空间向量数量积及坐标运算

合集下载

空间向量数量积的坐标表

空间向量数量积的坐标表
数量积满足结合律,即$(mathbf{A} cdot mathbf{B}) cdot mathbf{C} = mathbf{A} cdot (mathbf{B} cdot mathbf{C})$。
02
空间向量数量积的坐标表示
向量坐标表示
向量坐标表示
01
一个向量可以用坐标系中的有序实数对来表示,其中第一个数
(mathbf{b} cdot mathbf{c})$。
详细描述
结合律允许我们改变数量积运算的括号顺序,即不改变结果。结合律表明,向量的数量 积满足结合性质,可以按照任意组合进行计算。
04
空间向量数量积的应用
在解析几何中的应用
计算向量的长度和角度
通过数量积,可以计算向量的长度(模长)以及两个向量之间的 角度。
性质
数量积满足交换律,即$mathbf{A} cdot mathbf{B} = mathbf{B} cdot mathbf{A}$。
数量积满足分配律,即$(mathbf{A} + mathbf{B}) cdot mathbf{C} = mathbf{A} cdot mathbf{C} + mathbf{B} cdot mathbf{C}$。
表示向量的起点,第二个数表示向量的终点。
坐标系选择
02
选择一个合适的坐标系,使得向量的坐标表示更加直观和方便。
坐标变换
03
当坐标系发生变化时,向量的坐标表示也会随之改变。
向量数量积的坐标表示
数量积定义
两个向量的数量积是一个标量,等于 两个向量的对应坐标之和再乘以它们 的夹角的余弦值。
计算方法
根据向量的坐标表示,可以直接计算 出它们的数量积。
详细描述

空间向量数量积及坐标运算

空间向量数量积及坐标运算

空间向量数量积及坐标运算在空间解析几何中,向量是研究的重要对象之一,而向量的数量积和坐标运算是向量运算中的基本概念。

本文将介绍空间向量的数量积及其坐标运算方法。

一、空间向量的数量积空间中的向量可以用其坐标表示,记作a = (x1, y1, z1)和b = (x2, y2,z2),其中a、b分别是空间中的两个向量,xi、yi、zi为它们在笛卡尔坐标系中的坐标。

向量的数量积(又称点积或内积)定义为两个向量的对应坐标的乘积之和,即:a ·b = x1 * x2 + y1 * y2 + z1 * z2其中·表示数量积运算。

性质:1.数量积是实数。

2.数量积的结果等于向量乘积和坐标乘积之和。

3.数量积满足交换律:a · b = b · a。

4.数量积满足分配率:(a + b) · c = a · c + b · c。

二、向量的坐标运算1. 向量的加法设a = (x1, y1, z1)和b = (x2, y2, z2)是空间中的两个向量,它们的和记为c,则c的坐标为:x = x1 + x2y = y1 + y2z = z1 + z2即向量的和的每个坐标等于对应向量的坐标之和。

性质:1.向量的加法满足交换律:a + b = b + a。

2.向量的加法满足结合律:(a + b) + c = a + (b + c)。

2. 向量的减法设a = (x1, y1, z1)和b = (x2, y2, z2)是空间中的两个向量,它们的差记为c,则c的坐标为:x = x1 - x2y = y1 - y2z = z1 - z2即向量的差的每个坐标等于对应向量的坐标之差。

3. 向量的数乘设k为实数,a = (x, y, z)是空间中的一个向量,ka为向量a的数乘,即ka 的坐标为:x' = k * xy' = k * yz' = k * z性质:1.数乘满足结合律:k(ka) = (k * k')a。

空间向量的运算的坐标表示

空间向量的运算的坐标表示

三、空间ห้องสมุดไป่ตู้量长度与夹角的坐标表示
设 = (x1, y1, z1), b = (x2, y2, z2 ) a 根 空 向 运 的 标 示有 据 间 量 算 坐 表 , (1) | a |= a⋅ a = x + y + z ,
2 1 2 1 2 1
(2 ) cos < a, b >= (a ≠ 0, b ≠ 0)
= 2 × (−5) + 3 × (−13) + 2 × 6 = −10 − 39 + 12 = −37。
练 1 已 a = (−1 −3,2), b = (1 2,0).求: 习、 知 , , (1)2a,−5a, a + 2b,2a −b; r r r r (2)(a + 2b) ⋅ (−2a +b)。 r r 解 : (1)2a = (−2, −6, 4),−5a = (5,15, −10), r r r r a + 2b = (1,1, 2), 2a − b = (−3, −8, 4)。 r r r r (2)(a + 2b) ⋅ (−2a + b) = 3。
x1x2 + y1y2 + z1z2 x + y +z ⋅ x + y +z
2 1 2 1 2 1 2 2 2 2 2 2
(3)a ⊥ b ⇔ x1x2 + y1y2 + z1z2 = 0
练 2 判 下 向 是 平 或 直 习 断 列 量 否 行 垂 r r (1 a = (1 −2,3), b = (1 ) , ,2,1)。 r r (2)a = (0, −3,3), b = (0,1 −1). , r r 1 1 2 (3)a = (−3,2,4), b = (− , , ). 2 3 3 r 3 r 3 (4)a = ( , −3,2), b = (0,1 − ). , 2 2

高考一轮复习 空间向量运算 知识点+例题+练习

高考一轮复习 空间向量运算 知识点+例题+练习

1.空间向量的有关概念及定理(1)空间向量:在空间中,具有________和________的量叫做空间向量.(2)相等向量:方向________且模________的向量.(3)共线向量定理对空间任意两个向量a ,b (a ≠0),b 与a 共线的充要条件是________________________.(4)共面向量定理如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在有序实数对(x ,y ),使得p =x a +y b ,推论的表达式为MP →=xMA →+yMB →或对空间任意一点O 有,OP →=________________或OP →=xOA →+yOB →+zOM →,其中x +y +z =____.(5)空间向量基本定理如果三个向量e 1,e 2,e 3不共面,那么对空间任一向量p ,存在惟一的有序实数组(x ,y ,z ),使得p =________________________,把{e 1,e 2,e 3}叫做空间的一个基底.2.空间向量的坐标表示及应用(1)数量积的坐标运算若a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a·b =__________________________________________________________________.(2)共线与垂直的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),若b ≠0,则a ∥b ⇔________⇔__________,________,______________,a ⊥b ⇔__________⇔________________________(a ,b 均为非零向量).(3)模、夹角和距离公式设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则|a |=a·a =________________________________,cos 〈a ,b 〉=a·b |a||b|=______________________________________________________. 若A (a 1,b 1,c 1),B (a 2,b 2,c 2),则|AB →|=______________________________.3.利用空间向量证明空间中的位置关系若直线l ,l 1,l 2的方向向量分别为v ,v 1,v 2,平面α,β的法向量分别为n 1,n 2,利用向量证明空间中平行关系与垂直关系的基本方法列表如下: 平行 垂直直线 与直线 l 1∥l 2⇔v 1∥v 2⇔v 1=λv 2(λ为非零实数)l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0 直线 与平面 ①l ∥α⇔v ⊥n 1⇔v ·n 1=0②l ∥α⇔v =x v 1+y v 2其中v 1,v 2为平面α内不共线向量,x , y 均为实数l ⊥α⇔v ∥n 1⇔v =λn 1(λ为非零实数)平面 与平面 α∥β⇔n 1∥n 2⇔n 1=λn 2(λ为非零实数)α⊥β⇔n 1⊥n 2⇔n 1·n 2=0自我检测1.若a =(2x,1,3),b =(1,-2y,9),且a ∥b ,则x =______________________,y =________.2.如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则B 1M →用a ,b ,c 表示为________.3.在平行六面体ABCD —A ′B ′C ′D ′中,已知∠BAD =∠A ′AB =∠A ′AD =60°,AB =3,AD =4,AA ′=5,则|AC ′→|=________.4.下列4个命题:①若p =x a +y b ,则p 与a 、b 共面;②若p 与a 、b 共面,则p =x a +y b ;③若MP →=xMA →+yMB →,则P 、M 、A 、B 共面;④若P 、M 、A 、B 共面,则MP →=xMA →+yMB →.其中真命题是________(填序号).5.A (1,0,1),B (4,4,6),C (2,2,3),D (10,14,17)这四个点________(填共面或不共面).探究点一 空间基向量的应用例1 已知空间四边形OABC 中,M 为BC 的中点,N 为AC 的中点,P 为OA 的中点,Q 为OB 的中点,若AB =OC ,求证:PM ⊥QN .变式迁移1如图,在正四面体ABCD中,E、F分别为棱AD、BC的中点,则异面直线AF和CE所成角的余弦值为________.探究点二利用向量法判断平行或垂直例2两个边长为1的正方形ABCD与正方形ABEF相交于AB,∠EBC=90°,点M、N分别在BD、AE上,且AN=DM.(1)求证:MN∥平面EBC;(2)求MN长度的最小值.变式迁移2如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1,M是线段EF的中点.求证:(1)AM∥平面BDE;(2)AM⊥面BDF.探究点三利用向量法解探索性问题例3如图,平面P AC⊥平面ABC,△ABC是以AC为斜边的等腰直角三角形,E,F,O分别为P A,PB,AC的中点,AC=16,P A=PC=10.(1)设G是OC的中点,证明FG∥平面BOE;(2)在△AOB内是否存在一点M,使FM⊥平面BOE?若存在,求出点M到OA,OB的距离;若不存在,说明理由.变式迁移3已知在直三棱柱ABC—A1B1C1中,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D为A1C1的中点,E为B1C的中点.(1)求直线BE与A1C所成的角的余弦值;(2)在线段AA1上是否存在点F,使CF⊥平面B1DF?若存在,求出AF;若不存在,请说明理由.探究点三 利用向量法求二面角例3 如图,ABCD 是直角梯形,∠BAD =90°,SA ⊥平面ABCD ,SA =BC =BA =1,AD =12,求面SCD 与面SBA 所成角的余弦值大小.变式迁移3 如图,在三棱锥S —ABC 中,侧面SAB 与侧面SAC 均为等边三角形,∠BAC =90°,O 为BC 中点.(1)证明:SO ⊥平面ABC ;(2)求二面角A —SC —B 的余弦值.探究点四综合应用例4如图所示,在三棱锥A—BCD中,侧面ABD、ACD是全等的直角三角形,AD 是公共的斜边,且AD=3,BD=CD=1,另一个侧面ABC是正三角形.(1)求证:AD⊥BC;(2)求二面角B-AC-D的余弦值;(3)在线段AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定点E的位置;若不存在,说明理由.变式迁移4 (2011·山东,19)在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC,AB=2EF.(1)若M是线段AD的中点,求证:GM∥平面ABFE;(2)若AC=BC=2AE,求二面角A-BF-C的大小.1、如图所示,已知ABCD —A 1B 1C 1D 1是棱长为3的正方体,点E 在AA 1上,点F 在CC 1上,且AE =FC 1=1.(1)求证:E 、B 、F 、D 1四点共面;(2)若点G 在BC 上,BG =23,点M 在BB 1上,GM ⊥BF ,垂足为H ,求证:EM ⊥平面BCC 1B 1.2、如图,四边形ABCD 是边长为1的正方形,MD ⊥平面ABCD ,NB ⊥平面ABCD ,且MD =NB =1,E 为BC 的中点.(1)求异面直线NE 与AM 所成角的余弦值;(2)在线段AN 上是否存在点S ,使得ES ⊥平面AMN ?若存在,求线段AS 的长;若不存在,请说明理由.3、如图所示,已知空间四边形ABCD的各边和对角线的长都等于a,点M、N分别是AB、CD的中点.(1)求证:MN⊥AB,MN⊥CD;(2)求MN的长;(3)求异面直线AN与CM所成角的余弦值.4、如图所示,AF、DE分别是⊙O、⊙O1的直径,AD与两圆所在的平面均垂直,AD =8.BC是⊙O的直径,AB=AC=6,OE∥AD.(1)求二面角B-AD-F的大小;(2)求直线BD与EF所成的角的余弦值.。

空间向量知识点归纳总结(经典)

空间向量知识点归纳总结(经典)

空间向量与立体几何知识点归纳总结一.知识要点。

1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。

注:(1)向量一般用有向线段表示•同向等长的有向线段表示同一或相等的向量。

(2) 向量具有平移不变性2. 空间向量的运算。

定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。

OB = OA+ AB = a+b .BA = OA-OB = a-b .OP = λa(λGR)运算律:⑴加法交换律:a + b =b + a ⑵加法结合律:(^ + fe) + c = + + c)⑶数乘分配律:+ b) = λa + λb运算法则:三角形法则、平行四边形法则.平行六面体法则 3. 共线向量。

(1) 如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共 线向量或平行向量,N 平行于方,记作N 〃b 。

(2 )共线向量定理:空间任意两个向量万、b (方≠6),ababAB = λAC OC = XOA+ yOB(^^x + y = l) a 土(1) 定义:一般地,能平移到同一平面内的向量叫做共面向量。

说明:空间任意的两向量都是共面的。

(2) 共面向量定理:如果两个向量",5不共线,0与向量久5共面的条件是存在实数—♦兀」'使p = xa + yb 9(3) 四点共面:若A 、B 、C 、P 四点共面<=>AP = xAB + yAC共面向量©OP = XOA + yOB +zOC(其中兀 + y + z = 1)在一个唯一的有序实数组x,y,Z f使p = xa+ yb +zc 9—♦若三向量GbE不共面,我们把{a.b,c}叫做空间的一个基底,a,b,c叫做基向量, 空间任意三个不共面的向量都可以构成空间的一个基底。

推论:设o,4,5C是不共面的四点,则对空间任一点P,都存在唯一的三个有序实数X,y.Z f使OP = XOA + yOB + zOC O6.空间向量的直角坐标系:(1)空间直角坐标系中的坐标:在空间直角坐标系0 —厂Z中,对空间任一点A,存在唯一的有序实数组(兀”Z), 使OA = xi + yi+忑,有序实数组(x,y,z)叫作向量A在空间直角坐标系O-XK中的坐标, 记作A(X,y,z), X叫横坐标,y叫纵坐标,Z叫竖坐标。

选修2-1-第三章-空间向量及其运算知识点

选修2-1-第三章-空间向量及其运算知识点

空间向量及其运算知识点1.空间向量的有关概念⑴空间向量:在空间中,具有大小和方向的量叫做空间向量.(2)单位向量:模为1的向量称为单位向量(3)相等向量:方向相同且模相等的向量.(4)共线向量:表示空间向量的有向线段所在的直线互相平行或重合的向量.(5)共面向量:平行于同一个平面的向量.2•空间向量的加法、减法与数乘运算向量的加减法满足平行四边形法则和三角形法则向量加法的多边形法则:首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量uuu uuu uuuu uuuu uuuuuOAn=OA+A| A2+ A2A g+ + An—i A n•运算律:①加法交换律: a + b= b + a ②加法结合律:(a+ b) + c= a + (b + c)③数乘分配律:入(+ b)=入a入b.3.共线向量、共面向量定理和空间向量基本定理(1)共线向量定理对空间任意两个向量 a, b(b丰0) a II b的充要条件是存在实数人使得a =^b推论:|点P在直线 AB上的充要条件是:uuu um存在实数人使得AP AB ①uuu uir uur或对空间任意一点O,有OP OA AB ②um uur urn或对空间任意一点O, 有OP xOA yOB其中x+ y= 1 ③urn uur um uir uuu uur uur uur【推论③推导过程: OP OA AB OA (AO OB) (1 )OA OB】(2)共面向量定理如果两个向量a, b不共线,那么p与a, b共面的充要条件是存在唯一有序实数对(x,y)使p = xa+ yb推论:|空间一点P位于平面 ABC内的充要条件|是uur uur uur存在唯一有序实数对(x,y)使AP xAB yAC ,uin uir uur uuu或对空间任意一点O, 有OP OA xAB yACurn uur uur uuu或对空间任意一点O, 有OP xOA yOB zOC,其中x+ y+ z= 1uur uur uuu uuu uur uur uuu【推论③推导过程呈:OP OA xAB yAC (1 x y)OA xOB yOC】(3)空间向量基本定理如果三个向量a, b, c不共面,那么对空间任一向量p,存在有序实数组{x, y, z},使得p = xa+ yb+ zc基底:把{a, b, c}叫做空间的一个基底,空间任何三个不共面的向量都可以构成空间的一个基底.4.空间向量的数量积及运算律(1)数量积及相关概念①两向量的夹角:已知两个非零向量 a , b,在空间任取一点 0,作OA= a, Ofe= b,则/ AOB叫做向量a与b的夹角,记作〈a, b >,其范围是0w〈 a, b >三爭若〈a, b〉=寸,则称a与b互相垂直,记作a丄b.②两向量的数量积:已知空间两个非零向量a, b,向量a, b的数量积记作a b,且a b= | a||b |cos〈 a, b >.(2)空间向量数量积的运算律:①结合律:(扫)b=?(ab);②交换律:a b = b a;③分配律:a ( b+ c)= a b + a c.5.空间向量的坐标表示及应用(1)数量积的坐标运算:a(2) 共线与垂直的坐标表示:b = a 1b 1 + a 2b 2+ a 3b 3.a / b? a= ?b? a 1 =入 b, a 2=入 2, a 3=入 3 (入€ R),a 丄b? a b= 0? a 1b 1+ a 2b 2+ a 3b 3= 0(a, b 均为非零向量). (3)模、夹角和距离公式: | a| = .'a a = 'a ! + a 2 + a 3,a b a 1b 1 + a 2b 2+ a 3b 3C0S a,b |a||b|.'a 2+ a 2+ a 3 • b 1 + b 2 +.设 A(a 1, b 1, C 1), B(a 2, b 2,⑵,贝U d AB = | AB| = : a 2 — a 1 2+b 2— b 1 2+Q —C 1 26. 用空间向量解决几何问题的一般步骤:(1) 适当的选取基底{a, b, c}; (2) 用a ,b ,c 表示相关向量; (3) 通过运算完成证明或计算问题.题型一 空间向量的线性运算 用已知向量来表示未知向量,应结合图形,将已知向量和未知向量转化至三角形或平行四边形中,表示为其他向量 的和与差的形式,进而寻找这些向量与基向量的关系.例1:三棱锥 O —ABC 中,M, N 分别是OA, BC 的中点,G 是厶ABC 的重心,用基向量 OA, OB, OC 表示MG , OG解析:M G = M A + AG= 2O A+ 3AN= ^OA+ |(O N —O A)=苏+f[2(OB+ OC)—OA]= — |O A+ 3<5B + ^OCC )G = O M + M G = ?OA- 6<5A +|<5B +1(5C = £O A+ |OB + 扌OC〉1 T T —urn uu n uuu uuu例 2:如图所示,ABCD — A 1B 1C 1D 1 中,ABCD 是平行四边形.若 AE= |EC A*= 2FD,且 EF =x AB+y AD+zAA ,题型二共线定理应用 向量共线问题: 充分利用空间向量运算法则,用空间中的向量表示 a 与b 共线.点共线问题:证明点共线问题可转化为证明向量共线问题,如证明 例3:如图所示,四边形 ABCD, ABEF 都是平行四边形且不共面,1 1•/ E A = — 3心-3( AB+ AD) 1 1 2 uuu A F = AD+ DF= AD — F D= A D — A 1D= A D —; (A 1A+ AD)= — AD 3331 uuu 1 uuu AA EF= EA+ AF= AD3 3 1 uuu AA 31 uuu AB 3a 与b ,化简得出a = b ,从而得出a// b,即A 、B 、C 三点共线,即证明 AB 与AC 共线.M , N 分别是AC, BF 的中点,判断CE 与 MN 是否连接 AF, EF= EA+ A F.ABCD- A 1B 1C 1D 1 中,E 在 A 1D 1 上,且 A 1E= 2EDi,AA 1= c.2 2 2 2 2 2 2 A 1 F= §FC= 5A 1 C=5(AC — AA 1) = 5(AB + AD — AA 1) =5a + £b — £c42 2 2 TTTT2 215b — §c= 5 a — 3b — c , EB= EA + A 1A+ AB= — 3b — c+ a= a — 3b — c,T T2•- EF= 5EB •所以E, F, B 三点共线.题型三共面定理应用yPC,或对空间任一点 O,有 OP= OA+ xPB+ yPC 或 OP= xOA+ yOB+ zOC(x+ y+ z= 1)即可uur CE uir CBuur BE uuu MNuuu MC uir CB uuu BN 1 uuu — AC 2TMN , uir i uu uur 1 uuu uu CB (BA BE) (AC BA)uir CB 1 uur 1 uir2BE"CB1 uur BE 2••• CE= 2MN ,••• CE// 即CE 与MN 共线.例5 :已知A 、B 、2C 三点不共线,对于平面 ABC 外一点O,若OP= 5ITT1 2OA+ 5OB+ 5OC,则点P 是否与A 、B 、C定共面试说明理由. 2 UUU 解析:••• OP 5 1TULT OA 2T1 uu u — OB 52 uuu -OC3 2 uuu uir -(OP + PA) 5 1 uuu uir —(OP + PB) 5 2 uu u uuu uiu 2 uir 1 uir 2 uu —(OP + PC)=OP + —PA+— PB + — PC 3 5 5 3• AP=;AB+;AC,故 A 、B 、C P 四点共面•F 在对角线A 1C 上,且心託点共面问题:证明点共面问题可转化为证明向量共面问题,如要证明P 、A 、B 、C 四点共面,只要能证明 PA= xPB+例4:如图所示,在正方体2 T例6:如图所示,已知P 是平行四边形 ABCD 所在平面外一点, 连结PA 、PB PC PD,点E 、F 、G 、H 分别为△ PAB△ PBC △ PCD △ PDA 的重心,应用向量共面定理证明:E 、F 、G 、H 四点共面.证明:分别延长PE 、 ••• E、F 、G 、H 分别是所在三角形的重心,•f f f例7:正方体ABCD- A 1B 1C 1D 1中,E, F 分别是BBi 和A 1D 1的中点,求证向量 A 1B, BQ, EF 是共面向量.Dy Ci157i1 11 1证明:如图所示,EF= EB+ BA i + A 1F = 2B i B-A i B+ 尹1。

向量的数量积的坐标运算

向量的数量积的坐标运算

在力学中,物体的动能与其速度 向量的模的平方成正比,可以通 过向量的数量积来计算。
在电磁学中的应用
计算电场强度
01
电场强度向量可以通过电荷分布密度向量与距离向量的数量积
来计算。
判断电场方向
02
电场强度的方向可以通过电场向量与距离向量的数量积来判断。来自计算磁感应强度03
磁感应强度向量可以通过电流密度向量与距离向量的数量积来
数量积的性质
分配律:(a+b)·c = a·c + b·c,即向量 数量积满足分配律。
零向量与任何向量 的数量积都是0。
交换律:a·b = b·a, 即向量数量积满足 交换律。
结合律:(λa)·b = λ(a·b) = a·(λb),其 中λ是标量,即向量 数量积满足结合律。
若向量a和b垂直, 则它们的数量积为0, 即a·b = 0。
VS
性质与应用
向量数量积具有交换律、分配律等性质, 在物理、工程、计算机图形学等领域有广 泛应用,如计算力、功、能量等物理量, 以及进行向量的投影、旋转等操作。
对未来研究的展望
深入研究高维向量数量积的性质和应用
随着数据维度的增加,高维向量的数量积运算将变得更加复杂,需要 进一步研究其性质和应用。
探索向量数量积在机器学习等领域的应用
在物理中,向量的数量积常用 来表示力、功等物理量。
04 向量的数量积坐标运算方 法
直接计算法
定义
直接计算法是指根据向量数量积的定义,通过计算两个向 量的模长和它们之间的夹角余弦值来求得数量积的方法。
公式
设两个向量 a = (x1, y1),b = (x2, y2),则它们的数量积 a · b = |a| * |b| * cosθ,其中 |a| 和 |b| 分别是向量 a 和 b 的模长,θ 是向量 a 和 b 之间的夹角。

空间向量数量积的坐标表示

空间向量数量积的坐标表示

Hale Waihona Puke 0时,的夹角在什么范围内?
练习一:
1.求下列两点间的距离:
(1) A(1,1, 0) , B(1,1,1) ; (2) C(3 ,1, 5) , D(0 , 2 , 3) .
2.求下列两个向量的夹角的余弦:
(1) ar (2 , 3 ,
r 3),b (1, 0 , 0) ;
(2)
ar
(1
,
例题:
A
例1 已知A(3 , 3 ,1)、B(1, 0 , 5) ,求:
(1)线段 AB 的中点坐标和长度;
M
B
解:设 M(x , y , z) 是 AB的中点,则 O
uuuur OM
1 2
uuur (OA
uuur OB)
1 2
(3
,
3
,
1)
1 ,
0
,
5
2
,
3 2
,
3
,
∴点 M的坐标是
2
,
3 2
1
,
r 1),b
(1
,
0
,
1)
;
3.已知 ABCD ,顶点 A(1,0,0), B(0,1,0) ,C(0,0, 2) ,
则顶点 D 的坐标为___(_1_,_-_1_,2_)_____;
4. Rt△ABC 中, BAC 90o , A(2,1,1), B(1,1, 2) ,
C( x, 0,1) ,则 x __2__;
r a
r b
(a
1
b1,
a2
b2
,
a3
b3
)
;
ar
r b
(a 1b1,a2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



(2)设 A(x1,y1,z1),B(x2,y2,z2),则
uuur | AB |=
(x2-x1)2+(y2-y1)2+(z2-z1)2

[例 1] 已知空间四点 A、B、C、D 的坐标分别是(-
1,2,1)、(1,3,4)、(0,-1,4)、(2,-1,-2);若 p
uuur
uuur
= AB,q=CD.
也就是说,一个向量在空间直角坐标系中的坐标等于表 示这个向量的有向线段的 终点的坐标减去起点的坐标.
3.空间向量平行和垂直的条件
(1)a∥b(b≠0)
a=λb

a1=λb1 a2=λb2 a3=λb3

或当b与三条坐标轴都不平行时
a1=a2=a3 a∥bb1 b2 b3. (2)a⊥b a·b=0 a1b1+a2b2+a3b3=0 .
求(1)p+2q;(2) (p-q)·(p+q);
(3)cos〈p,q〉. uuur uuur
(4)求 AB在CD上的正射影的数量
练习: 设a=(1,5,-1),b=(-2,3,5). (1)若(ka+b)∥(a-3b),求k; (2)若(ka+b)⊥(a-3b),求k.
[例 2] 如图,在直三棱柱 ABC-A1B1C1 中,∠ABC=90°,AB=BC=1,AA1= 2,求 异面直线 BA1 与 AC 所成角的余弦值.
4.两个向量夹角与向量长度的坐标计算公式
(1)设 a=(a1,a2,a3),b=(b1,b2,b3),则|a|= a·a = a21+a22+a23 ,
|b|= b·b = b21+b22+b23,
a·b cos〈a,b〉= |a||b|
a1b1+a2b2+a3b3
a21+a22+a23 b21+b22+b23
(1)求BN的长; uuur uuur
(2)求 BA1 与 B1C 夹角的余弦值.
[思路点拨] 先建立空间直角坐标系,写出各向量 的坐标,再利用向量方法进行求解.
uur uuur uuur [精解详析] 如图,以 CA , CB , CC1 为正交基底建 立空间直角坐标系Cxyz.
(1)依题意得B(0,1,0),N(1,0,1), uuur
Dxyz,则 D(0,0,0),E(0,0,12), F(12,12,0),C(0,1,0),C1(0,1, 1),B1(1,1,1),G(0,34,0). (1) uEuFur=(12,12,-12), uuur B1C =(-1,0,-1),

uuur EF
uuur ·B1C
=(12,12,-12)·(-1,0,-1)
易知∠AOB=∠BOC=∠AOC=
π 3
,则
a·b=b·c=c·a=12.
因为OuuEur=12(a+b),
uBuFur =12c-b,|OuuEur |=|
uuur BF
|=
23,
∴ OuuEur ·uBuFur =12(a+b)·(12c-b)
=14a·c+14b·c-12a·b-12|b|2=-12.
uuur
uuur
又|BA1 |= 6,|CB1 |= 5,
uuur uuur
uuur uuur ∴cos〈 BA1 ,CB1 〉=|
uBuuAr1 ·CuBuu1r BA1 || CB1
= |
1300,
uuur uuur 即 BA1 与 B1C 夹角的余弦值为
30 10 .
练习:.在棱长为 1 的正方体 ABCD-A1B1C1D1 中,E,F
分别是 D1D,BD 的中点,G 在棱 CD 上,且 CG=14CD,
H 是 C1G 的中点. uuur uuur
(1)求 EF 与 B1C 的夹角; uuur uuur
(2)求 EF 与C1G 的夹角的余弦值;
(3)求 F,H 两点间的距离.
uuur uuur uuuur 解:如图所示,以 DA, DC , DD1 为 单位正交基底建立空间直角坐标系
=12×(-1)+12×0+(-12)×(-1)=0.
uuur uuur
uuur uuur
∴ EF ⊥ B1C ,即EF⊥B1C.∴ EF 与 B1C 的夹角为90°.
(2)
uuur C1G
=(0,-14,
uuur -1),则|C1G
|=
17 4.
uuur 又|EF |

23,

uuur EF
uuur ·C1G
(3).两个非零向量才有夹角,当两个非零向量同向共线时, 夹角为0,反向共线时,夹角为π.
2.异面直线的定义 不同在任何一平面内 的两条直线叫做异面直线.
3.两条异面直线所成的角 把异面直线平移到一个平面内,这时两条直线的夹 角( 锐角或直角 )叫做两条异面直线所成的角.如果所 成的角是直角,则称两条异面直线互相垂直 .
3.1.3 两个向量的数量积
1、空间向量的夹角
(1)定义及记法
已知两个 非零向量a,b,在空间中任取一点O,作
uuur OA
=a,
uuur OB
=b,则∠AOB
叫做向量a与b的夹角,记
作〈a,b〉 .
(2)范围和性质
①范围: 0 ≤〈a,b〉 ≤ π. ②性质:〈a,b〉 = 〈b,a〉. 如果〈a,b〉= 90°,则称a与b互相垂直,记作 a⊥b .

4.异面直线夹角的范围是(0, ].2
1.空间两个向量的数量积
已知空间两个向量a,b,把平面向量的数量积 a·b= |a||b|cos〈a,b〉叫做两个空间向量a,b的数量积(或内积).
2.两个空间向量的数量积的性质
(1)a·e= |a|cos〈a,e.〉
(2)a⊥b⇔ a·b=.0 (3)|a|2= a·.a (4)|a·b|≤ |a||.b|
|
=12,
又θ∈[0,π],∴θ=60°.
答案:C
角是
()
A.30°
B.45°
C.60°
பைடு நூலகம்
D.90°
uuur uuur 解析:设〈 AB,CD〉=θ,
uuur uuur uuur uuur uuur uuur uuur ∵ AB·CD=( AC +CD+ DB)·CD=|CD|2=1,
uuur uuur
∴cos
θ=
|
uAuurB·CuDuur AB || CD
uuur uuur [思路点拨] 先求 BA1 · AC ,再由夹角公式求cos uuur uuur 〈 BA1 , AC 〉,并由此确定异面直线BA1与AC所成角的 余弦值.
uuur uuur uuur uuur uuur uuur [精解详析] ∵ BA1 = BA + AA1 = BA + BB1 , AC =
∴|BN |= (1-0)2+(0-1)2+(1-0)2= 3, ∴线段BN的长为 3.
(2)依题意得A1(1,0,2),C(0,0,0),B1(0,1,2),
uuur
uuur
∴ BA1 =(1,-1,2),CB1 =(0,1,2),
uuur uuur ∴ BA1 ·CB1 =1×0+(-1)×1+2×2=3.
=38,
uuur uuur
uuur uuur ∴cos〈 EF ,C1G 〉=|
uEuuFr ·Cu1uGur EF || C1G
= |
1571,
uuur uuur 即 EF 与C1G 的夹角的余弦值为
51 17 .
(3)∵H是C1G的中点,∴H(0,78,12).
又F(12,12,0), uuur
uuur uuur uuur uuur uuur uuur uuur uuur BC - BA,且 BA·BC = BB1 ·BA=BB1 ·BC =0,
uuur uuur uuuur ∴ BA1 ·AC =- BA2 =-1.
uuur
uuur
又| AC |= 2,| BA1 |= 1+2= 3.
uuur uuur
uuur uuur ∴cos〈OE , BF
〉=
|
uuur uuur
uuOurE OE |
·.B| uBFuFur
|
=-23.
∵异面直线所成的角为直角或锐角,
∴异面直线 OE 与 BF 所成角的余弦值为23.
3.已知a,b是异面直线,A∈a,B∈a,C∈b,D∈b,
AC⊥b,BD⊥b,且AB=2,CD=1,则a与b所成的
2.空间向量的直角坐标运算
(1)设a=(a1,a2,a3).b=(b1,b2,b3). 向量坐标运算法则 a+b= (a1+b1,a2+b2,a3+b3) a-b= (a1-b1,a2-b2,a3-b3) λa= (λa1,λa2,λa3) a·b= a1b1+a2b2+a3b3 .
u(A2uBu)r设=OuAuBur(x-1Ou,uAury=1(,x2-z1)x,1,B(yx22-,yy12,,zz22-),z1则,)
正射影数量? 3.两个向量的数量积是实数,它可正、可负、可为零.
4.两个空间向量的数量积的运算律
(1)(λa)·b= λ(a·.b) (2)a·b= b·a. (3)(a+b)·c=a·c+b·.c
3.1.4 空间向量的直角坐标运算
1.单位正交基底与坐标向量 建立空间直角坐标系Oxyz,分别沿x轴,y轴,z轴的 正方向引单位向量i,j,k,这三个互相垂直的单位向量构 成空间向量的一个基底 {i,j,k} ,这个基底叫做 单位正 交基底 .单位向量i,j,k都叫做坐标向量 .
uuur uuur ∴cos〈 BA1 , AC 〉=|
uBuuAr1 ·AuuCur BA1 || AC
=-1=- |6
相关文档
最新文档