九上圆导学案
部编版人教初中数学九年级上册《24.3 正多边形和圆 导学案》最新精品优秀完美获奖导学单

前言:该导学案(导学单)由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。
实用性强。
高质量的导学案(导学单)是高效课堂的前提和保障。
(最新精品导学案)24.3正多边形和圆1.了解正多边形的概念.2.会判定一个正多边形是中心对称图形还是轴对称图形.3.会进行有关圆与正多边形的计算.4.会通过等分圆心角的方法等分圆周,从而画出所需的正多边形.5.能够用直尺和圆规作图,作出一些特殊的正多边形.阅读教材第105至107页,完成下列知识探究.知识探究1.________相等,________也相等的多边形叫做正多边形.2.一个正多边形的外接圆的________叫做这个正多边形的中心,外接圆的________叫做正多边形的半径,正多边形每一边所对的________叫做正多边形的中心角,中心到正多边形的一边的________叫做正多边形的边心距.3.把一个圆分成几等份,连接各点所得到的多边形是________,它的中心角等于________.4.正n边形都是轴对称图形,当边数为偶数时,它的对称轴有________条,并且还是中心对称图形;当边数为奇数时,它只是____________.自学反馈1.如果正多边形的一个外角等于60°,那么它的边数为________.2.若正多边形的边心距与边长的比为1∶2,则这个正多边形的边数为________.3.已知正六边形的外接圆半径为3 cm ,那么它的周长为________cm .4.正多边形的一边所对的中心角与该正多边形的一个内角的关系是________.5.两个正六边形的边长分别是3和4,这两个正六边形的面积之比等于________.边数相等的正多边形是相似的.6.圆内接正方形的半径与边长的比是________;圆内接正方形的边长为 4 cm ,那么边心距是________.7.已知圆内接正方形的边长为4,则该圆的内接正六边形边长为________;圆内接正六边形的边长是8 cm ,那么该正六边形的半径为________;边心距为________.8.利用你手中的工具画一个边长为3 cm 的正五边形.要画正五边形,首先要画一个圆,然后对圆五等分,因此,应该先求边长为3的正五边形的半径.活动1 小组讨论例1 如图所示,⊙O 中,AB ︵=BC ︵=CD ︵=DE ︵=EF ︵=FA ︵.求证:六边形ABCDEF 是正六边形.证明:略.由本题的结论可得:只要将圆分成n 等分,顺次连接各等分点,就可得到这个圆的内接正n 边形.例2 如图,正六边形ABCDEF 内接于⊙O,若⊙O 的内接正△ACE 的面积为48 3.试求正六边形的周长.。
北师大数学九年级下册第三章圆导学案

3.1圆1、从圆的形成过程,我们可以得出:定义1:平面内,线段OA 绕它固定的一个端点O 旋转一周, 另一个端点所形成的_____叫做圆.定义2:平面上到______的距离等于______的所有点组成的图形叫做圆.定点叫做_____,______叫做半径.以点O 为圆心的圆,记作“_____”,读作“______”.外延:①的线段叫做弦;②的弦叫做直径;③部分叫做圆弧,简称,叫做优弧, 小于半圆的弧叫做弧.④圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做.能够重合的两个圆叫做______;在同圆或等圆中,能够互相重合的弧叫做______.2、确定圆有两个要素:①_______(确定圆的______);②_________(确定圆的______).二、小组学习:1.以O 为圆心的圆可以画_________个圆,这些圆叫_______________.以2cm 为半径的圆可以画________个圆,这些圆是________________.2.平面内,设⊙O 的半径为r ,点P 到圆心的距离为d ,则有d >r ⇔点P 在⊙O ______;d =r ⇔点P 在⊙O ______;d <r ⇔点P 在⊙O ______.3.下列说法正确的是①直径是弦②弦是直径③半径是弦④半圆是弧,但弧不一定是半圆⑤半径相等的两个半圆是等弧⑥长度相等的两条弧是等弧⑦等弧的长度相等4.如图,圆中有条直径,条弦,以A 为一个端点的劣弧有条.5.在矩形ABCD 中,AB =6cm ,AD =8cm ,(1)若以A 为圆心,6cm 长为半径作⊙A ,则点B 在⊙A ______,点C 在⊙A _______,点D 在⊙A ________,AC 与BD 的交点O 在⊙A _________;D3.2圆的对称性1.如图所示的⊙O 中,将圆心角∠AOB 绕圆心O 旋转到∠A′OB′的位置,你能发现哪些等量关系?结论1:在同一个圆中,相等的圆心角所对的____相等,所对的相等.2.在⊙O 和⊙O′中, 分别作相等的圆心角∠AOB 和∠A′O′B′得到如图2,滚动一个圆,使O 与O′重合,固定圆心,将其中的一个圆旋转一个角度,使得OA 与O′A′重合.在等圆中,相等的圆心角是否也有所对的弧相等,所对的弦相等吗?结论2:我们可以得到下面的定理:______________________________________.同样,还可以得到:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角____, 所对的弦也.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角____, 所对的弧也.3.如右图,在⊙O 中,AB、CD 是两条弦,OE⊥AB,OF⊥CD,垂足分别为EF.(1)如果CD AB =,则有,.(2)如果,则有,.(3)如果COD AOB ∠=∠,则有,.(4)如果∠AOB=∠COD,那么OE 与OF 的大小有什么关系?为什么?(5)如果OE=OF,那么弧AB 与弧CD 的大小有什么关系?AB 与CD 的大小有什么关系?∠AOB 与∠COD 呢? 为什么?(6)如果CD AB =,则OE 与OF 相等吗?为什么?B 'B ''A*3.3垂径定理【结构梳理】1.圆是_________图形,其对称轴是__________________的直线.2.垂径定理是由被称为"几何之父"的古希腊数学家欧几里得(Ευκλειδης)提出的.它是圆的重要性质之一,是证明圆内线段相等,角相等,垂直关系的重要依据,也为圆中的计算,证明和作图提供了依据,思路和方法.垂径定理本身的内涵也非常丰富.对于以上①②③④⑤,已知任意两条,可推出其余三条,称为知二推三.请大家以小组为单位探究以上定理的证明过程.(垂径定理:垂直于弦的直径平分,并且平分.)已知:如图,AB是⊙O的一条弦,作直径EF,使EF⊥AB,垂足为D.求证:AD=BD,EF平分AFB,EF平分AEB(垂径定理的一个推论:平分弦()的直径垂直于弦,并且平分.)已知:如图,AB是⊙O的一条弦(不是直径),直径EF平分AB,交AB于点D.求证:EF⊥AB,EF平分AFB,EF平分AEB①垂直于弦:EF⊥AB于点D②过圆心:EF过圆心O③平分弦:AD=BD④平分弦所对的优弧:EF平分AFB⑤平分弦所对的劣弧:EF平分AEB 垂径定理一、预习导学1.叫圆心角.2.在同圆或等圆中,圆心角的度数等于它所对的度数.二、自主学习1.如图,点B、D、E在⊙O上,∠B、∠D、∠E有什么共同的特征?①顶点在_______,②并且两边_______________________的角叫做圆周角.2.度量∠B、∠D、∠E的大小,它们的数量关系是_______________.3.如图,AB为⊙O的直径,∠BOC、∠BAC分别是BC所对的圆心角、圆周角,①∠BA1C=__,∠BA2C=__,∠BA3C=__;②通过计算发现:∠BAC=__∠BOC.4、从一般情况来看,如图,BC所对的圆心角有多少个?BC所对的圆周角有多少个(位置有什么不同)?请在图中画出BC所对的圆心角和圆周角,并与同学们交流.思考与讨论①观察上图,在画出的无数个圆周角,这些圆周角与圆心O有几种位置关系?②设BC所对的圆周角为∠BAC,除了圆心O在∠BAC的一边上外,圆心O与∠BAC还有哪几种位置关系?对于这几种位置关系,结论∠BAC=12∠BOC还成立吗?试证明之.通过上述讨论发现:_________________________.CB【结构梳理】2.如图,在△ABC 中,OA=OB=OC,则∠ACB=°.请证明:二、自主学习1.如图,BC 是⊙O 的直径,它所对的圆周角是锐角、钝角,还是直角?为什么?2.如图,在⊙O 中,圆周角∠BAC=90°,弦BC 经过圆心吗?为什么?3.归纳自己总结的结论:(1)(2)注意:(1)这里所对的角、90°的角必须是圆周角;(2)直径所对的圆周角是直角在圆的有关问题中经常遇到,也是圆中常见辅助线.4.小明在分析几何问题时发现,如果题目中给出条件却没有给出相应的图形,那么就会出现因为图形的位置不确定而需要考虑多种情况的可能.请你与小明通过作图解决以下问题.在直径为4的⊙O 中,弦AB =,点C 是圆上不同于A ,B 的点,求∠ACB 的度数.第1题OCBA第2题番外篇圆内接四边形学习目标:1.识记圆的内接四边形的概念 2.掌握圆内接四边形的性质一、预习导学1.如图1,△ABC叫⊙O的_________三角形,⊙O叫△ABC的_________圆.2.如图1,若的度数为1000,则∠BOC=,∠A=______3.如图2四边形ABCD中,∠B与∠1互补,AD的延长线与DC所夹∠2=600,则∠1=_________,∠B=_________.4.判断:圆上任意两点之间分圆周为两条弧,这两条弧的度数和为3600()二、自主学习1.如图3,四边形ABCD的各顶点都在⊙O上,所以四边形ABCD是⊙O的_________四边形,⊙O叫四边形ABCD的_________圆.2.你能解决下列问题吗?如上图:(1)∵所对圆心角为∠1,所对圆心角为∠2,∴∠1+∠2=的度数+的度数=______度.∵∠BAD=21∠2(___________________________),∠BCD=21∠1(同上)∴∠BAD+∠BCD=21∠2+21∠1=_______(2)为什么∠DCE=∠A?3.如图4,5,四边形ABCD的四个顶点都在⊙O上.⑴如图4,当圆心O在四边形内部时,猜想四边形ABCD的对角的关系,并说明理由.⑵如图5,当圆心O在四边形外部时,⑴中的结论是否成立?并说明理由.归纳:圆内接四边形性质定理:圆内接四边形的对角,任意一个外角都等于.三、达标练习1.如图6四边形ABCD内接于⊙O,则∠A+∠C=____,∠B+∠ADC=_____;若∠B=800,则∠ADC=______∠CDE=______2.圆内接平行四边形必为()A.菱形B.矩形C.正方形D.等腰梯形3.如图7在⊙O中,∠CBD=30°,∠BDC=20°,求∠A的度数.EDCBA21AB CODC EBAo21图2图3图1图6EDBAC80图73.5确定圆的条件探究1:经过不同的点作圆(请你在下面空白处作图探究)(1)作经过已知点A 的圆,这样的圆你能作出多少个?(2)做经过已知点A ,B 的圆,这样的圆有多少个?它们的圆心分布有什么特点?(3)作经过A ,B ,C ,三点的圆,这样的圆有多少个?如何确定它的圆心?由以上作圆可知过已知点作圆实质是确定和,因此(1)过一点的圆有个;(2)过两点的圆有个,圆心在上;(3)过不在同一条直线上的三点作个圆,圆心是.探究2:三角形的外接圆:过三角形ABC 三顶点作一个圆,这个圆叫做三角形的_________,这个圆的圆心叫做三角形的,这个三角形叫做圆的.锐角三角形的外心在;直角三角形的外心在;钝角三角形的外心在.二、合作学习1.如图,直角坐标系中一条圆弧经过网格点A ,B ,C ,其中B 点坐标为(4,4),则该圆弧所在圆的圆心坐标为.2.学校花园里有一块矩形的空地,空地上有三棵树A ,B ,C ,学校想修建一个圆形花坛,使三棵树都在花坛的边上.(1)请你把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹);(2)若△ABC 中,BC =4米,AC =3米,∠C =90°,试求圆形花坛的面积.3.6.1直线和圆的位置关系直线和圆的位置关系相离相切相交图形公共点个数及名称d 与R 的大小关系直线名称探究1:切线的性质定理1.圆的切线的半径.如图:已知直线l 是⊙O 的切线,切点为A ,连接0A,用符号语言来表示定理:∵∴2.常用的辅助线:连接与.探究2:切线的性质定理的推论若一条直线满足:①过圆心,②过切点,③垂直于切线,这三个条件中的任意个,就必然满足第个,即:①②O A3.6.2直线和圆的位置关系--切线的判定与三角形内切圆【结构梳理】1.探究:如图,点A 在⊙O 上,请过点A 画一条直线l ,使得 l OA ,判断直线l 与⊙O 的位置关系.由此得切线的判定定理(文字语言):的直线是圆的切线.符号语言:2.分别作出锐角三角形,直角三角形,钝角三角形的内切圆,并说明与它们内心的位置情况?二、合作学习判断(1)过半径的外端的直线是圆的切线()(2)与半径垂直的的直线是圆的切线()(3)过半径的端点与半径垂直的直线是圆的切线()这说明我们要牢记一条直线是圆的切线必须满足1:2三、总结提升1.判定切线的方法有哪些?2.常用的添辅助线方法?⑴直线与圆的公共点已知时,则⑵直线与圆的公共点不确定时,则*3.7切线长定理如图,点P 在⊙O 外,过点P 作⊙O 的切线,能作出条,它们的数量关系是.证明:二、合作学习问题提出:如图1,一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西120km 处(即点O 的位置),受影响的范围是半径长为40km 的圆形区域.已知港口位于台风中心正北50km 处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?探究思路:为了解决这个实际问题,先将其转化成数学问题,如图2,⊙O 表示台风影响的范围,O 是台风中心,圆的半径长为40km ,AB 表示这艘轮船的航线.请结合以下解题思路,尝试解决本题.(1)本题主要研究哪些图形之间的关系?(2)应比较哪些量之间的关系?(3)最终你是如何判断轮船受不受影响?图13.8圆内接正多边形正多边形边数内角中心角边长边心距周长面积3456n lr 21小明同学在学习了课本P 98提供的利用尺规作正五边形的方法之后,想借助这个图形得到一个正三角形,以下是他设计的尺规作图过程.如图,正五边形ABCDE 内接于⊙O ,第1步.作直径AF .第2步.以F 为圆心,FO 为半径作圆弧,与⊙O 交于点M ,N .第3步.连接AM ,MN ,NA .(1)请根据小明设计的作法补全图形(要求:尺规作图,保留作图痕迹);(2)请你帮小明求出∠ABC 的度数.(3)小明想说明△AMN 是正三角形,他的部分推理过程如下,请你帮他补全推理过程.理由:连接ON ,NF ,…3.9弧长及扇形的面积【结构梳理】一、温故知新:圆的周长公式是,圆的面积公式是.二、自主探究:1.圆的周长可以看作______度的圆心角所对的弧.1°的圆心角所对的弧长是_______.2°的圆心角所对的弧长是_______.4°的圆心角所对的弧长是_______.……n°的圆心角所对的弧长是_______.2.什么叫扇形?.3.圆的面积可以看作度圆心角所对的扇形的面积,设圆的半径为R,=_______.1°的圆心角所对的扇形面积S扇形2°的圆心角所对的扇形面积S=_______.扇形=_______.5°的圆心角所对的扇形面积S扇形……n°的圆心角所对的扇形面积S=_______.扇形4.比较扇形面积公式和弧长公式,如何用弧长表示扇形的面积?(写出推导过程)。
九年级上册《直线与圆的位置关系(二)弦切角定理及切线长定理》导学案

§10 直线与圆的位置关系(二)---------弦切角定理及切线长定理◆导学目标:1、 了解弦切角概念,理解并掌握弦切角定理2、 了解切线长概念,探索过圆外一点向圆引的两条切线的切线长之间的关系 ◆课前预习:通过预习,解决下列问题:1、弦切角是指2、弦切角定理:弦切角等于它所夹弧所对的3、 叫切线长,过圆外一点向圆只能作 条 切线,这点与切点之间的线段长◆课堂导学:例1 如图,已知AC 切⊙O 于A ,CB 顺次交⊙O 于D ,B 点,AC=6,BD=5.连结AD ,AB .(1)证明:△CAD ∽△CBA ; (2)求线段DC 的长.例2、如图所示,AB 是⊙O 的直径,CB,CE 分别切⊙O 于点B 、D,CE 与BA 的延长线交于点E,连接OC,OD.(1)求证: ⊿OBC ≌⊿ODC;(2)已知DE=a,AE=b,BC=c,请你思考后,选用以上适当的数,设计出计算⊙O 的半径的一种方案: ①你选用的已知数是________ ;②写出求解过程.(结果用字母表示.)◆当堂导练:1、 如图,如图,直线AP 是⊙O 的切线,点P 为切点,∠APQ=∠CPQ,则图中与CQ 相等的线段是( )A 、PQB .PBC .PCD .BQc baO E D C B A右手栏A B DO C2、 如图,△ABC 内接于⊙O ,DE 是⊙O 的切线,切点为A ,如果∠ABC =50°,那么 ∠CAE 等于( )A .40°B .50°C .60°D .130°3、 如图,ABCD 是⊙O 的内接四边形,AB 是⊙O 的直径,过点D 的切线交BA 的延长线于点E ,若∠A DE=25°,则∠C=__________度.◆课后练习:基础练习1、 如图,已知PA ,PB 是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,∠P=40°,则 ∠BAC 度数是( ) A .70° B .40° C .50° D .20°2、如图,在Rt △ABC 中,∠C =90°,AC =4,BC =3,以BC 上一点O 为圆心作⊙O 与AB 相切于E ,与AC 相切 于C ,又⊙O 与BC 的另一交点为D ,试求线段BD 的长。
闵集中学人教新目标九年级上册正多形与圆导学案

3、正多边形的一边所对的中心角与正多边形的一个内角的关系是()
A.两角互余B.两角互补
C.两角互余或互补D.不能确定
4、以正六边形的顶点为圆心,4cm为半径的六个圆中,相邻的园外切,则该正六边形边长是__________cm.
5、已知正方形的周长为x,它的外接圆的半径为y,则y与x的函数关系是()
(3)随着中心O2在l上的平移,两个正方形的公共点的个数还有哪些变化?并求出相对应的中心距的值或取值范围(不必写出计算过程)
七、课外练习:
1、一个正多边形的内角和是7200,则这个多边形是()
A.正方形B.正五边形C.正六边形D.正八边形
2、已知正六边形外接圆的半径为R,那么这个正六边形的边长为()
A.y= x B.y= x C.y= x D.y=
6、如图,正方形ABCD是⊙O的内接正方形,点P为劣弧CD上不同于点C、D的任意一点,则∠BPC的度数是()
A.450B.600C.750D.900
8、如图,正六边形内接于圆O,圆O的半径为10,则图中阴影部分的面积为_________.
八、课后反思
问题2:如果将圆n等份,依次连接各分点得到一个n边形,这个n边形一定是正n边形吗?
问题3:各边相等的圆内接多边形是正多边形吗?各角相等的圆内接多边形是正多边形吗?如果是,说明为什么.如果不是,举出反例.
例:有一个亭子,它的地基是半径为4m的正六边形,求地基的周长和面积(结果保留小数点后一位
归纳:如果正n边形的边数给定,已知它的边长、周长、半径、边心距、面积中的任意一项,都可以求出其它各项.
正多边形的边心距___________________________________________
九年级数学上册35三角形的内切圆导学案1版

三角形的内切圆展示质疑1、画一画→议一议→点评→归纳:与三角形的三条边都相切的圆___________个。
2、三角形的内切圆等概念(内比三角形的外接圆)。
3、三角形内心有什么性质。
例::设△ABC的内切圆的半径为r,△ABC的周长为l,求△ABC的面积S。
点拨拓展已知AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD.求证:DC是⊙O的切线总结测评学生谈收获达标测评课本第103页练习题1——3题如图,⊙O内切于△ABC,切点分别为D、E、F.已知∠B=50°,∠C=60°,连结OE、OF、DE、DF,那么∠EDF等于()A.40°B.55°C.65°D.70°疑问反思D中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着B﹣E﹣D的路线匀速行进,到达点D.设运动员P的运动时间为t,到监测点的距离为y.现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是()A.监测点A B.监测点B C.监测点C D.监测点D【答案】C【解析】试题解析:A、由监测点A监测P时,函数值y随t的增大先减少再增大.故选项A错误;B、由监测点B监测P时,函数值y随t的增大而增大,故选项B错误;C、由监测点C监测P时,函数值y随t的增大先减小再增大,然后再减小,选项C正确;D、由监测点D监测P时,函数值y随t的增大而减小,选项D错误.故选C.2.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②3b+2c<0;③4a+c <2b;④m(am+b)+b<a(m≠﹣1),其中结论正确的个数是()A.1 B.2 C.3 D.4【答案】C【解析】试题解析:∵图象与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴b2﹣4ac>0,∴4ac﹣b2<0,①正确;∵﹣=﹣1,∴b=2a ,∵a+b+c <0, ∴b+b+c <0,3b+2c <0,∴②是正确;∵当x=﹣2时,y >0,∴4a ﹣2b+c >0,∴4a+c >2b ,③错误;∵由图象可知x=﹣1时该二次函数取得最大值,∴a ﹣b+c >am 2+bm+c (m≠﹣1).∴m (am+b )<a ﹣b .故④正确∴正确的有①②④三个,故选C .考点:二次函数图象与系数的关系.【详解】请在此输入详解!3.如图是某个几何体的展开图,该几何体是( )A .三棱柱B .圆锥C .四棱柱D .圆柱【答案】A 【解析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【详解】解:观察图形可知,这个几何体是三棱柱.故选A .【点睛】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键..4.如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=︒,在C 点测得60BCD ∠=︒,又测得50AC =米,则小岛B 到公路l 的距离为( )米.A .25B .253C .10033 D .25253+【答案】B【解析】解:过点B 作BE ⊥AD 于E .设BE=x .∵∠BCD=60°,tan ∠BCE BECE =,33CE x ∴=,在直角△ABE 中,AE=3x ,AC=50米,则33503x x -=,解得253x =即小岛B 到公路l 的距离为253,故选B.5.如图,A 、B 两点在双曲线y=4x 上,分别经过A 、B 两点向轴作垂线段,已知S 阴影=1,则S 1+S 2=()A .3B .4C .5D .6【答案】D【解析】欲求S 1+S 1,只要求出过A 、B 两点向x 轴、y 轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=4x的系数k ,由此即可求出S 1+S 1. 【详解】∵点A 、B 是双曲线y=4x 上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段, 则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S 1+S 1=4+4-1×1=2.故选D .6.下列交通标志是中心对称图形的为( )A .B .C .D .【答案】C【解析】根据中心对称图形的定义即可解答.【详解】解:A 、属于轴对称图形,不是中心对称的图形,不合题意;B 、是中心对称的图形,但不是交通标志,不符合题意;C 、属于轴对称图形,属于中心对称的图形,符合题意;D 、不是中心对称的图形,不合题意.故选C .【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.7.一次函数y kx b =+满足0kb <,且y 随x 的增大而减小,则此函数的图像一定不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【解析】y 随x 的增大而减小,可得一次函数y=kx+b 单调递减,k <0,又满足kb<0,可得b>0,由此即可得出答案.【详解】∵y 随x 的增大而减小,∴一次函数y=kx+b 单调递减,∴k <0,∵kb<0,∴b>0,∴直线经过第二、一、四象限,不经过第三象限,故选C .【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b(k≠0,k、b是常数)的图象和性质是解题的关键.8.下列各数中是有理数的是()A.πB.0 C.2D.35【答案】B【解析】根据有理数是有限小数或无限循环小数,结合无理数的定义进行判断即可得答案.【详解】A、π是无限不循环小数,属于无理数,故本选项错误;B、0是有理数,故本选项正确;C、2是无理数,故本选项错误;D、35是无理数,故本选项错误,故选B.【点睛】本题考查了实数的分类,熟知有理数是有限小数或无限循环小数是解题的关键.9.如图,在Rt△ABC中,∠ACB=90°,BC=12,AC=5,分别以点A,B为圆心,大于线段AB长度的一半为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连接CD,则△ACD的周长为()A.13 B.17 C.18 D.25【答案】C【解析】在Rt△ABC中,∠ACB=90°,BC=12,AC=5,根据勾股定理求得AB=13.根据题意可知,EF为线段AB的垂直平分线,在Rt△ABC中,根据直角三角形斜边的中线等于斜边的一半可得CD=AD=12 AB,所以△ACD的周长为AC+CD+AD=AC+AB=5+13=18.故选C.10.A、B两地相距180km,新修的高速公路开通后,在A、B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为A.1801801(150%)x x-=+B.1801801(150%)x x-=+C.1801801(150%)x x-=-D.1801801(150%)x x-=-【答案】A【解析】直接利用在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h,利用时间差值得出等式即可.【详解】解:设原来的平均车速为xkm/h,则根据题意可列方程为:180 x ﹣180150%x+()=1.故选A.【点睛】本题主要考查了由实际问题抽象出分式方程,根据题意得出正确等量关系是解题的关键.二、填空题(本题包括8个小题)11.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=10,AC=6,则DF的长为__.【答案】1【解析】试题分析:如图,延长CF交AB于点G,∵在△AFG和△AFC中,∠GAF=∠CAF,AF=AF,∠AFG=∠AFC,∴△AFG≌△AFC(ASA).∴AC=AG,GF=CF.又∵点D是BC中点,∴DF是△CBG的中位线.∴DF=12BG=12(AB﹣AG)=12(AB﹣AC)=1.12.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.【答案】50°.【解析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD ,根据等边对等角可得∠A=∠ABD ,然后表示出∠ABC ,再根据等腰三角形两底角相等可得∠C=∠ABC ,然后根据三角形的内角和定理列出方程求解即可:【详解】∵MN 是AB 的垂直平分线,∴AD="BD." ∴∠A=∠ABD.∵∠DBC=15°,∴∠ABC=∠A+15°. ∵AB=AC ,∴∠C=∠ABC=∠A+15°.∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为50°.13.若m+1m =3,则m 2+21m =_____. 【答案】7【解析】分析:把已知等式两边平方,利用完全平方公式化简,即可求出答案.详解:把m+1m =3两边平方得:(m+1m )2=m 2+21m +2=9, 则m 2+21m =7, 故答案为:7点睛:此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键. 14.如图,小军、小珠之间的距离为2.7 m ,他们在同一盏路灯下的影长分别为1.8 m ,1.5 m ,已知小军、小珠的身高分别为1.8 m ,1.5 m ,则路灯的高为____m.【答案】3【解析】试题分析:如图,∵CD ∥AB ∥MN ,∴△ABE ∽△CDE ,△ABF ∽△MNF ,∴,CD DE FN MN AB BE FB AB==, 即1.8 1.8 1.5 1.5,1.8 1.5 2.7AB BD AB BD ==++-, 解得:AB=3m ,答:路灯的高为3m .考点:中心投影.15.因式分解:3a 2-6a+3=________.【答案】3(a -1)2 【解析】先提公因式,再套用完全平方公式.【详解】解:3a 2-6a+3=3(a 2-2a+1)=3(a-1)2. 【点睛】考点:提公因式法与公式法的综合运用.16.在我国著名的数学书《九章算术》中曾记载这样一个数学问题:“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设羊价为x 钱,则可列关于x 的方程为______. 【答案】x 45x 357--= 【解析】设羊价为x 钱,根据题意可得合伙的人数为455x -或37x -,由合伙人数不变可得方程. 【详解】设羊价为x 钱,根据题意可得方程:45357x x --=, 故答案为:45357x x --=. 【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程. 17.分解因:22424x xy y x y --++=______________________.【答案】 (x-2y)(x-2y+1)【解析】根据所给代数式第一、二、五项一组,第三、四项一组,分组分解后再提公因式即可分解.【详解】22424x xy y x y --++=x 2-4xy+4y 2-2y+x=(x-2y)2+x-2y=(x-2y)(x-2y+1)18.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.【答案】20【解析】利用频率估计概率,设原来红球个数为x 个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x 的方程,解方程即可得.【详解】设原来红球个数为x 个, 则有1010x +=1030, 解得,x=20,经检验x=20是原方程的根.故答案为20.【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.三、解答题(本题包括8个小题)19.如图,有四张背面相同的卡片A 、B 、C 、D ,卡片的正面分别印有正三角形、平行四边形、圆、正五边形(这些卡片除图案不同外,其余均相同).把这四张卡片背面向上洗匀后,进行下列操作:若任意抽取其中一张卡片,抽到的卡片既是中心对称图形又是轴对称图形的概率是 ;若任意抽出一张不放回,然后再从余下的抽出一张.请用树状图或列表表示摸出的两张卡片所有可能的结果,求抽出的两张卡片的图形是中心对称图形的概率.【答案】(1)14;(2)16. 【解析】(1)既是中心对称图形又是轴对称图形只有圆一个图形,然后根据概率的意义解答即可; (2)画出树状图,然后根据概率公式列式计算即可得解.【详解】(1)∵正三角形、平行四边形、圆、正五边形中只有圆既是中心对称图形又是轴对称图形,∴抽到的卡片既是中心对称图形又是轴对称图形的概率是14;(2)根据题意画出树状图如下:一共有12种情况,抽出的两张卡片的图形是中心对称图形的是B、C共有2种情况,所以,P(抽出的两张卡片的图形是中心对称图形)21 126.【点睛】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.20.如图,小巷左石两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,梯子顶端到地面的距离AC为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A′D为1.5米,求小巷有多宽.【答案】2.7米.【解析】先根据勾股定理求出AB的长,同理可得出BD的长,进而可得出结论.【详解】在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.2米,∴AB2=0.72+2.22=6.1.在Rt△A′BD中,∵∠A′DB=90°,A′D=1.5米,BD2+A′D2=A′B′2,∴BD2+1.52=6.1,∴BD2=2.∵BD>0,∴BD=2米.∴CD=BC+BD=0.7+2=2.7米.答:小巷的宽度CD为2.7米.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.21.计算:|2﹣π)0+2cos45°. 解方程:33x x - =1﹣13x- 【答案】(1)﹣1;(2)x=﹣1是原方程的根. 【解析】(1)直接化简二次根式进而利用零指数幂的性质以及特殊角三角函数值进而得出答案; (2)直接去分母再解方程得出答案.【详解】(1)原式1+2×2=﹣=﹣1;(2)去分母得:3x=x ﹣3+1,解得:x=﹣1,检验:当x=﹣1时,x ﹣3≠0,故x=﹣1是原方程的根.【点睛】此题主要考查了实数运算和解分式方程,正确掌握解分式方程的方法是解题关键.22.为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A ,B 两种型号的学习用品共1000件,已知A 型学习用品的单价为20元,B 型学习用品的单价为30元.若购买这批学习用品用了26000元,则购买A ,B 两种学习用品各多少件?若购买这批学习用品的钱不超过28000元,则最多购买B 型学习用品多少件?【答案】(1)购买A 型学习用品400件,B 型学习用品600件.(2)最多购买B 型学习用品1件【解析】(1)设购买A 型学习用品x 件,B 型学习用品y 件,就有x+y=1000,20x+30y=26000,由这两个方程构成方程组求出其解就可以得出结论.(2)设最多可以购买B 型产品a 件,则A 型产品(1000﹣a )件,根据这批学习用品的钱不超过210元建立不等式求出其解即可.【详解】解:(1)设购买A 型学习用品x 件,B 型学习用品y 件,由题意,得 x y 100020x 30y 26000+=⎧⎨+=⎩,解得:x 400y 600=⎧⎨=⎩. 答:购买A 型学习用品400件,B 型学习用品600件.(2)设最多可以购买B 型产品a 件,则A 型产品(1000﹣a )件,由题意,得20(1000﹣a )+30a≤210,解得:a≤1.答:最多购买B 型学习用品1件23.小明在热气球A 上看到正前方横跨河流两岸的大桥BC ,并测得B 、C 两点的俯角分别为45°、35°.已知大桥BC 与地面在同一水平面上,其长度为100m ,求热气球离地面的高度.(结果保留整数)(参考数据:sin35°=0.57,cos35°=0.82,tan35°=0.70)【答案】热气球离地面的高度约为1米.【解析】作AD ⊥BC 交CB 的延长线于D ,设AD 为x ,表示出DB 和DC ,根据正切的概念求出x 的值即可.【详解】解:作AD ⊥BC 交CB 的延长线于D ,设AD 为x ,由题意得,∠ABD=45°,∠ACD=35°,在Rt △ADB 中,∠ABD=45°,∴DB=x ,在Rt △ADC 中,∠ACD=35°,∴tan ∠ACD=AD CD, ∴ 100x x = 710 , 解得,x≈1.答:热气球离地面的高度约为1米.【点睛】考查的是解直角三角形的应用,理解仰角和俯角的概念、掌握锐角三角函数的概念是解题的关键,解答时,注意正确作出辅助线构造直角三角形.24.如图,正方形ABCD 中,M 为BC 上一点,F 是AM 的中点,EF ⊥AM ,垂足为F ,交AD 的延长线于点E ,交DC 于点N .求证:△ABM∽△EFA;若AB=12,BM=5,求DE的长.【答案】(1)见解析;(2)4.1【解析】试题分析:(1)由正方形的性质得出AB=AD,∠B=10°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出结论;(2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DE的长.试题解析:(1)∵四边形ABCD是正方形,∴AB=AD,∠B=10°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=10°,∴∠B=∠AFE,∴△ABM∽△EFA;(2)∵∠B=10°,AB=12,BM=5,∴22125+,AD=12,∵F是AM的中点,∴AF=12AM=6.5,∵△ABM∽△EFA,∴BM AM AF AE=,即513 6.5AE=,∴AE=16.1,∴DE=AE-AD=4.1.考点:1.相似三角形的判定与性质;2.正方形的性质.25.如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上. 填空:∠ABC= °,BC= ;判断△ABC与△DEF是否相似,并证明你的结论.【答案】 (1) 135;2 2. (2)△ABC ∽△DEF.【解析】(1)根据已知条件,结合网格可以求出∠ABC 的度数,根据,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上,利用勾股定理即可求出线段BC 的长;(2)根据相似三角形的判定定理,夹角相等,对应边成比例即可证明△ABC 与△DEF 相似.【详解】(1)9045135ABC ∠=+=,2222822BC +=;故答案为135;2 2.(2)△ABC ∽△DEF.证明:∵在4×4的正方形方格中, 135,9045135ABC DEF ∠=∠=+=,∴∠ABC=∠DEF. ∵2,22,2,2,AB BC FE DE ==== ∴222, 2.22AB BC DE FE ==== ∴△ABC ∽△DEF.【点睛】考查勾股定理以及相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.26.如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A (2,2),B (4,0),C (4,﹣4).请在图中,画出△ABC 向左平移6个单位长度后得到的△A 1B 1C 1; 以点O 为位似中心,将△ABC 缩小为原来的12,得到△A 2B 2C 2,请在图中y 轴右侧,画出△A 2B 2C 2,并求出∠A 2C 2B 2的正弦值.【答案】(1)见解析(2)10 10【解析】试题分析:(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置,再利用锐角三角三角函数关系得出答案.试题解析:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,由图形可知,∠A2C2B2=∠ACB,过点A作AD⊥BC交BC的延长线于点D,由A(2,2),C(4,﹣4),B(4,0),易得D(4,2),故AD=2,CD=6,AC==,∴sin∠ACB===,即sin∠A2C2B2=.考点:作图﹣位似变换;作图﹣平移变换;解直角三角形.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在Rt △ABC 中,∠ACB=90°,BC=12,AC=5,分别以点A ,B 为圆心,大于线段AB 长度的一半为半径作弧,相交于点E ,F ,过点E ,F 作直线EF ,交AB 于点D ,连接CD ,则△ACD 的周长为( )A .13B .17C .18D .25【答案】C 【解析】在Rt △ABC 中,∠ACB=90°,BC=12,AC=5,根据勾股定理求得AB=13.根据题意可知,EF 为线段AB 的垂直平分线,在Rt △ABC 中,根据直角三角形斜边的中线等于斜边的一半可得CD=AD=12AB ,所以△ACD 的周长为AC+CD+AD=AC+AB=5+13=18.故选C.2.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为( ) A .5.6×10﹣1B .5.6×10﹣2C .5.6×10﹣3D .0.56×10﹣1 【答案】B【解析】0.056用科学记数法表示为:0.056=-25.610 ,故选B.3.如图,E ,B ,F ,C 四点在一条直线上,EB =CF ,∠A =∠D ,再添一个条件仍不能证明△ABC ≌△DEF 的是( )A .AB =DEB .DF ∥AC C .∠E =∠ABCD .AB ∥DE【答案】A 【解析】由EB=CF ,可得出EF=BC ,又有∠A=∠D ,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC ≌△DEF ,那么添加的条件与原来的条件可形成SSA ,就不能证明△ABC ≌△DEF 了.【详解】∵EB=CF ,∴EB+BF=CF+BF,即EF=BC,又∵∠A=∠D,A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确.B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误,故选A.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.如图,在△ABC中,∠ACB=90°, ∠ABC=60°, BD平分∠ABC ,P点是BD的中点,若AD=6, 则CP的长为( )A.3.5 B.3 C.4 D.4.5【答案】B【解析】解:∵∠ACB=90°,∠ABC=60°,∴∠A=10°,∵BD平分∠ABC,∴∠ABD=12∠ABC=10°,∴∠A=∠ABD,∴BD=AD=6,∵在Rt△BCD中,P点是BD的中点,∴CP=12BD=1.故选B.5.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是()A.m<﹣1 B.m<1 C.m>﹣1 D.m>1【答案】B【解析】根据方程有两个不相等的实数根结合根的判别式即可得出△=4-4m >0,解之即可得出结论.【详解】∵关于x 的一元二次方程x 2-2x+m=0有两个不相等的实数根,∴△=(-2)2-4m=4-4m >0,解得:m <1.故选B .【点睛】本题考查了根的判别式,熟练掌握“当△>0时,方程有两个不相等的两个实数根”是解题的关键. 6.将二次函数2y x 的图象先向左平移1个单位,再向下平移2个单位,所得图象对应的函数表达式是( )A .2(1)2y x =++B .2(1)2y x =+-C .2(1)2y x =--D .2(1)2y x =-+ 【答案】B【解析】抛物线平移不改变a 的值,由抛物线的顶点坐标即可得出结果.【详解】解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位,那么新抛物线的顶点为(-1,-1),可设新抛物线的解析式为:y=(x-h )1+k ,代入得:y=(x+1)1-1.∴所得图象的解析式为:y=(x+1)1-1;故选:B .【点睛】本题考查二次函数图象的平移规律;解决本题的关键是得到新抛物线的顶点坐标.7.甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为40km .他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法不正确的是( )A .甲的速度是10km/hB .乙的速度是20km/hC.乙出发13h后与甲相遇D.甲比乙晚到B地2h【答案】B【解析】由图可知,甲用4小时走完全程40km,可得速度为10km/h;乙比甲晚出发一小时,用1小时走完全程,可得速度为40km/h.故选B8.下列条件中不能判定三角形全等的是( )A.两角和其中一角的对边对应相等B.三条边对应相等C.两边和它们的夹角对应相等D.三个角对应相等【答案】D【解析】解:A、符合AAS,能判定三角形全等;B、符合SSS,能判定三角形全等;;C、符合SAS,能判定三角形全等;D、满足AAA,没有相对应的判定方法,不能由此判定三角形全等;故选D.9.A、B两地相距180km,新修的高速公路开通后,在A、B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为A.1801801(150%)x x-=+B.1801801(150%)x x-=+C.1801801(150%)x x-=-D.1801801(150%)x x-=-【答案】A【解析】直接利用在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h,利用时间差值得出等式即可.【详解】解:设原来的平均车速为xkm/h,则根据题意可列方程为:180 x ﹣180150%x+()=1.故选A.【点睛】本题主要考查了由实际问题抽象出分式方程,根据题意得出正确等量关系是解题的关键.10.通过观察下面每个图形中5个实数的关系,得出第四个图形中y的值是()A .8B .﹣8C .﹣12D .12【答案】D 【解析】根据前三个图形中数字之间的关系找出运算规律,再代入数据即可求出第四个图形中的y 值.【详解】∵2×5﹣1×(﹣2)=1,1×8﹣(﹣3)×4=20,4×(﹣7)﹣5×(﹣3)=﹣13,∴y=0×3﹣6×(﹣2)=1.故选D .【点睛】本题考查了规律型中数字的变化类,根据图形中数与数之间的关系找出运算规律是解题的关键.二、填空题(本题包括8个小题)11.若式子2x x+有意义,则x 的取值范围是_____. 【答案】x≥﹣2且x≠1. 【解析】由2x +知20x +≥,∴2x ≥-,又∵x 在分母上,∴0x ≠.故答案为2x ≥-且0x ≠.12.如图,一下水管道横截面为圆形,直径为100cm ,下雨前水面宽为60cm ,一场大雨过后,水面宽为80cm ,则水位上升______cm .【答案】10或1【解析】分水位在圆心下以及圆心上两种情况,画出符合题意的图形进行求解即可得.【详解】如图,作半径OD AB ⊥于C ,连接OB ,由垂径定理得:BC=12AB=12×60=30cm,在Rt OBC中,22OC503040cm=-=,当水位上升到圆心以下时水面宽80cm时,则22OC'504030cm=-=,水面上升的高度为:403010cm-=;当水位上升到圆心以上时,水面上升的高度为:403070cm+=,综上可得,水面上升的高度为30cm或1cm,故答案为:10或1.【点睛】本题考查了垂径定理的应用,掌握垂径定理、灵活运用分类讨论的思想是解题的关键.13.将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板一条直角边在同一条直线上,则∠1的度数为__________【答案】75°【解析】先根据同旁内角互补,两直线平行得出AC∥DF,再根据两直线平行内错角相等得出∠2=∠A=45°,然后根据三角形内角与外角的关系可得∠1的度数.【详解】∵∠ACB=∠DFE=90°,∴∠ACB+∠DFE=180°,∴AC∥DF,∴∠2=∠A=45°,∴∠1=∠2+∠D=45°+30°=75°.故答案为:75°.【点睛】本题考查了平行线的判定与性质,三角形外角的性质,求出∠2=∠A=45°是解题的关键.14.如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是_______.【答案】2【解析】设MN=y,PC=x,根据正方形的性质和勾股定理列出y1关于x的二次函数关系式,求二次函数的最值即可.【详解】作MG⊥DC于G,如图所示:设MN=y,PC=x,根据题意得:GN=2,MG=|10-1x|,在Rt△MNG中,由勾股定理得:MN1=MG1+GN1,即y1=21+(10-1x)1.∵0<x<10,∴当10-1x=0,即x=2时,y1最小值=12,∴y最小值=2.即MN的最小值为2;故答案为:2.【点睛】本题考查了正方形的性质、勾股定理、二次函数的最值.熟练掌握勾股定理和二次函数的最值是解决问题的关键.15.如图,矩形ABCD中,BC=6,CD=3,以AD为直径的半圆O与BC相切于点E,连接BD则阴影部分的面积为____(结果保留π)【答案】94π. 【解析】如图,连接OE ,利用切线的性质得OD=3,OE ⊥BC ,易得四边形OECD 为正方形,先利用扇形面积公式,利用S 正方形OECD -S 扇形EOD 计算由弧DE 、线段EC 、CD 所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.【详解】连接OE ,如图,∵以AD 为直径的半圆O 与BC 相切于点E ,∴OD =CD =3,OE ⊥BC ,∴四边形OECD 为正方形,∴由弧DE 、线段EC 、CD 所围成的面积=S 正方形OECD ﹣S 扇形EOD =32﹣2903360π⋅⋅994π=-, ∴阴影部分的面积199369244ππ⎛⎫=⨯⨯--= ⎪⎝⎭, 故答案为94π. 【点睛】 本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形的面积公式.16.如图,AB ∥CD ,BE 交CD 于点D ,CE ⊥BE 于点E ,若∠B=34°,则∠C 的大小为________度.【答案】56【解析】解:∵AB ∥CD,34B ∠=,∴34CDE B ∠=∠=,又∵CE ⊥BE ,∴Rt △CDE 中,903456C ∠=-=,故答案为56.17.已知点A(2,0),B(0,2),C(-1,m)在同一条直线上,则m 的值为___________.【答案】3【解析】设过点A (2,0)和点B (0,2)的直线的解析式为:y kx b =+,则202k b b +=⎧⎨=⎩,解得:12k b =-⎧⎨=⎩ , ∴直线AB 的解析式为:2y x =-+,∵点C (-1,m )在直线AB 上,∴(1)2m --+=,即3m =.故答案为3.点睛:在平面直角坐标系中,已知三点共线和其中两点的坐标,求第3点坐标中待定字母的值时,通常先由已知两点的坐标求出过这两点的直线的解析式,在将第3点的坐标代入所求解析式中,即可求得待定字母的值.18.如图,利用标杆BE 测量建筑物的高度,已知标杆BE 高1.2m ,测得 1.6,12.4AB m BC m ==,则建筑物CD 的高是__________m .【答案】10.5【解析】先证△AEB ∽△ABC ,再利用相似的性质即可求出答案.【详解】解:由题可知,BE ⊥AC ,DC ⊥AC∵BE//DC ,∴△AEB ∽△ADC , ∴BE AB CD AC=, 即:1.2 1.61.612.4CD =+, ∴CD =10.5(m ).故答案为10.5.【点睛】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键.三、解答题(本题包括8个小题)19.如图,已知四边形ABCD 是矩形,把矩形沿直线AC 折叠,点B 落在点E 处,连接DE .若DE :AC=3:5,求AD AB的值.【答案】12【解析】根据翻折的性质可得∠BAC=∠EAC ,再根据矩形的对边平行可得AB ∥CD ,根据两直线平行,内错角相等可得∠DCA=∠BAC ,从而得到∠EAC=∠DCA ,设AE 与CD 相交于F ,根据等角对等边的性质可得AF=CF ,再求出DF=EF ,从而得到△ACF 和△EDF 相似,根据相似三角形得出对应边成比,设DF=3x ,FC=5x ,在Rt △ADF 中,利用勾股定理列式求出AD ,再根据矩形的对边相等求出AB ,然后代入进行计算即可得解.【详解】解:∵矩形沿直线AC 折叠,点B 落在点E 处,∴CE =BC ,∠BAC =∠CAE ,∵矩形对边AD =BC ,∴AD =CE ,设AE 、CD 相交于点F ,在△ADF 和△CEF 中,90ADF CEF AFD CFEAD CE ∠∠︒⎧⎪∠∠⎨⎪⎩====, ∴△ADF ≌△CEF (AAS ),∴EF =DF ,∵AB ∥CD ,∴∠BAC =∠ACF ,又∵∠BAC =∠CAE ,∴∠ACF =∠CAE ,∴AF =CF ,。
浙教版数学九年级上册_《垂径定理(1)》导学案1

3.3垂径定理(1)【自主卡】一、预学内容:九年级上册3.3垂径定理P76-78二、预学目标:1、经历探索垂径定理的过程;2、掌握垂径定理;3、会用垂径定理解决一些简单几何问题。
三、预学活动1、将图1沿着直径CD所在的直线对着,你发现哪些点、线段、圆弧互相重合?弦AB与直径CD有何位置关系?点:线段:圆弧:垂径定理:垂直于弦的直径______这条弦,并且______弦所对的弧。
图1定理证明:如图1,已知CD是⊙O的直径,AB⊥CD,求证AE=BE,AC=BC,AD=BD。
几何语言: CD是⊙O的直径,AB⊥CD∴____________________________________________________________,叫做这条弧的中点。
2、阅读书本例一,用直尺和圆规作出⊙O的圆心O,并说说作法。
作法:3、一个底部呈球形的烧瓶,球的半径为5cm,瓶内液体的最大深度CD=2cm(如图)。
求截面圆中弦AB的长。
思考:①半径OD与弦AB有怎样的位置关系?②什么叫做弦心距?③弦心距、半径与弦AB的半径满足怎样的数量关系?【合作交流】点A在⊙O内,过点A作一条弦BC,使BC是所有过点A的弦中最短的弦。
【测评卡】1.如图,⊙O的直径为10,弦AB的长为6,M是弦AB上的一动点,则线段的OM的长的取值范围是()A.3≤OM≤5 B.4≤OM≤5 C.3<OM<5 D.4<OM<52.如图,在半径为的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=4,则OP的长为()A.1 B.C.2 D.23.如图,AB是⊙O的弦,已知∠OAB=30°,AB=4,则⊙O的半径为()A.4 B.2 C.D.4.小明家凉台呈圆弧形,凉台的宽度AB为8m,凉台的最外端C点离AB的距离CD为2m,则凉台所在圆的半径为()A.4m B.5m C.6m D.7m5、已知:如图,AB是⊙O的弦,半径OC、OD分别交AB于点E、F,且OE=OF.求证:AE=BF.6、如图,在以点O为圆心的两个圆中,大圆的弦AB交小圆于点C、D,求证:AC=BD.7、如图,⊙O的直径CD=10,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5.求AB的长度.8、如图,在直径为50 cm的圆中,有两条弦AB和CD,AB∥CD,且AB为40 cm,弦CD为48 cm,求AB与CD之间距离.9、如图,一面墙上有一个矩形的门洞,现要将它改为一个圆弧形的门洞,圆弧所在的圆外接矩形,已知矩形的高AC=2米,宽CD=米.(1)求此圆形门洞的半径;(2)求要打掉墙体的面积.。
正多边形和圆导学案
课题正多边形和圆
一、展示解析“学习目标”。
1、学习正多边形的概念,探索正多边形和圆的关系.
2、能进行正多边形的有关计算,了解正多边形的中心,半径、边心距、中心角等概念,通过等分圆周作正多边形.
二、达成“学习目标”
知识模块一正多边形的有关概念
【自主探究】
阅读课本P105,完成下题:
如图所示,点A、B、C、D、E、F把⊙O分成相等的6段弧,依次连接各
分点得到六边形ABCDEF,它是正六边形吗?请写出证明过程.
归纳:
1.一个正多边形的各个顶点都在一个圆上,则这个正多边形就是这个圆的内接多边形,圆叫做这个多边形的外接圆.
2.一个正多边形的外接圆的圆心叫做正多边形的中心.
3.外接圆的半径叫做正多边形的半径.
4.正多边形每一边所对的圆心角叫做正多边形的中心角.
5.中心到正多边形的一边的距离叫做正多边形的边心距.
知识模块二正多边形的有关计算
【合作探究】
阅读P106,完成下面例题:
典例:如图正六边形的半径为R,求正六边形的边长、边心距和面积.
三.检测“学习目标”
1.若一个正多边形的每个外角为36°,则这个正多边形的中心角为( ) A.18°B.36°C.54°D.72°
2.若正方形的边长为6,则其外接圆半径为,内切圆半径为.3.已知一个圆的半径为5cm,则它的内接正三角形的半径为,边心距为.
4.如图,已知正六边形ABCDEF内接于⊙O,图中阴影部分的面积为123,求⊙O的半径.。
《2.1 圆的对称性》导学案-九年级下册数学湘教版
圆的对称性(导学案)教学目标:1.理解圆的有关概念及圆的对称性;(重点)2.掌握点与圆的位置关系的性质与判定.(重点)教学过程:一、情境导入二、合作探究探究点一:圆的定义:1.平面内到一定点的距离等于定长的所有点组成的图形叫做圆。
其中,定点称为圆心,定长称为半径(radius)。
以点O为圆心的圆记作⊙O,读作“圆O”。
2.圆也可以看成平面内一动点绕一个定点旋转一周所形成的图形。
注:确定一个圆需要两个要素,一是位置,二是大小.圆心确定其位置,半径确定其大小。
只有圆心没有半径,虽圆的位置固定,但大小不定,因而圆不确定;只有半径而没有圆心,虽圆的大小固定,但圆心的位置不定,因而圆也不确定。
只有圆心和半径都固定,圆才被唯一确定。
探究点二:弦与弧的定义:1.连结圆上任意两点的线段叫做弦2.圆上任意两点间的部分叫做圆弧,简称弧。
3.等圆,等弧。
注:经过圆心的弦叫做直径,直径是弦,是圆内最长的弦,但弦不一定是直径。
弧包括优弧和劣弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧。
优弧用三个大写字母表示,劣弧用两个大写字母表示。
半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧叫半圆弧,简称半圆也用三个大写字母表示。
半圆是弧,但弧不一定是半圆;半圆既不是劣弧,也不是优弧。
探究点三:点与圆的位置关系同一平面内点与圆有几种位置关系?怎么确定点与圆的关系?在圆上d=r在圆内d<r在圆外d>r探究点四:圆的对称性什么是轴对称,什么是中心对称?圆是中心对称图形,即圆绕圆心旋转180度,能与自身重合。
圆心是它的对称中心。
圆是轴对称图形,它的对称轴是过直径的直线,•我能找到无数多条直径,所以有无数条对称轴。
注:圆有无数条对称轴,圆的对称轴是过圆心的每一条直线,即直径所在的直线而不是圆的直径.三,巩固提高四,作业布置。
24.1、1 圆导学案
第31课时 24.1、1 圆学习目标了解圆的有关概念,理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题.一、板书课题,揭示目标今天开始我们一起学习圆的有关知识(投影课题及目标).(见学习目标)二、指导自学认真看课本P78-P79练习前的内容:回答1.举出生活中的圆三、四个.2.你能讲出形成圆的方法有多少种?3:图上各点到定点(圆心O)的距离有什么规律?4:到定点的距离等于定长的点又有什么特点?三、学生自学,教师巡视1、学生按照自学指导看书,教师巡视,确保人人学得紧张高效.2、检查自学效果完成课本练习.请几位同学板演,其余学生在座位上完成.四、更正、讨论、归纳、总结1.学生自由更正,或写出不同解法;2.讨论、归纳学生点评教师小结:本节课应掌握:1.圆的有关概念;五、课堂作业六、教学反思第32课时 24.1、2垂直于弦的直径 学习目标从感受圆在生活中大量存在到圆形及圆的形成过程,讲授圆的有关概念.利用操作几何的方法,理解圆是轴对称图形,过圆心的直线都是它的对称轴.通过复合图形的折叠方法得出猜想垂径定理,并辅以逻辑证明加予理解. 一、板书课题,揭示目标 今天我们学习垂直于弦的直径 (投影课题及目标).(见学习目标) 二、指导自学认真看课本P80-P81练习前的内容: 完成书上的思考与探究内容5分钟后,比谁能正确地做出与例题类似的习题。
三、学生自学,教师巡视1、学生按照自学指导看书,教师巡视,确保人人学得紧张高效.2、检查自学效果 完成课本练习.1.如图4,AB 为⊙O 直径,E 是 BC 中点,OE 交BC 于点D ,BD=3,AB=10,则AC=_____.BA(4) (5)2.P 为⊙O 内一点,OP=3cm ,⊙O 半径为5cm ,则经过P 点的最短弦长为________;•最长弦长为_______.3.如图5,OE 、OF 分别为⊙O 的弦AB 、CD 的弦心距,如果OE=OF ,那么_______(只需写一个正确的结论)请几位同学板演,其余学生在座位上完成.四、更正、讨论、归纳、总结1.学生自由更正,或写出不同解法;2.讨论、归纳学生点评教师小结:1.圆是轴对称图形,任何一条直径所在直线都是它的对称轴.2.垂径定理及其推论以及它们的应用.五、课堂作业1.教材P87 复习巩固11.如图24-11,AB为⊙O的直径,CD为弦,过C、D分别作CN⊥CD、DM•⊥CD,•分别交AB于N、M,请问图中的AN与BM是否相等,说明理由.2.如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.六、教学反思第33课时 24.1、3弧、弦、圆心角 学习目标了解圆心角的概念:掌握在同圆或等圆中,圆心角、弦、弧中有一个量的两个相等就可以推出其它两个量的相对应的两个值就相等,及其它们在解题中的应用.通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题.教学重点: 在同圆或等圆中,相等的圆心角所对的弧相等,•所对弦也相等及其两个推论和它们的应用.教学难点: 探索定理和推导及其应用 一、板书课题,揭示目标今天我们一起来学习24.1、3弧、弦、圆心角 (投影课题及目标).(见学习目标) 二、指导自学认真看课本P82-P83练习前的内容:完成书上的探究内容,通过归纳填空,理解定理。
人教九年级数学上册 圆周角定理及推论导学案
公开课教案主题:新人教版初中数学九年级(上)24.1.4圆周角(2)课型:练习课教学目标:1、知识与技能:使学生加深对圆周角定理及推论的理解,学会较熟练的运用圆周角定理及推论解决简单的计算、推理和应用问题。
2、过程与方法:通过例题教学、变式训练和拓展练习,形成运用圆周角定理解决问题的基本方法,从而达到提高运用能力的学习效果。
3、情感与态度:让学生体会到“提高运用能力,关键在意识的树立和方法的养成”,从而自觉养成“增强运用意识和提炼数学方法”的良好习惯。
教学重难点:较熟练的运用圆周角定理及推论解决问题,提炼方法,提高解决问题的能力。
教学准备:PPT,导学案。
教学过程:一、知识回顾仅将“圆周角的定义、定理及推论”,用文字填空的形式,简单回顾。
1、圆周角的定义:顶点在,并且两边都和圆的角叫做圆周角。
2、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的。
3、圆周角定理的推论:(1)同弧或等弧所对的圆周角。
(2)直径(或半圆)所对的圆周角是,90°的圆周角所对的弦是。
二、简单运用1、已知同弧所对的圆周角度数,求圆周角度数。
(直接运用);2、通过“直径所对的圆周角是直角”得出直角三角形,再进一步运用“勾股定理解决。
(适当拔高,渗入知识的综合);3、首先利用“圆周角定理”求出圆心角,再进一步利用等腰三角形的性质及三角形的内角和等综合解决。
(又适当拔高,合理增加综合性)三、例题教学1、“例题精典1”,通过连结一条弦,成功使用圆周角定理的推论“同弧所对的圆周角相等”和平行线的判断“内错角相等,两直线平行”予以解决问题。
问题难度不大,但就如何思考得到辅助线的自然产生极具价值。
2、“例题变式1”,做一条辅助线,创造条件使用圆周角定理。
3、“例题精典2”(P87例4),两次使用了圆周角定理的不同内容,综合运用了勾股定理、三者之间的关系定理。
需要强化“直径所对的圆周角是直角”的应用,和创造条件使用圆周角定理的意识和方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
YCKG 九年级上数学《教与学设计案》 编写人:林光芬 所在学校:石垭中学
1 第二十四章 圆 导学案 YCKG 九年级上数学《教与学设计案》 编写人:林光芬 所在学校:石垭中学
2 24.1.1 圆 第1课时 【学习目标】 1.理解圆的两种定义,理解并掌握弦、直径、弧、优弧、劣弧、半圆、等圆、等弧等基本概念; 2.通过对圆的相关概念的理解,能够从图形中识别“弦、直径”、“弧、优弧、劣弧”、“半圆、等圆、等弧”; 3.能应用圆的有关概念解决问题. 【学习重、难点】 【重点】 与圆有关的概念 【难点】 理解“直径与弦”、“半圆与弧”、 “等弧与长度相等的弧”等模糊概念; 【学法指导】 自主、探究、合作交流,通过生活中圆形物体的感性认识,并自己动手操作画图,理解圆的定义,通过阅读教材理解圆的相关概念并在图中识别,澄清相关概念,并能用相关概念来解决问题. 【学习流程】 导 学 过 程 方法导引 【自主学习,基础过关】 (一)知识回顾,温故知新
自己回忆一下,小学学习过圆的哪些知识? (二)自学自悟,自主检测 1、结合教材图24.1-1,说说生活中有哪些物体是圆形的?并思考圆有什么特征? 2、举出生活中的圆的例子
3、圆的周长公式C= , 圆的面积公式S= 。 【合作探究,释疑解惑】 1.理解圆的定义: (阅读教材P78图24.1-2和图24.1-3,并自己动手画圆,独立完成后, 小组讨论,完成下列填空) (1)描述性定义①:______________________________________________,
②- 。 (2)圆的表示方法:以O点为圆心的圆记作______,读作______. 从圆的定义中归纳: ①圆上各点到定点(圆心O)的距离都等于____ __;
小组合作,讨论,教师点拨
学生动手画图小组讨论,归纳总结出圆的定义,圆的表示方法,教师点拨。 YCKG 九年级上数学《教与学设计案》 编写人:林光芬 所在学校:石垭中学
3 ②到定点的距离等于定长的点都在____ _. 要确定一个圆,需要两个基本条件,一个是______,另一个是_____,其中_____确定圆的位置,______确定圆的大小.
圆的定义○2:到 的距离等于 的点的集合. 2.圆的相关概念: (1)弦、直径: 图1 弦:连接圆上任意两点的 叫做弦 直径:经过圆心的 叫做直径 (2)弧及其表示方法: 弧: 任意两点间的部分叫做圆弧,简称弧 半圆:圆的任意一条 的两个端点把圆分成两条弧,每一条 都叫做半圆 优弧: 半圆的弧叫做优弧。用 个点表示, 如图1: 是优弧 劣弧: 半圆的弧叫做劣弧。用 个点表示,图1中 是劣弧 如图1,弦有线段 ,直径是 ,最长的弦是 ,优弧有 ;劣弧有 。
(3)等圆、等弧。 等圆:能够 的两个圆叫做等圆 等弧:能够 的弧叫做等弧 同圆或等圆的半径有什么性质?
3.知识拓展 圆的集合定义(集合的观点) ( 1)思考:平面上的一个圆把平面上的点分成哪几部分? ( 2)圆的内部是到 的点的集合; 圆的外部是 的点的集合 。
【检测反馈,学以致用】 1.教材P80练习1、2题(独立完成) 2.判断下列说法是否正确,为什么? (1)直径是弦.( ) (2)弦是直径.( ) (3)半圆是弧.( ) (4) 弧是半圆.( ) (5) 等弧的长度相等.( ) (6) 长度相等的两条弧是等弧.( ) 3.以点O为圆心作圆,可以作( ) A.1个 B.2个 C.3个 D.无数个 4.确定一个圆的条件为( ) A.圆心 B.半径 C.圆心和半径 D.以上都不对. 5.圆O的半径为3cm,则圆O中最长的弦长为
阅读教材P79倒数三段,小组讨论,完成下列填空
分组展示出“弦、直径”,“弧、半圆”,“优弧、劣弧”、 “半圆、等圆、等弧”之间的区别与联系,及表示方法,教师点拨。
独立完成, 做完后同桌互查,对于出现的问题,交流讨论清楚,并用红笔做好修改 YCKG 九年级上数学《教与学设计案》 编写人:林光芬 所在学校:石垭中学
4 拓展训练 如图,AB为⊙O的直径,CD是⊙O中不过圆心的任意一条弦,求证:AB>CD。
【总结提炼,知识升华】 1.圆的两种定义: (1) ;(2) . 2.什么是弦、直径、弧、半圆、优弧、劣弧、等圆、等弧? 3.同圆或等圆的半径有什么性质?
【课后训练,巩固拓展】 1、书面作业:进一步巩固什么是弦、直径、弧、半圆、优弧、劣弧、等圆、等弧?等概念 2、P80第1、2、3题
【课后反思,自悟自励】
随意抽查或小组内互说互听
24.1.2 垂直于弦的直径(1) 第2课时 【学习目标】 1.理解圆的轴对称性; 2.掌握垂径定理及其推论,能用垂径定理及其推论进行有关的计算和证明. 3、培养学生语言的表达能力。 【学习重、难点】 【重点】 垂径定理:平分弦(不是直径)的直径垂直于弦,•并且平分弦所对的两条弧及其他们的应用 【难点】 垂径定理的题设和结论以及垂径定理的证明 【学法指导】: 自主、合作、探究 【学习流程】 导 学 过 程 方法导引 【自主学习,基础过关】 导学自习(教材P80-81) 1.阅读教材p80有关“赵州桥”问题,思考能用学习过的知识解决吗? 2. 阅读教材p80“探究”内容,自己动手操作,发现了什么?由此你能得到什 自主探究、
小组讨论YCKG 九年级上数学《教与学设计案》 编写人:林光芬 所在学校:石垭中学
5 么结论?(小组讨论,归纳得出结论) 归纳:圆是__ __对称图形, ____________ ________都是它的对称轴; 3. 阅读教材p80“思考”内容,自己动手操作: 按下面的步骤做一做:(如图1) 第一步,在一张纸上任意画一个⊙O,沿圆周将圆剪下,作⊙O的一条弦AB; 第二步,作直径CD,使CDAB,垂足为E; 第三步,将⊙O沿着直径折叠. 你发现了什么? 归纳:(1)图1 对称图形,对称轴是 . (2)相等的线段有 ,相等的弧有 。 . 【合作探究,释疑解惑】 活动1:(1)如图2,怎样证明“自主学习3”得到的 第(2)个结论. 叠合法证明:(小组讨论,并写出 证明过程) (2)垂径定理:垂直于弦的直径 弦,并且 的两条弧. 定理的几何语言: 如图2 CD是直径(或CD经过圆心),且CDAB ____________,____________,_____________ 推论:____________________________________________________________. 活动2:垂径定理的应用 如图3,已知在中⊙O,弦AB的长为8cm,圆心O到AB的距离(弦心距)为3cm,求⊙O的半径.(分析:可连结OA,作OCAB于C) 解: 完成阅读内容,并完成填空
小组讨论,归纳总结出垂径定理,及推论,几何语言的表达,教师点拨。
小组讨论,教师指导,做完后小组互查,形成步骤格式,对于出现的问题,交流讨论清楚,每个同学做好修改
(图1) CABDE
O
BAO(图3)
CABDE
O
(图2)
adr
h
(图4) YCKG 九年级上数学《教与学设计案》 编写人:林光芬 所在学校:石垭中学
6 归纳: (1)辅助线的常用作法:连半径,过圆心向弦作垂线段。 (2)如图4,根据垂径定理和勾股定理,“半弦、半径、弦到圆心距”构成直角三角形,则rda、、的关系为 ,知道其中任意两个量,可求出第三个量. 【检测反馈,学以致用】 1.练习:P83第1、2题 2.判断下列说法的正误 ①平分弧的直径必平分弧所对的弦 ②平分弦的直线必垂直弦 ③垂直于弦的直径平分这条弦 ④平分弦的直径垂直于这条弦 ⑤弦的垂直平分线是圆的直径 ⑥平分弦所对的一条弧的直径必垂直这条弦 3.圆的半径为5cm,圆心到弦AB的距离为4cm,则_____ABcm. 4在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O 的半径. 5. 如图5,CD为⊙O的直径,AB⊥CD于E,DE=8cm,CE=2cm,则AB=______cm. 拓展训练 已知:如图6,AB是⊙O的直径,弦CD交AB于E点,BE=1,AE=5,∠AEC=30°,求CD的长. 【总结提炼,知识升华】 1.垂径定理是 : , 定理有两个条件,三个结论。 2.定理可推广为:在五个条件①过圆心,②垂直于弦,③平分弦,④平分弦所对的优弧⑤平分弦所对的劣弧中,知 推 。 【课后训练,巩固拓展】 P89第1、8题,P90第9、10题 【课后反思,自悟自励】 同桌互听互说
独立完成,教师指导
同桌互听互说
(图5) (图6)