在空间选定一点
z
O和一个单位正交基底 i、j、k 。以点O为
原点,分别以i、j、k的正方向建立三条数
k
轴:x轴、y轴、z轴,它们都叫做坐标轴.这
i Oj
y
样就建立了一个空间直角坐标系O--xyz
空间向量坐标运算法则,关键是注意空间几何关系与 向量坐标关系的转化,为此在利用向量的坐标运算判断空 间几何关系时,首先要选定单位正交基底,进而确定各向 量的坐标。
练习2 如图在边长为2的正方体ABCD-A1B1C1D1中,取D点 为原点建立空间直角坐标系,O、M、P、Q分别是 AC、DD1、CC1、A1B1的中点,写出下列向量的坐标.
1.距离公式 (1)向量的长度(模)公式
| a |2 a a a12 a22 a32
| b |2 b b b12 b22 b32
注意:此公式的几何意义是表示长方体的对角线的 长度。
(2)空间两点间的距离公式
在空间直角坐标系中,已知 A( x1 , y1 , z1)、 B( x2 , y2 , z2 ),则
高中选修2-1
空间向量的正交分解及其坐标表示 空间向量运算的坐标表示
复习引入:
共面向量基本定理:如果两个向量 a,不b共线,则向量
与向量 p共面的充要条件是存在唯一的有序实数对 (使x, y)
a, b
p xa yb
因此,平面内的任意一个向量 p,我们都可以用与该平面平
行的两个不共线的向量 a, b的线性组合来表示( 称a,为b该平
AB ( x2 x1 , y2 y1 , z2 z1)
| AB | AB AB ( x2 x1)2 ( y2 y1)2 (z2 z1)2
d A,B ( x2 x1)2 ( y2 y1)2 (z2 z1)2
(2)、两个向量夹角公式
cos a, b a b | a || b |
a b (a 1b1, a2 b2 , a3 b3 );
a (a1,a2 ,a3 ),( R) ;
a b a1b1 a2b2 a3b3
;
a / /b a1 b1, a2 b2 , a3 b3 ( ;R)
a b a1b1 a2b2 a3b3 0 ;
四、距离与夹角
2.求下列两点间的距离:
(1) A(1,1, 0) , B(1,1,1) ;
(2) C(3 , 1, 5) , D(0 , 2 , 3) .
五、应用举例
例1 已知A(3 , 3 , 1)、B(1, 0 , 5) ,求: A (1)线段 AB 的中点坐标和长度;
解:设 M(x , y , z)是 AB 的中点,则
x
点O叫做原点,向量i、j、k都叫做坐标向量.通过每两个坐标轴的 平面叫做坐标平面。分别称为xOy平面,yOz平面,xOz平面.
二、向量的直角坐标
给定一个空间直角坐标系和向
量 a,且设i、j、k为坐标向量,
由空间向量基本定理,存在唯一的
有序实数组( a1, 2a, 3)a使 = a1i+a2j+ a3k a
D1 z
A1
C1 B1
D
xA
y
C
B
思考:设A(x1,y1,z1), B(x2,y2,z2), 则AB的坐标表示是什么?
AB=OB-OA=(x2,,y2,z2)-(x1,y1,z1)
=(x2-x1,y2-y1,z2-z1). 一个向量在直角坐标系中的坐标等于表示这个向量 的有向线段的终点的坐标减去起点的坐标.
注意:
a1b1 a2b2 a3b3
;
a12 a22 a32 b12 b22 b32
(1)当cos a , b 1时,a 与 b同向; (2)当cos a , b 1时,a 与 b反向; (3)当cos a , b 0时,a b 。
思考:当 0 cos a , b 1及 1 cos a , b 时 0,夹 角在什么范围内?
a
即 向量如果起点平移到原点, 那么它的坐标表示就是其终点 的坐标
k i Oj
x
A(x,y,z) y
在单位正交基底i, j, k中与向量OA对应的有序实 数组(x,y,z),其中x叫做点A的横坐标,y叫做点A的纵 坐标,z叫做点A的竖坐标.
练习1 如图建立直角坐标系,已知正方体ABCD-A1B1C1D1的棱 长为2,求正方体各顶点的坐标.
M
B
OM
1 (OA OB) 2
1 2
(3
,
3
,
1)
1
,
0,
5
2
,
3 2
,
3
,
O
∴点 M的坐标是
2
,
有序数组( a1, 2a, 3)叫a 做 在 a
空间直角坐标系O--xyz中的坐标,
记作.
a=( a1 , a 2, a3)
za
k i Oj
A(a1,a2, a3)y
x
在空间直角坐标系O--xyபைடு நூலகம்中,对空间任一点A,
对应一个向量OA,于是存在唯一的有序实数组 z
x,y,z,使 OA=x i+y j+ z k
面的一组基底)
空间向量的基本定理:
存在如一p果 个三唯个一向的量有序a实,数b 不组共, cx面、,y、那z么,使对得空:间任一向量 ,
p xa yb zc
a, b, c 叫做空间的一个_基__底___
空间任意三个不共面向量都可以构成空间的一个基底 思考:基底能不能含有零向量?
一、空间直角坐标系
AM ______________
OB1 ______________
PQ ________________
D1 z
C1
A1
Q
M
B1
P
y
D
C
xA
O B
三、向量的直角坐标运算
设a (a1, a2 , a3 ), b (b1, b2 , b3 )则
a b (a 1b1, a2 b2 , a3 b3 ) ;