空间直角坐标系与空间向量及其运算

合集下载

1.1空间向量及其运算1.1.3空间向量的坐标与空间直角坐标系

1.1空间向量及其运算1.1.3空间向量的坐标与空间直角坐标系

人教B 版(2019)选择性必修第一册过关斩将第一章空间向量与立体几何1.1空间向量及其运算1.1.3空间向量的坐标与空间直角坐标系学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知向量{,,}a b c 是空间向量的一组基底,向量{,,}a b a b c +-是空间向量的另外一组基底,若一向量p 在基底{,,}a b c 下的坐标为(1,2,3),则向量p 在基底{,,}a b a b c +-下的坐标为( )A .13,,322⎛⎫ ⎪⎝⎭B .31,,322⎛⎫- ⎪⎝⎭C .133,,22⎛⎫-⎪⎝⎭D .13,,322⎛⎫- ⎪⎝⎭2.已知a =(2,﹣1,2),b =(x ,y ,6),a 与b 共线,则x ﹣y =( ) A .5B .6C .3D .93.下列向量与向量()1,2,1=-a 共线的单位向量为( )A.11,22⎛⎫-- ⎪ ⎪⎝⎭B.11,22⎛⎫- ⎪ ⎪⎝⎭C.1122⎛⎫-- ⎪ ⎪⎝⎭ D.1122⎛⎫⎪⎪⎝⎭4.已知点A(4,1,3),B(2,-5,1),C 为线段AB 上一点且13ACAB =,则点C 的坐标为( ) A .715,,222⎛⎫-⎪⎝⎭ B .3,3,28⎛⎫- ⎪⎝⎭C .107,1,33⎛⎫-⎪⎝⎭D .573,,222⎛⎫-⎪⎝⎭5.向量()()2,4,,2,,2a x b y ==,若6a =,且a b ⊥,则x y +的值为( ) A .3-B .1C .3或1D .3-或16.已知O 为坐标原点,(1,2,2),(2,1,4),(1,1,4)OA OB OC =-=-=,点P 是OC 上一点,则当PA PB ⋅取得最小值时,点P 的坐标为( )A .114,,333⎛⎫ ⎪⎝⎭B .11,,222⎛⎫⎪⎝⎭C .11,,144⎛⎫⎪⎝⎭D .()2,2,87.已知2(,2,0),(3,2,)a x b x x ==-,且a 与b 的夹角为钝角,则x 的取值范围是( ) A .4x <-B .40x -<<C .04x <<D .4x >8.在空间直角坐标系中,已知()1,2,3A ,()1,0,4B ,()3,0,5C ,()4,1,3D -,则直线AD 与BC 的位置关系是( ) A .平行B .垂直C .相交但不垂直D .无法判定9.三棱柱111ABC A B C -的侧棱与底面垂直,11AA AB AC ===,AB AC ⊥,N 是BC 的中点,1A P λ=11A B ,113C C C M =,若PN BM ⊥,则λ=( )A .12B .13C .23D .3410.在空间直角坐标系中,(3,3,0)A ,(0,0,1)B ,点(,1,)P a c 在直线AB 上,则 ( ) A .11,3a c ==B .21,3a c ==C .12,3a c ==D .22,3a c ==11.己知()2,1,3a =-,()1,4,2b =--,()7,5,c λ=,若,,a b c 三向量不能构成空间的一个基底,则实数λ的值为( ) A .657B .9C .357D .012.在空间直角坐标系中,A(1,1,-2),B(1,2,-3),C(-1,3,0),D(x ,y ,z ) ,(x ,y ,z ∈R),若四点A ,B ,C ,D 共面,则( ) A .2x +y +z =1B .x +y +z =0C .x -y +z =-4D .x +y -z =013.已知空间直角坐标系O xyz -中,()1,2,3OA =,()2,1,2OB =,()1,1,2OP =,点Q 在直线OP 上运动,则当QA QB ⋅取得最小值时,点Q 的坐标为( )A .131,,243⎛⎫⎪⎝⎭B .133,,224⎛⎫⎪⎝⎭C .448,,333⎛⎫⎪⎝⎭D .447,,333⎛⎫⎪⎝⎭14.已知向量()123a =,,,()246b =---,,,14c =,若()7a b c +⋅=,则a 与c 的夹角为( )A .30B .60︒C .120︒D .150︒15.在四棱柱1111ABCD A B C D -中,底面ABCD 是正方形,侧棱1AA ⊥底面ABCD .已知11,AB AA ==E 为线段AB 上一个动点,则1D E CE +的最小值为( )A .BC 1D .2+16.在直三棱柱111ABC A B C -中,1,12BAC AB AC AA π∠====,已知G 和E 分别为11A B 和1CC 的中点,D 与F 分别为线段AC 和AB 上的动点(不包括端点),若GD EF ⊥,则线段DF 的长度的取值范围为( )A .5⎫⎪⎪⎣⎭B .5⎣C .5⎛⎫⎪ ⎪⎝⎭D .5⎡⎫⎪⎢⎪⎣⎭二、填空题17.已知{,,}i j k 为单位正交基底,且3,232a i j k b i j k =-++=--,则向量2a b -的坐标是_________.18.已知空间向量(2,1,3)a =-,(1,4,2)b =--,(,5,5,)c λ=,若,,a b c 共面,则实数λ=______.19.已知空间向量()21,3,0a x x =+,()1,,3b y y =-,(其中x 、y R ∈),如果存在实数λ,使得a b λ=成立,则x y +=_____________.20.已知()cos ,1,sin a θθ=,()sin ,1,cos b θθ=,则向量a b +与a b -的夹角是__________.21.已知AB =(1,5,-2),BC =(3,1,z ),若AB ⊥BC ,BP =(1x -,y ,-3),且BP ⊥平面ABC ,则实数x y +=________.三、解答题22.已知空间中三点(2,0,2)A -,(1,1,2)B -,(3,0,4)C -,设a AB =,b AC =. (1)求向量a 与向量b 的夹角的余弦值; (2)若ka b +与2ka b -互相垂直,求实数k 的值.23.如图,直三棱柱111ABC A B C -,底面ABC 中,1CA CB ==,90BCA ∠=︒,棱12AA =,M 、N 分别是11A B 、1A A 的中点.(1)求BM 的长; (2)求11cos ,BA CB 的值; (3)求证:11A B C N ⊥.四、多选题24.(多选)已知(1,2,3),(2,3,4),(1,2,3)M N P --,若3PQ MN =且//PQ MN ,则Q 点的坐标可以为( ) A .(2,5,0) B .(4,1,6)---C .(3,4,1)D .(3,2,5)---参考答案1.B 【分析】设向量p 在基底{,,}a b a b c +-下的坐标为(,,)x y z ,则由已知可得23()()()()p a b c x a b y a b zc x y a x y b zc =++=++-+=++-+,从而可求出,,x y z 的值 【详解】设向量p 在基底{,,}a b a b c +-下的坐标为(,,)x y z ,则23()()()()p a b c x a b y a b zc x y a x y b zc =++=++-+=++-+,所以1,2,3,x y x y z +=⎧⎪-=⎨⎪=⎩解得3,21,23,x y z ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩故p 在基底{},,a b a b c +-下的坐标为31,,322⎛⎫- ⎪⎝⎭. 故选:B 【点睛】此题考查空间向量基本定理的应用,属于基础题 2.D 【分析】利用两个向量共线的坐标表示列方程,解方程求得,x y 的值,进而求得x y -的值. 【详解】由于a 与b 共线,所以6212x y ==-,解得6,3x y ==-,所以9x y -=. 故选:D 【点睛】本小题主要考查两个空间向量共线的坐标表示,属于基础题. 3.C 【分析】根据一个向量共线的单位向量计算公式a a±,可得结果【详解】由||122a =++=, ∴与向量a 共线的单位向量为11,22⎛⎫ ⎪⎪⎝⎭或1122⎛⎫-- ⎪ ⎪⎝⎭. 故选:C 【点睛】本题考查向量的单位向量,属基础题题. 4.C 【分析】C 为线段AB 上一点,且3|AC |=||AB |,可得13AC AB =,利用向量的坐标运算即可得出. 【详解】∵C 为线段AB 上一点,且3|AC |=||AB |,∴13AC AB =, ∴13OC OA AB =+=(4,1,3)+13(﹣2,﹣6,﹣2),=107133⎛⎫-⎪⎝⎭,,.故选C . 【点睛】本题考查了向量共线定理、向量的坐标运算,考查了计算能力,属于基础题. 5.D 【解析】22422440a b y x x y ⋅=⨯+⨯+⨯=++=,又2246a =+== ,所以解得43x y =⎧⎨=-⎩或41x y =-⎧⎨=⎩ ,所以1x y +=或3x y +=-,故选D. 6.A 【分析】根据三点共线,可得OP OC λ=,然后利用向量的减法坐标运算,分别求得,PA PB ,最后计算PA PB ⋅,经过化简观察,可得结果. 【详解】设(,,4)OP OC λλλλ==,则(1,2,24)PA λλλ=---- (2,1,44)PB λλλ=----则2211812818103PA PB λλλ⎛⎫⋅=--=-- ⎪⎝⎭ ∴当13λ=时,PA PB ⋅取最小值为-10, 此时点P 的坐标为114,,333⎛⎫ ⎪⎝⎭. 故选:A 【点睛】本题主要考查向量数量积的坐标运算,难点在于三点共线,审清题干,简单计算,属基础题. 7.A 【分析】根据a 与b 的夹角为钝角,则0a b <,再根据坐标关系建立不等式即可求解. 【详解】∵()2(,2,0)3,2,x x x λ≠-,∴a 与b 不共线, ∵a 与b 的夹角为钝角,∴0a b <,即3 2(2)0x x +-<,解得4x <-, 故选A. 【点睛】本题考查向量的夹角.注意向量数量积的坐标关系与向量平行的坐标关系的区别. 8.B 【分析】根据题意,求得向量AD 和BC 的坐标,再结合空间向量的数量积的运算,即可得到两直线的位置关系,得到答案. 【详解】由题意,点()1,2,3A ,()1,0,4B ,()3,0,5C ,()4,1,3D -, 可得()3,1,6AD =--,()2,0,1BC =, 又由()()2310610AD BC ⋅=⨯+-⨯+-⨯=, 所以AD BC ⊥,所以直线AD 与BC 垂直. 故选:B . 【点睛】本题主要考查了空间向量的数量积的运算及其应用,其中解答中熟记空间向量的坐标运算,以及空间向量的数量积的运算是解答本题的关键,着重考查了推理与运算能力,属于基础题. 9.C 【分析】建立空间直角坐标系,求出,,,P B M N 坐标,进而求出,PN BM 坐标,由=0PN BM ⋅,即可求解. 【详解】如图,以AB ,AC ,1AA 所在直线分别为x ,y ,z 轴, 建立空间直角坐标系A xyz -,则(),0,1P λ,11,,022N ⎛⎫ ⎪⎝⎭,()1,0,0B ,20,1,3M ⎛⎫ ⎪⎝⎭,11,,122PN λ⎛⎫=-- ⎪⎝⎭,21,13BM ⎛⎫=-- ⎪⎝⎭,所以1120223PN BM λ=-+-=⋅,即23λ=. 故选:C.【点睛】本题考查空间向量坐标运算,求出各点坐标是解题的关键,属于基础题. 10.B 【解析】∵点P (a ,1,c )在直线AB 上, ∴存在实数λ使得AB BP λ=, ∴()()()0,0,13,3,0,1,1a c λ-=- , 化为()3,3,1(,,)a c λλλλ--=- ,∴3{31ac λλλλ-=-==- ,解得3{123a c λ=-==.本题选择B 选项.11.A 【分析】由条件可得,,a b c 共面,根据共面向量的基本定理,即可求出结论. 【详解】,,a b c 三向量不能构成空间的一个基底,,,a b c 共面,()2,1,3a =-,()1,4,2b =--,()7,5,c λ=,存在唯一的实数对(,)x y ,使得c xa yb =+,274532x y x y x y λ-=⎧⎪-+=⎨⎪-=⎩解得337177657x y λ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩. 故选:A. 【点睛】本题考查空间向量共面的坐标关系,属于基础题. 12.A 【解析】(0,1,1)AB =-,(2,2,2)AC =-,(1,1,2)AD x y z =--+,因为,,,A B C D 四点共面,所以,,AB AC AD 共面,即存在,λμ使得AD AB AC λμ=+,即12{1222x y z μλμλμ-=--=++=-+,消去,λμ得21x y z ++=,故选A .13.C 【分析】设(,,)Q x y z ,根据点Q 在直线OP 上,求得(,,2)Q λλλ,再结合向量的数量积和二次函数的性质,求得43λ=时,QA QB ⋅取得最小值,即可求解. 【详解】 设(,,)Q x y z ,由点Q 在直线OP 上,可得存在实数λ使得OQ OP λ=, 即(,,)(1,1,2)x y z λ=,可得(,,2)Q λλλ,所以(1,2,32),(2,1,22)QA QB λλλλλλ=---=---,则2(1)(2)(2)(1)(32)(22)2(385)QA QB λλλλλλλλ⋅=--+--+--=-+, 根据二次函数的性质,可得当43λ=时,取得最小值23-,此时448(,,)333Q .故选:C. 【点睛】本题主要考查了空间向量的共线定理,空间向量的数量积的运算,其中解答中根据向量的数量积的运算公式,得出关于λ的二次函数是解答的关键,着重考查运算与求解能力. 14.C 【解析】由题意可得14a =,56b =,且2b a =-,所以7a c -⋅=,cos ,a ca c a c ⋅==71142-=-,所以0,120a c =,选C. 【点睛】本题考查向量的数量积坐标运算与运用向量求夹角,但本题更重要的是要发现2b a =-的平行关系,就可以简化运算,否则要设c 坐标,待定系数运算求坐标,运算复杂了. 15.B 【分析】由已知条件建立如图所示的空间直角坐标系,(,0,0)(01)E t t ,则1D E CE +=的最小值问题转化为求平面直角坐标系tOu 中的一个动点(,0)P t 到两定点(0,2),(1,1)M N -的距离之和的最小值的问题,即转化为求平面直角坐标系tOu 中的一个动点(,0)P t 到两定点(0,2),(1,1)M N -的距离之和的最小值的问题,由图可知当M ,P ,N 三点共线时,(,0)P t 到两定点(0,2),(1,1)M N -的距离之和最小,从而可得答案 【详解】建立如图所示的空间直角坐标系A xyz -,则1(0,0,0),(1,1,0)A D C . ∵E 为线段AB 上一个动点, ∴设(,0,0)(01)E t t ,则1D E ==,CE =故问题转化为求1D E CE +=+的最小值问题,即转化为求平面直角坐标系tOu 中的一个动点(,0)P t 到两定点(0,2),(1,1)M N -的距离之和的最小值的问题,如图所示.由此可知,当M ,P ,N 三点共线时,()1min min ||D E CE MN +====故选:B. 【点睛】此题考查空间中两线段和最小问题,转化为平面问题解决,考查空间向量的应用,属于中档题 16.A 【分析】由已知建立如图所示的空间直角坐标系A xyz -,设(0,,0),(,0,0)D y F x ,则11,,1,,1,22GD y EF x ⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭,由GD EF ⊥可得21x y +=,从而可得1||02DF y ⎫===<<⎪⎭,进而可求出结果 【详解】建立如图所示的空间直角坐标系A xyz -,则11,0,1,0,1,22G E ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,设(0,,0),(,0,0)D y F x ,则11,,1,,1,22GD y EF x ⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭,∵GD EF ⊥,∴0GD EF ⋅=,即11022x y --+=,即21x y +=, 又∵01x <<,∴0121y <-<, ∴102y <<.又1||02DF y ⎫===<<⎪⎭,∴当25y =时,min 5DF ==; 当0y =时,||1DF =;当12y =时,1||2DF =,故线段DF 的长度的取值范围为5⎫⎪⎪⎣⎭. 故选:A 【点睛】此题考查点、线、面间的距离计算,考查空间向量的应用,考查计算能力,属于基础题 17.(5,7,7)- 【分析】由3,232a i j k b i j k =-++=--直接计算2a b -,化简后可得其坐标 【详解】解:由3,232a i j k b i j k =-++=--,得2(3)2(232)a b i j k i j k -=-++---(3)(464)(4)(6)(34)577i j k i j k i i j j k k i j k =-++---=--++++=-++,则2(5,7,7)a b -=-. 故答案为:(5,7,7)- 【点睛】此题考查空间向量的坐标运算,属于基础题 18.4 【分析】利用空间向量共面的条件,设出实数x ,y ,使c xa yb =+,列出方程组,求出λ的值即可. 【详解】 解:向量a 、b 、c 共面,∴存在实数x ,y 使得c xa yb =+,即)(2,1,(,5,5)(1,4,23)y x λ=-+--,∴245325x y x y x y λ-=⎧⎪-+=⎨⎪-=⎩;解得324x y λ=⎧⎪=⎨⎪=⎩故答案为:4. 【点睛】本题考查了空间向量的共面问题,也考查了方程组的解法与应用问题,是基础题目. 19.2 【分析】利用向量的坐标运算得出关于x 、y 、λ的方程组,解出即可得出x y +的值. 【详解】()21,3,0a x x =+,()1,,3b y y =-,且a b λ=,所以()21303x x y y λλλ⎧+=⎪=⎨⎪=-⎩,解得131x y λ=-⎧⎪=⎨⎪=-⎩,因此,2x y +=. 故答案为:2. 【点睛】本题考查空间向量共线的坐标运算,建立方程组求解是解题的关键,考查计算能力,属于基础题. 20.2π【分析】利用向量坐标运算表示出a b +与a b -,根据数量积运算法则可求得()()0a b a b +⋅-=,即两向量垂直,得到夹角. 【详解】()sin cos ,2,sin cos a b θθθθ+=++,()cos sin ,0,sin cos a b θθθθ-=--()()2222cos sin sin cos 0a b a b θθθθ∴+⋅-=-+-=()()a b a b ∴+⊥-,即a b +与a b -的夹角为2π故答案为2π 【点睛】本题考查向量夹角的求解,关键是能够通过向量的坐标运算求得两向量的数量积,属于基础题. 21.257【分析】由题意,可得,,AB BC BP AB BP BC ⊥⊥⊥,利用向量的数量积的运算公式列出方程组,求得,,x y z 的值,即可求解. 【详解】由题意,可得,,AB BC BP AB BP BC ⊥⊥⊥,利用向量的数量积的运算公式,可得()352015603130z x y x y z ⎧+-=⎪-++=⎨⎪-+-=⎩解得407x =,157y =-,4z =,∴401525777x y +=-=.【点睛】本题主要考查了向量的数量积的应用,其中解答中根据题设条件和线面位置关系,利用向量的数量积的运算公式,列出方程组求得,,x y z 的值是解答的关键,着重考查了推理与运算能力,属于基础题. 22.(1)10-;(2)52k =-或2k =.【分析】(1)先写出a ,b ,再根据空间向量的夹角公式直接求解即可; (2)根据空间向量垂直的坐标表示直接求解即可得答案. 【详解】(1)∵()1,1,0a AB ==,()1,0,2b AC ==-, 设a 与b 的夹角为θ,∴cos 10|a ba b θ⋅===∣;(2)∵()1,,2ka b k k +=-,()22,,4ka b k k -=+-且()()2ka b ka b +⊥-,∴2(1)(2)80k k k -++-=,即:52k =-或2k =. 【点睛】本题考查空间向量的夹角的计算,空间向量的垂直求参数,考查运算能力,是基础题.23.(123)证明见解析 【分析】(1)以C 为原点,建立空间直角坐标系C xyz -,依题意得()0,1,0B ,()1,0,1M ,根据空间两点间距离公式: d =即可求得BM 的长.(2)求出1BA 和1CB ,根据111111cos ,BA CB BA CB BA CB ⋅=⋅,即可求得11cos ,BA CB 的值.(3)求出1A B 和1C N ,11A B C N ⋅的值,根据向量垂直与数量积的关系a b ⊥时,=0a b ⋅,即可求证11A B C N ⊥. 【详解】(1)以C 为原点,建立空间直角坐标系C xyz -.如图:依题意得()0,1,0B ,()1,0,1M ,根据空间两点间距离公式: d =∴ (1BM ==(2)依题意得:()11,0,2A ,()0,1,0B ,()0,0,0C ,()10,1,2B . ∴()11,1,2BA =-,()10,1,2CB =,113BA CB ⋅=,16BA =15CB =,∴11111130cos ,BA CB BA CB BA CB ⋅==⋅. (3)依题意得()10,0,2C ,11,,222N ⎛⎫⎪⎝⎭∴()11,1,2A B =--,111,,022C N ⎛⎫= ⎪⎝⎭.∴11110022A B C N ⋅=-++=∴11A B C N ⊥【点睛】本题考查了平面向量的坐标运算和平面向量数量积的坐标运算,熟练掌握向量的基本知识是解本题关键,对于立体几何中角的计算问题,可以利用空间向量法,利用向量的夹角公式求解,考查了空间想象能力和计算能力,属于基础题. 24.AB 【分析】首先设(),,Q x y z ,根据题意得到3PQ MN =或3PQ MN =-,从而得到132333x y z +=⎧⎪-=⎨⎪+=⎩或132333x y z +=-⎧⎪-=-⎨⎪+=-⎩,再解方程组即可得到答案. 【详解】设(),,Q x y z ,∴(1,2,3)PQ x y z =+-+. 因为(1,2,3),(2,3,4)M N ,所以(1,1,1)MN =. 因为||3||PQ MN =且//PQ MN , 所以3PQ MN =或3PQ MN =-,所以(1,2,3)3(1,1,1)x y z +-+=或(1,2,3)3(1,1,1)x y z +-+=-,132333x y z +=⎧⎪-=⎨⎪+=⎩或132333x y z +=-⎧⎪-=-⎨⎪+=-⎩ 解得250x y z =⎧⎪=⎨⎪=⎩或416x y z =-⎧⎪=-⎨⎪=-⎩故Q 点的坐标为(2,5,0)或(4,1,6)---. 故选:AB 【点睛】本题主要考查空间向量的坐标运算,属于简单题.。

1.3 空间直角坐标及空间向量运算的坐标表示坐标系(解析版)

1.3 空间直角坐标及空间向量运算的坐标表示坐标系(解析版)

1.3 空间向量的坐标与空间直角坐标系基础达标练1.已知a =(1,-2,1),a +b =(-1,2,-1),则b 等于 ( ) A.(2,-4,2) B .(-2,4,-2) C.(-2,0,-2) -3)2.向量a =(1,2,x ),b =(2,y ,-1),若|a |=√5,且a ⊥b ,则x+y 的值为( ) A.-2 B .2 D .1{√12+22+x 2=√5,2+2y -x =0,即{x =0,y =-1,,∴x+y=-1. 3.若△ABC 中,∠C=90°,A (1,2,-3k ),B (-2,1,0),C (4,0,-2k ),则k 的值为( )A.√10B.-√10 √5 D.±√10⃗⃗ =(-6,1,2k ),CA ⃗⃗⃗⃗⃗ =(-3,2,-k ),则CB ⃗⃗⃗⃗⃗ ·CA ⃗⃗⃗⃗⃗ =(-6)×(-3)+2+2k (-k )=-2k 2+20=0,∴k=±√10. a =(1,2,-y ),b =(x ,1,2),且(a +2b )∥(2a -b ),则( ) A.x=12,y=-4 B .x=12,y=4 C.x=2,y=-14y=-1a +2b =(1+2x ,4,4-y ),2a -b =(2-x ,3,-2y -2),且(a +2b )∥(2a -b ),∴3(1+2x )=4(2-x ),且3(4-y )=4(-2y -2),解得x=12,y=-4.5.若△ABC 的三个顶点坐标分别为A (1,-2,1),B (4,2,3),C (6,-1,4),则△ABC 的形状是( ) A.锐角三角形 B .直角三角形 C.钝角三角形⃗ =(3,4,2),AC ⃗⃗⃗⃗⃗ =(5,1,3),BC ⃗⃗⃗⃗⃗ =(2,-3,1).由AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ >0,得A 为锐角;由CA ⃗⃗⃗⃗⃗ ·CB ⃗⃗⃗⃗⃗ >0,得C 为锐角;由BA ⃗⃗⃗⃗⃗ ·BC>0,得B 为锐角.所以△ABC 为锐角三角形. 6.已知向量a =(1,2,3),b =(-2,-4,-6),|c |=√14,若(a +b )·c =7,则a 与c 的夹角为( ) A.π6B .π3C.2π3 D .5π6+b =(-1,-2,-3)=-a ,故(a +b )·c =-a ·c =7,得a ·c =-7,而|a |=√12+22+32=√14, 所以cos<a ,c >=a ·c|a ||c |=-12,又因为<a ,c >∈[0,π],所以<a ,c >=2π3.a =(1,2,3),b =(x ,x 2+y -2,y ),并且a ,b 同向,则x+y 的值为 .a ∥b , 所以x 1=x 2+y -22=y 3,即{y =3x ,①x 2+y -2=2x ,②把①代入②得x 2+x -2=0,即(x+2)(x -1)=0, 解得x=-2或x=1. 当x=-2时,y=-6; 当x=1时,y=3.则当{x =-2,y =-6时,b =(-2,-4,-6)=-2a ,向量a ,b 反向,不符合题意,故舍去. 当{x =1,y =3时,b =(1,2,3)=a , a 与b 同向,符合题意,此时x+y=4. 8.已知向量a =(5,3,1),b =-2,t ,-25,若a 与b 的夹角为钝角,则实数t 的取值范围为 .答案-∞,-65∪-65,5215解析由已知得a ·b =5×(-2)+3t+1×-25=3t -525,因为a 与b 的夹角为钝角,所以a ·b <0,即3t -525<0,所以t<5215.若a 与b 的夹角为180°,则存在λ<0,使a =λb (λ<0), 即(5,3,1)=λ-2,t ,-25,所以{5=-2λ,3=tλ,1=-25λ,解得{λ=-52,t =-65, 故t 的取值范围是-∞,-65∪-65,5215.9.已知O 为坐标原点,OA ⃗⃗⃗⃗⃗ =(1,2,3),OB ⃗⃗⃗⃗⃗ =(2,1,2),OP⃗⃗⃗⃗⃗ =(1,1,2),点Q 在直线OP 上运动,则当QA ⃗⃗⃗⃗⃗ ·QB ⃗⃗⃗⃗⃗ 取得最小值时,求Q 的坐标.解析设OQ ⃗⃗⃗⃗⃗⃗ =λOP ⃗⃗⃗⃗⃗ ,则QA ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ −OQ ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ -λOP ⃗⃗⃗⃗⃗ =(1-λ,2-λ,3-2λ), QB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ −OQ ⃗⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ -λOP ⃗⃗⃗⃗⃗ =(2-λ,1-λ,2-2λ),所以QA ⃗⃗⃗⃗⃗ ·QB ⃗⃗⃗⃗⃗ =(1-λ,2-λ,3-2λ)·(2-λ,1-λ,2-2λ)=2(3λ2-8λ+5)=23λ-432-13.当λ=43时,QA ⃗⃗⃗⃗⃗ ·QB ⃗⃗⃗⃗⃗ 取得最小值,此时点Q 的坐标为43,43,83.10.已知正三棱柱ABC -A 1B 1C 1的底面边长AB=2,AB 1⊥BC 1,点O ,O 1分别是棱AC ,A 1C 1的中点.建立如图所示的空间直角坐标系.(1)求该三棱柱的侧棱长;(2)若M 为BC 1的中点,试用向量AA 1⃗⃗⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 表示向量AM ⃗⃗⃗⃗⃗⃗ ;<AB 1⃗⃗⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ >设该三棱柱的侧棱长为h ,由题意得A (0,-1,0),B (√3,0,0),C (0,1,0),B 1(√3,0,h ),C 1(0,1,h ),则1=(√3,1,h ),BC 1⃗⃗⃗⃗⃗⃗⃗ =(-√3,1,h ),因为AB 1⊥BC 1,所以AB 1⃗⃗⃗⃗⃗⃗⃗ ·BC 1⃗⃗⃗⃗⃗⃗⃗ =-3+1+h 2=0,所以h=√2. (2)AM ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BM ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +12BC 1⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +12(BB 1⃗⃗⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )=AB ⃗⃗⃗⃗⃗ +12(AA 1⃗⃗⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=12AB ⃗⃗⃗⃗⃗ +12AC ⃗⃗⃗⃗⃗+12AA 1⃗⃗⃗⃗⃗⃗⃗. (3)由(1)可知AB 1⃗⃗⃗⃗⃗⃗⃗ =(√3,1,√2),BC ⃗⃗⃗⃗⃗ =(-√3,1,0),所以AB 1⃗⃗⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =-3+1=-2,|AB 1⃗⃗⃗⃗⃗⃗⃗ |=√6,|BC ⃗⃗⃗⃗⃗ |=2,所以cos <AB 1⃗⃗⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ >=2√6=-√66.能力提升练1.(多选)已知点P 是△ABC 所在的平面外一点,若AB⃗⃗⃗⃗⃗ =(-2,1,4),AP ⃗⃗⃗⃗⃗ =(1,-2,1),AC ⃗⃗⃗⃗⃗ =(4,2,0),则( ) A.AP ⊥AB B.AP ⊥BPC.BC=√53 BC⃗⃗ ·AB ⃗⃗⃗⃗⃗ =-2-2+4=0,∴AP ⃗⃗⃗⃗⃗ ⊥AB ⃗⃗⃗⃗⃗ ,即AP ⊥AB ,故A 正确; BA ⃗⃗⃗⃗⃗ +AP ⃗⃗⃗⃗⃗ =(2,-1,-4)+(1,-2,1)=(3,-3,-3),BP ⃗⃗⃗⃗⃗ ·AP ⃗⃗⃗⃗⃗ =3+6-3=6≠0,∴AP 与BP 不垂直,故B 不正确; BC⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =(4,2,0)-(-2,1,4)=(6,1,-4),∴|BC ⃗⃗⃗⃗⃗ |=√62+12+(-4)2=√53,故C 正确; 假设AP⃗⃗⃗⃗⃗ =k BC ⃗⃗⃗⃗⃗ ,则{1=6k ,-2=k ,1=-4k ,无解,因此假设不成立,即AP 与BC 不平行,故D 不正确. 2.已知A (1,0,0),B (0,-1,1),若OA ⃗⃗⃗⃗⃗ +λOB ⃗⃗⃗⃗⃗ 与OB ⃗⃗⃗⃗⃗ (O 为坐标原点)的夹角为120°,则λ的值为( ) A.√66 B .-√66C.±√66D .±√6OB ⃗⃗⃗⃗⃗ =(0,-1,1),OA ⃗⃗⃗⃗⃗ +λOB ⃗⃗⃗⃗⃗ =(1,-λ,λ), cos120°=(OA ⃗⃗⃗⃗⃗⃗ +λAB ⃗⃗⃗⃗⃗⃗ )·OB⃗⃗⃗⃗⃗⃗ |OA ⃗⃗⃗⃗⃗⃗ +λOB ⃗⃗⃗⃗⃗⃗ ||OB ⃗⃗⃗⃗⃗⃗ |=√2λ+1×√2=-12,可得λ<0,解得λ=-√66.故选B .A (1,-1,2),B (5,-6,2),C (1,3,-1),则AB ⃗⃗⃗⃗⃗ 在AC⃗⃗⃗⃗⃗ 上的投影为 .4AB⃗⃗⃗⃗⃗ =(5,-6,2)-(1,-1,2)=(4,-5,0), AC⃗⃗⃗ =(1,3,-1)-(1,-1,2)=(0,4,-3), ∴cos <AB⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ >=√42+(-5)2×√42+(-3)2=-5√41, AB ⃗⃗⃗⃗⃗ 在AC ⃗⃗⃗⃗⃗ 上的投影为|AB ⃗⃗⃗⃗⃗ |cos <AB⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ > =√42+(-5)2×-205√41=-4.4.已知点A ,B ,C 的坐标分别为(0,1,0),(-1,0,-1),(2,1,1),点P 的坐标为(x ,0,z ),若PA ⃗⃗⃗⃗⃗ ⊥AB⃗⃗⃗⃗⃗ ,PA ⃗⃗⃗⃗⃗ ⊥AC ⃗⃗⃗⃗⃗ ,则P 点的坐标为 .-1,0,2)⃗⃗⃗ =(-x ,1,-z ), AB⃗ =(-1,-1,-1),AC ⃗⃗⃗⃗⃗ =(2,0,1), ∴{x -1+z =0,-2x -z =0,∴{x =-1,z =2,∴P (-1,0,2).5.已知A ,B ,C 三点的坐标分别是(2,-1,2),(4,5,-1),(-2,2,3),AP ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ ),则点P 的坐标是 .,12,0)CB⃗⃗⃗⃗⃗ =(6,3,-4),设P (a ,b ,c ), 则(a -2,b+1,c -2)=(3,32,-2),∴a=5,b=12,c=0,∴P (5,12,0).6.如图所示,在四棱锥P -ABCD 中,底面ABCD 为矩形,侧棱P A ⊥底面ABCD ,AB=√3,BC=1,P A=2,E 为PD 的中点.建立空间直角坐标系,(1)求cos <AC⃗⃗⃗⃗⃗ ,PB ⃗⃗⃗⃗⃗ >; (2)在侧面P AB 内找一点N ,使NE ⊥平面P AC ,求N 点的坐标.解析(1)由题意,建立如图所示的空间直角坐标系,则A (0,0,0),B (√3,0,0),C (√3,1,0),D (0,1,0),P (0,0,2),E0,12,1,从而AC⃗⃗⃗⃗⃗ =(√3,1,0),PB ⃗⃗⃗⃗⃗ =(√3,0,-2).则cos <AC ⃗⃗⃗⃗⃗ ,PB ⃗⃗⃗⃗⃗ >=AC ⃗⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗⃗|AC⃗⃗⃗⃗⃗⃗ |·|PB ⃗⃗⃗⃗⃗⃗ | =2√7=3√714. ∴<AC ⃗⃗⃗⃗⃗ ,PB ⃗⃗⃗⃗⃗ >的余弦值为3√714. (2)由于N 点在侧面P AB 内,故可设N 点坐标为(x ,0,z ),则NE ⃗⃗⃗⃗⃗ =-x ,12,1-z ,由NE ⊥平面P AC 可得{NE ⃗⃗⃗⃗⃗ ·AP ⃗⃗⃗⃗⃗ =0,NE ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =0,即{(-x ,12,1-z)·(0,0,2)=0,(-x ,12,1-z)·(√3,1,0)=0,化简得{z -1=0,-√3x +12=0,∴{x =√36,z =1,即N 点的坐标为√36,0,1. 7.已知点A (0,2,3),B (-2,1,6),C (1,-1,5).(1)求以AB⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 为边的平行四边形的面积; a |=√3,且a 分别与AB⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 垂直,求向量a .AB ⃗⃗⃗⃗⃗ =(-2,-1,3),AC ⃗⃗⃗⃗⃗ =(1,-3,2), 设θ为AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 的夹角, 则cos θ=AB ⃗⃗⃗⃗⃗⃗ ·AC⃗⃗⃗⃗⃗⃗ |AB⃗⃗⃗⃗⃗⃗ ||AC ⃗⃗⃗⃗⃗⃗ |=√4+1+9·√1+9+4=12,∴sin θ=√32.∴S ▱=|AB ⃗⃗⃗⃗⃗ ||AC ⃗⃗⃗⃗⃗ |sin θ=7√3. ∴以AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 为边的平行四边形面积为7√3. (2)设a =(x ,y ,z ),由题意,得{-2x -y +3z =0,x -3y +2z =0,x 2+y 2+z 2=3.解得{x =1,y =1,z =1或{x =-1,y =-1,z =-1.∴a =(1,1,1)或a =(-1,-1,-1).素养培优练1.P 是平面ABC 外的点,四边形ABCD 是平行四边形,AB⃗⃗⃗⃗⃗ =(2,-1,-4),AD ⃗⃗⃗⃗⃗ =(4,2,0),AP ⃗⃗⃗⃗⃗ =(-1,2,-1). (1)求证:P A ⊥平面ABCD ;(2)对于向量a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),c =(x 3,y 3,z 3),定义一种运算:(a×b )·c =x 1y 2z 3+x 2y 3z 1+x 3y 1z 2-x 1y 3z 2-x 2y 1z 3-x 3y 2z 1,试计算(AB ⃗⃗⃗⃗⃗ ×AD ⃗⃗⃗⃗⃗ )·AP⃗⃗⃗⃗⃗ 的绝对值; P -ABCD 的体积关系,并由此猜想向量这种运算(AB ⃗⃗⃗⃗⃗ ×AD ⃗⃗⃗⃗⃗ )·AP⃗⃗⃗⃗⃗ 的绝对值的几何意义.⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =(2,-1,-4)·(-1,2,-1)=-2+(-2)+4=0, ∴APAB ⃗⃗⃗⃗⃗ ,即AP ⊥AB.同理,AP ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ =(-1,2,-1)·(4,2,0)=-4+4+0=0,∴AP ⃗⃗⃗⃗⃗ ⊥AD ⃗⃗⃗⃗⃗ ,即P A ⊥AD.又AB ⊂平面ABCD ,AD ⊂平面ABCD ,AB ∩AD=A , ∴P A ⊥平面ABCD.(AB ⃗⃗⃗⃗⃗ ×AD ⃗⃗⃗⃗⃗ )·AP ⃗⃗⃗⃗⃗ |=48,又cos <AB ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ >=√105,|AB ⃗⃗⃗⃗⃗ |=√21,|AD ⃗⃗⃗⃗⃗ |=2√5,|AP⃗⃗⃗⃗⃗ |=√6, V=13|AB⃗⃗⃗⃗⃗ |·|AD ⃗⃗⃗⃗⃗ |·sin <AB ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ >·|AP ⃗⃗⃗⃗⃗ |=16,可得|(AB ⃗⃗⃗⃗⃗ ×AD ⃗⃗⃗⃗⃗ )·AP ⃗⃗⃗⃗⃗ |=3V P -ABCD . 猜测:|(AB ⃗⃗⃗⃗⃗ ×AD ⃗⃗⃗⃗⃗ )·AP⃗⃗⃗⃗⃗ |在几何上可表示以AB ,AD ,AP 为棱的平行六面体的体积(或以AB ,AD ,AP 为棱的四棱柱的体积).2.正四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是边长为4的正方形,A 1C 1与B 1D 1交于点N ,BC 1与B 1C 交于点M ,且AM ⊥BN ,建立空间直角坐标系. (1)求AA 1的长;(2)求<BN ⃗⃗⃗⃗⃗⃗ ,AD 1⃗⃗⃗⃗⃗⃗⃗ >; (3)对于n 个向量a 1,a 2,…,a n ,如果存在不全为零的n 个实数λ1,λ2,…,λn ,使得λ1a 1+λ2a 2+…+λn a n =0成立,则这n 个向量a 1,a 2,…,a n 叫做线性相关,不是线性相关的向量叫线性无关,判断AM ⃗⃗⃗⃗⃗⃗ ,BN ⃗⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ 是否线性相关,并说明理由.以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.设AA 1的长为a , 则B (4,4,0),N (2,2,a ),BN ⃗⃗⃗⃗⃗⃗ =(-2,-2,a ),A (4,0,0),M (2,4,a 2),AM ⃗⃗⃗⃗⃗⃗ =(-2,4,a 2),由BN ⃗⃗⃗⃗⃗⃗ ⊥AM ⃗⃗⃗⃗⃗⃗ ,得BN ⃗⃗⃗⃗⃗⃗ ·AM ⃗⃗⃗⃗⃗⃗ =0,即a=2√2,即AA 1=2√2. (2)BN ⃗⃗⃗⃗⃗⃗ =(-2,-2,2√2),AD 1⃗⃗⃗⃗⃗⃗⃗ =(-4,0,2√2),cos <BN ⃗⃗⃗⃗⃗⃗ ,AD 1⃗⃗⃗⃗⃗⃗⃗ >=BN ⃗⃗⃗⃗⃗⃗⃗ ·AD 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |BN ⃗⃗⃗⃗⃗⃗⃗ ||AD 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√63, <BN ⃗⃗⃗⃗⃗ ,AD 1⃗⃗⃗⃗⃗⃗⃗ >=arccos √63.(3)由AM⃗⃗⃗⃗⃗⃗ =(-2,4,√2),BN ⃗⃗⃗⃗⃗ =(-2,-2,2√2),CD ⃗⃗⃗⃗⃗ =(0,-4,0), λ1(-2,4,√2)+λ2(-2,-2,2√2)+λ3(0,-4,0)=(0,0,0),得λ1=λ2=λ3=0,则AM⃗⃗⃗⃗⃗⃗ ,BN ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ 线性无关.。

空间向量的直角坐标及其运算

空间向量的直角坐标及其运算
证:(1)∵ AP AB 1,2,12,1,4 0, AP AD 1,2,14,2,0 0 ,
∴ AP AB , AP AD,又 AB AD A , AP 平面 ABCD,
∴ AP 是平面 ABCD的法向量; 解:(2) AB 22 12 42 21 , AD 42 22 02 2 5 ,
∴ SABC
1 2
AB
AC
sin
A
101 。 2
7、在棱长为1的正方体 ABCD A1B1C1D1 中,E, F 分别是 DD1、DB 中点,G 在棱CD 上,
CG
1 4
CD

H

C1G
的中点;
(1)求证: EF B1C ;(2)求 EF 与C1G 所成的角的余弦;(3)求 FH 的长。
解:如图以 D 为原点建立直角坐标系 D xyz ,
(3)证明线面平行:若直线的方向向量与平面的一个法向量垂直,则这直线与该平面平行;
(4)证明面面平行:若两个不重合平面的法向量平行,则这两个平面就互相平行。 11、用向量求异面直线所成角:
找出两条异面直线各自的一个方向向量,计算这两个向量的夹角 ,则 (或 的补角)
即为两条异面直线所成的角。
设 a、b 是异面直线, d1 是直线 a 的一个方向向量, d2 是直线b 的一个方向向量,异面
一、基本概念:
1、空间直角坐标系:
(1)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用 i, j,k
表示;
(2)在空间选定一点O 和一个单位正交基底 i, j,k ,以点O 为原点,分别以 i, j,k 的方向
为正方向建立三条数轴:x 轴、 y 轴、z 轴,它们都叫坐标轴;我们称建立了一个空间 直角坐标系 O xyz ,点O 叫原点,向量 i, j, k 都叫单位向量;通过每两个坐标轴的平

课件2:1.1.3 空间向量的坐标与空间直角坐标系

课件2:1.1.3 空间向量的坐标与空间直角坐标系

cos〈a,b〉=
a1b1+a2b2+a3b3 a21+a22+a23 b21+b22+b23
知识点四 空间直角坐标系
1.空间直角坐标系
以空间中两两__垂__直____且相交于一点 O 的三条直线分别
定义
为 x 轴、y 轴、z 轴,这时就说建立了空间直角坐标系 Oxyz,其中点 O 叫做坐标__原__点____,x 轴、y 轴、z 轴叫
【基础自测】
1.已知向量 a=(-3,2,5),b=(1,x,-1),且 a·b=2,
则 x 的值为( )
A.3
B.4
C.5
D.6
解析:∵a·b=-3×1+2x+5×(-1)=2,∴x=5. 答案:C
2.已知向量 a=(3,-2,1),b=(-2,4,0),则 4a+2b 等于( )
A.(16,0,4)
方法归纳 解决空间向量垂直、平行问题的思路 1.若有关向量已知时,通常需要设出向量的坐标,例如, 设向量 a=(x,y,z). 2.在有关平行的问题中,通常需要引入参数,例如,已 知 a∥b,则引入参数 λ,有 a=λb,再转化为方程组求解. 3.选择向量的坐标形式,可以达到简化运算的目的.
跟踪训练 3 (1)(变条件)若将本例(1)中“c∥B→C”改为 “c⊥a 且 c⊥b”,求 c.
做_坐__标__轴___.通过每两个坐标轴的平面叫做_坐__标__平__面_,
分别称为 xOy 平面、yOz 平面、___x_O_z___平面
画法
在平面上画空间直角坐标系 Oxyz 时,一般使∠xOy= __1_3_5_°___,∠yOz=90°
图示
说明
本书建立的坐标系都是___右__手___直角坐标系,即在空间 直角坐标系中,让右手拇指指向____x____轴的正方向, 食指指向____y____轴的正方向,中指指向____z____轴的 正方向,则称这个坐标系为右手直角坐标系

空间向量的坐标运算精选全文完整版

空间向量的坐标运算精选全文完整版

| AC | | BB1 | cos 900 0 AD1 DB1 AD1 DA AD1 AB AD1 BB1 | AD1 | | DA | cos1350 | AD1 | | AB | cos 900
| AD1 | | BB1 | cos 450 0 又AD1 AC A,
AD1 DB1, AC DB1. DB1 平面ACD1.
xA‘
y B(3,4,0)
与y轴垂直的坐标平面是___x_o__z___ A'(3, 4, 5)
与z 轴垂直的坐标平面是___x_o_y____
(2)点P(2,3,4)在 xoy平面内的射影是_(_2_,3_,_0_)
在 xoz 平面内的射影是_(2_,_0_,4_)_
在 yoz平面内的射影是_(0_,_3_,4_)_
(2)a 6b 8c _(2_,_-3_,_1_)_+_(_12,0,18)+(0,0,-16)
=(14,-3,3)
练习P39 8.判定下列各题中的向量是否平行: (1) (1,2,-2)和(-2,-4,4), (2) (-2,3,5)和(16,-24,40). 解: (1) (-2,-4,4) = -2 (1,2,-2)
数轴:x轴、y轴、z轴,它们都叫做坐标轴.这样
就建立了一个空间直角坐标系O — x y z .
点O叫做原点,向量 i, j, k
z k
都叫做坐标向量.通过每两个
y
i 坐标轴的平面叫做坐标平面。
O
j
x
三、向量的直角坐标系
给定一个空间坐标系和向量
a ,且设 i, j, k为坐标向量,由空z a
间向量基本定理,存在唯一的有
D1 A1
D

考点38 空间直角坐标系、空间向量及其运算

考点38 空间直角坐标系、空间向量及其运算

空间直角坐标系,空间向量及其运算A 组 基础题组1.(2017·广东中山模拟,5)已知向量a =(1,1,0),b =(-1,0,2),且k a +b 与2a -b 互相垂直,则k 的值是( D ) A .-1 B.43 C.53D.75 【解析】 由题意,得k a +b =(k -1,k ,2),2a -b =(3,2,-2),所以(k a+b )·(2a -b )=3(k -1)+2k -2×2=5k -7=0,解得k =75.2.(2018·广东清远一模,4)已知向量a =(2m +1,3,m -1),b =(2,m ,-m ),且a ∥b ,则实数m 的值等于( B ) A.32 B .-2 C .0D.32或-2 【解析】 ∵a =(2m +1,3,m -1),b =(2,m ,-m ),且a ∥b ,∴(2m +1,3,m -1)=λ(2,m ,-m )=(2λ,λm ,-λm ),∴⎩⎨⎧2m +1=2λ,3=λm ,m -1=-λm ,解得m =-2,故选B.3.(2017·四川宜宾模拟,8)二面角α-l -β为60°,A ,B 是l 上的两点,AC ,BD 分别在半平面α,β内,AC ⊥l ,BD ⊥l ,且AB =AC =a ,BD =2a ,则CD 的长为 ( A )A .2a B.5a C .a D.3a【解析】 因为AC ⊥l ,BD ⊥l ,所以〈AC →,BD →〉=60°,且AC →·BA →=0,AB →·BD→=0,CD →=CA →+AB →+BD →,所以|CD →|=(CA→+AB →+BD →)2 =a 2+a 2+(2a )2+2a ·2a cos 120°=2a .思路点拨:选择CA→,AB →,BD →为基向量进行基向量运算求解.4.(2018·山东济南质检,14)如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线ON ,AM 的位置关系是垂直.【解析】 以D 为坐标原点,DA ,DC ,DD 1所在的直线分别为x 轴,y 轴,z 轴建立空间直角坐标系(图略),不妨设DC =DA =DD 1=2,则O (1,1,0),A (2,0,0),M (0,0,1),N (2,1,2),所以ON →=(1,0,2),AM →=(-2,0,1),则ON→·AM →=-2+2=0,即ON →⊥AM →, 所以直线ON ,AM 的位置关系是垂直.5.(2017·甘肃兰州模拟,17,12分)如图所示,在正方体ABCD ­A 1B 1C 1D 1中,M ,N 分别是C 1C ,B 1C 1的中点.求证:MN ∥平面A 1BD .证明:如图所示,建立空间直角坐标系,设正方体的棱长为2,则D (0,0,0),B (2,2,0),A 1(2,0,2),M (0,2,1),N (1,2,2), MN →=(1,0,1),DB →=(2,2,0),DA 1→=(2,0,2).设n =(x ,y ,z )是平面A 1BD 的一个法向量,所以⎩⎪⎨⎪⎧n ⊥DB →,n ⊥DA 1→,即⎩⎨⎧2x +2y =0,2x +2z =0,解得⎩⎨⎧y =-x ,z =-x . 令x =1,则y =-1,z =-1,所以n =(1,-1,-1).因为MN →·n =1+0-1=0,所以MN →⊥n .又因为MN ⊄平面A 1BD , 所以MN ∥平面A 1BD .解答本题,用向量法还有以下两种解法.方法一:因为DA 1→=(2,0,2),MN →=(1,0,1),所以DA 1→=2MN →,即DA 1→∥MN →, 又DA 1⊂平面A 1BD ,MN ⊄平面A 1BD ,所以MN ∥平面A 1BD .方法二:MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C →=12(D 1A 1→-D 1D →)=12DA 1→,所以MN →∥DA 1→.又因为MN 与DA 1不共线,所以MN ∥DA 1. 又因为MN ⊄平面A 1BD ,A 1D ⊂平面A 1BD ,所以MN ∥平面 A 1BD .6.(2018·辽宁本溪调研,19,12分)如图,在三棱锥P ­ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3.试证明平面AMC ⊥平面BMC .证明:(1)如图所示,以O 为坐标原点,以射线OP 为z 轴的正半轴建立空间直角坐标系O -xyz ,则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4).于是AP→=(0,3,4),BC →=(-8,0,0), ∴AP →·BC →=(0,3,4)·(-8,0,0)=0,∴AP→⊥BC →,即AP ⊥BC .(2)由(1)知AP =5,又AM =3,且点M 在线段AP 上,∴AM →=35AP →=)512,59,0(.又BA →=(-4,-5,0),∴BM →=BA →+AM →=)512,516,4(--, 则AP →·BM →=(0,3,4)·)512,516,4(--=0,∴AP →⊥BM →,即AP ⊥BM . 又根据(1)的结论知AP ⊥BC ,且BM ∩BC =B ,∴AP ⊥平面BMC ,∴AM ⊥平面BMC .又AM ⊂平面AMC ,故平面AMC ⊥平面BMC .B 组 能力题组7.(2015·浙江,15)已知e 1,e 2是空间单位向量,e 1·e 2=12.若空间向量b 满足 b·e 1=2,b ·e 2=52,且对于任意x ,y ∈R ,|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),则x 0=__1__,y 0=__2__,|b |=.【解析】 【解析】 ∵e 1·e 2=|e 1||e 2|cos 〈e 1,e 2〉=cos 〈e 1,e 2〉=12,∴〈e 1,e 2〉=π3.不妨设e 1=)0,23,21(,e 2=(1,0,0), b =(m ,n ,t ).由题意知b ·e 1=12m +32n =2, b ·e 2=m =52,解得n =32,m =52,∴b =)t ,23,25(. ∵b -(x e 1+y e 2)=),2323,2125(t x y x ---, ∴|b -(x e 1+y e 2)|2=2)2125(y x --+2)2323(x -+t 2.由题意,当x =x 0=1,y =y 0=2时,|b -(x e 1+y e 2)|2取到最小值1.此时t 2=1,故|b |=232)23()25(t ++=8=2 2. 8.(2018·甘肃白银月考,18,12分)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .证明:PQ ∥平面BCD .证明:如图,取BD 的中点O ,以O 为原点,OD ,OP 所在射线为y 轴,z 轴的正半轴,建立空间直角坐标系O -xyz .由题意知,A (0,2,2),B (0,-2,0),D (0,2,0),设点C 的坐标为(x 0,y 0,0).因为AQ →=3QC →,所以可求点Q )21,4342,43(00y x + 由M 为AD 的中点,得M (0,2,1).由P 为BM 的中点,得P )21,0,0(,所以PQ →=)0,4342,43(00y x +, 又平面BCD 的一个法向量n =(0,0,1),所以n ·PQ→=0. 由于PQ ⊄平面BCD ,所以PQ ∥平面BCD .9.(2018·四川凉山州质检,18,12分)在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E ,F 分别是AB ,PB 的中点.(1)求证:EF ⊥CD ;(2)在平面P AD 内是否存在一点G ,使得GF ⊥平面PCB ?若存在,求出点G 的坐标;若不存在,试说明理由.解:(1)证明:由题意知,DA ,DC ,DP 两两垂直.如图,分别以DA ,DC ,DP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,设AD =a ,则D (0,0,0),A (a ,0,0),B (a ,a ,0),C (0,a ,0),E )0,2,(a a ,P (0,0,a ),F )2,2,2(a a a .EF →=)2,0,2(a a -,DC →=(0,a ,0).∵EF →·DC →=0,∴EF →⊥DC →,∴EF ⊥CD . (2)假设存在满足条件的点G ,设G (x ,0,z ),则FG →=)2,2,2(a z a a x ---,若使GF ⊥平面PCB ,则由 FG →·CB →=)2,2,2(a z a a x ---·(a ,0,0)=a )2(a x -=0,得x =a 2; 由FG →·CP →=)2,2,2(a z a a x ---·(0,-a ,a )=a 22+a )2(a z -=0, 得z =0.∴G 点的坐标为)0,0,2(a , 即存在满足条件的点G ,且点G 为AD 的中点.10.(2016·北京,17,14分)如图,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证:PD ⊥平面P AB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱P A 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AM AP 的值;若不存在,说明理由.解:(1)证明:因为平面P AD ⊥平面ABCD ,AB ⊥AD ,所以AB ⊥平面P AD . 所以AB ⊥PD .又因为P A ⊥PD ,所以PD ⊥平面P AB .(2)如图,取AD 的中点O ,连接PO ,CO .因为P A =PD ,所以PO ⊥AD .又因为PO ⊂平面P AD ,平面P AD ⊥平面ABCD ,所以PO ⊥平面ABCD .因为CO ⊂平面ABCD ,所以PO ⊥CO .因为AC =CD ,所以CO ⊥AD .如图建立空间直角坐标系O -xyz .由题意得,A (0,1,0),B (1,1,0),C (2,0,0),D (0,-1,0),P (0,0,1).设平面PCD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0,即⎩⎨⎧-y -z =0,2x -z =0.令z =2,则x =1,y =-2, 所以n =(1,-2,2).又PB →=(1,1,-1),所以cos 〈n ,PB →〉=n ·PB →|n ||PB →|=-33. 所以直线PB 与平面PCD 所成角的正弦值为33.(3)设M 是棱P A 上一点,则存在λ∈[0,1],使得AM→=λAP →. 因此点M (0,1-λ,λ),BM→=(-1,-λ,λ).因为BM ⊄平面PCD ,所以BM ∥平面PCD ,当且仅当BM →·n =0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14.所以在棱P A 上存在点M ,使得BM ∥平面PCD ,此时AM AP =14.。

82空间直角坐标系、空间向量及运算

82空间直角坐标系、空间向量及运算
主要方法:
用向量数量积的定义及性质可解决立体几何中求异面直线所成的角,求两点距离或线段长度以及证明线线垂直、线面垂直等典型问题.
例题分析:
例1:如图,在棱长为a的正方体ABCD—A1B1C1D1中,G为
△BC1D的重心.(1)试证A1,G,C三点共线;(2)试证A1C⊥平面BC1D;
(3)求点C到平面BC1D的距离.
例2:已知一个60°的二面角的棱上有两点A,B,AC,BD分别是在这两个面内且垂直于AB的线段.又知AB=4,AC=6,BD=8,求:
(1)CD的长;(2)AB与CD成的角的余弦值.
巩固练习:教师用书【259】对接高考
课后作业:对应课后提升:解答题
教后
反思
备课组长签字:年月日
③λa(λx1,λy1,λz1);
(2)a·b=x1x2+y1y2+z1z2.
(3)若点A(x1,y1,z1),点B垂直的条件(x2-x1,y2-y1,z2-z1)
①a∥b(b≠0)
x1=λx2
y 1=λy2;
z1=λz2
②若x2y2z2≠0,则a∥b ;③a⊥b,则x1x2+y1y2+z1z2=0.
教法
讨论与讲授法相结合
学法
课前预习、课堂合作探究
个人主页
教具
教材、练习册
课型
常规课
课时安排
1课时




主要知识:1.空间向量的直角坐标运算:
(1)已知a=(x1,y1,z1),b=(x2,y2,z2),则
①a+b=( x1+x2,y1+y2,z1+z2);②a-b=(x1-x2,y1-y2,z1-z2);

空间向量及其运算的坐标表示

空间向量及其运算的坐标表示
3m-n= (5,-11,19) ,(2m)·(-3n)= 168

,
解析:m+n=(1,-3,5)+(-2,2,-4)=(-1,-1,1),3m-n=3(1,-3,5)-(-2,2,-4)=(5,-11,19),
(2m)·(-3n)=(2,-6,10)·(6,-6,12)=168.
2.已知空间向量a=(2,λ,-1),b=(λ,8,λ-6),若a∥b,则λ=
间坐标系的转换.
二、空间向量运算的坐标表示
1.空间向量的坐标运算法则
设向量a=(a1,a2,a3),b=(b1,b2,b3),λ∈R,那么
向量运算
加法
减法
数乘
数量积
向量表示
a+b
a-b
λa
a·b
坐标表示
(a1+b1,a2+b2,a3+b3)
(a1-b1,a2-b2,a3-b3)
(λa1,λa2,λa3)
“数量化”,也就是坐标系的引入,使得几何问题“代
数化”,为了使得空间几何“代数化”,我们引入了坐
标及其运算.
探究新知
一、空间直角坐标系与坐标表示
1.空间直角坐标系
在空间选定一点O和一个单位正交基底 , , ,以点O为原点,分别以i,j,k的方向为正方向、以它
们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空
(2)把ka+b与ka-2b用坐标表示出来,再根据数量积为0求解.
解:(1)∵ =(-2,-1,2)且 c∥ ,
∴设 c=λ =(-2λ,-λ,2λ)(λ∈R).
∴|c|= (-2)2 + (-)2 + (2)2 =3|λ|=3,解得 λ=±1.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.空间向量的知识和内容是在平面向量知识的基础 上产生和推广的,因此,可以利用类比平面向量的方法解 决本节的很多内容. (1)零向量是一个特殊向量,在解决问题时要特别注 意零向量,避免对零向量的遗漏. (2)λa是一个向量,若λ=0,则λa=0;若λ≠0,a=0, 则λa=0. (3)讨论向量的共线、共面问题时,注意零向量与任 意向量平行,共线与共面向量均不具有传递性. (4)①数量积运算不满足消去律,即a· b=b· c⇒ a=c. ②数量积的运算不适合乘法结合律,即(a· b)· c不一定
2.与向量a=(1,-3,2)平行的一个向量的坐标是 ( 1 A. ,1,1 B.(-1,-3,2) 3
1 3 C.- , ,-1 2 2
)
D.( 2,-3,-2 2 )
解析:若 a∥b,则 a=λb,
1 3 1 有 - , ,-1 =- (1,-3,2). 2 2 2
一、空间直角坐标系
1.空间直角坐标系中的两点 P1、P2 间的距离
2 2 2 | P P | = x - x + y - y + z - z 1 2 1 2 1 2 1 2 公式:__________________________________.
2.已知空间一点M的坐标为(x,y,z); (x,-y,-z) ; (1)与M点关于x轴对称的点的坐标为_____________ (-x,y,-z); (2)与M点关于y轴对称的点的坐标为_____________
2 2 2 x a· b |a||b| (3)求向量夹角:cos〈a,b〉=_____.
1.在空间直角坐标系中, 点P(1,2,3)关于x轴对称 的点的坐标为 ( ) A.(-1,2,3) B.(1,-2,-3) C.(-1, -2, 3) D.(-1 ,2, -3) 解析:点P(x,y,z)关于x轴对称的点的坐标为(x, -y,-z). 答案:B
2 C.-2 或 55
→ → 4. 在长方体 ABCD-A1B1C1D1 中, 化简式子: DA-DB+ → → → → B1C-B1B+A1B1-A1B=________.
→ → → → → → → → → 解析:DA-DB+B1C-B1B+A1B1-A1B=BA +BC +BB 1 → → → → → =BD+BB1=BD+DD1=BD1.
→ 答案:BD1
1.建立空间直角坐标系,必须牢牢抓住“相交于 同一点的两两垂直的三条直线”,要在题目中找出或构 造出这样的三条直线,因此,要充分利用题目中所给的 垂直关系(即线线垂直、线面垂直、面面垂直),同时要 注意,所建立的坐标系必须是右手空间直角坐标系. 在右手空间直角坐标系下,点的坐标既可根据图 中有关线段的长度,也可根据向量的坐标写出.
答案:C
3.若向量 a=(1,λ,2),b=(2,-1,2),且 a 与 b 的 8 夹角余弦值为 ,则 λ 等于 ( ) 9 A.2 B.-2
2 D.2 或- 55 6-λ a· b 8 解析:cos〈a,b〉= = = , 2 |a ||b | 3 λ +5 9
2 则 λ=-2 或 . 55 答案:C
等于a· (b· c).这是由于(a· b)· c表示一个与c共线的向量,而 a· (b· c)表示一个与a共线的向量,而c与a不一定共线. ③空间向量没有除法运算. (5)借助空间向量可将立体几何中的平行、垂直、夹角、 距离等问题转化为向量的坐标运算,如:①判断线线平行 或诸点共线,转化为“a∥b(b≠0)⇔a=λb”;②证明线线垂直, 转化为“a⊥b⇔a· b=0”,若a=(a1,a2,a3),b=(b1,b2, b3),则转化为计算a1b1+a2b2+a3b3=0;③在计算异面直线 所成的角(或线面角、二面角)时,转化为求向量的 a· b 夹角,利用公式 cos θ= ;④在求立体几何中线段的长 |a||b| 度时,转化为求 a· a=|a|2,或利用空间两点间的距离公式.
二、空间向量及其运算 1.空间向量及其加减与数乘运算 大小和____ (1)在空间中,具有____ 方向的量叫做向量.____ 方向相 模 相等的有向线段表示同一向量或相等向_____ 与a 同且___ 长度相等而方向相反的向量 ________________________称为a的相反向量. (2)空间向量的有关知识实质上是平面向量对应的知识 的推广,如有关的概念、运算法则、运算律等等. 不共面, 2.空间向量基本定理:如果三个向量a、b、______ 那么对空间任一向量p,存在一个唯一的有序实数组x、 p=xa+yb+ zc y、z,使______________ ,其中 {a,b,c}叫做空间的 基底 一个_____ ,a、b、c都叫做基向量.
2.已知空间一点M的坐标为(x,y,z); (x,-y,-z) ; (1)与M点关于x轴对称的点的坐标为_____________ (2)与M点关于y轴对称的点的坐标为_____________ (-x,y,-z) ; (-x,-y,z) ; (3)与M点关于z轴对称的点的坐标为_____________ (x,y,-z); (4)与M点关于面xOy对称的点的坐标为__________ (5)与M点关于面xOz对称的点的坐标为__________ (x,-y,z); (-x,y,z); (6)与M点关于面yOz对称的点的坐标为__________ (-x,- (7)与M点关于坐标原点O对称的点的坐标为________ y,-z) . ________
三、空间向量的坐标运算 [0,π] . 〈 a,b〉 1. 向量 a 与 b 的夹角记作 ______ , 其范围是_______ 如 π 果夹角〈a,b〉=__ 2 ,称向量 a 与 b 垂直. |a||b|cos〈a,b〉 2.已知空间两个向量a、b,则a· b=______________ x1x2+y1y2+z1z2 (坐标表示). (向量表示)=______________ 3.空间向量数量积公式的变形及应用. 已知a=(x1,y1,z1),b=(x2,y2,z2), (1)判断垂直: 0 a⊥b⇔a· b=x1x2+y1y2+z1z2=__.
相关文档
最新文档