新人教版八年级数学下册第二次月考试卷
(完整版)八年级数学下学期第二次月考试卷(含解析)新人教版

2015-2016 学年广西南宁四十九中八年级(下)第二次月考数学试卷一、选择题(此题共 12 小题,每题 3 分,共 36分)1.已知是二次根式,则 a 的值可以是()A.﹣ 2 B.﹣ 1 C. 2D.﹣ 72.以下四组木棒中,哪一组的三条可以恰好做成直角三角形的木架()A. 7 厘米, 12 厘米, 15 厘米B. 7 厘米, 12 厘米, 13 厘米C. 8 厘米, 15 厘米, 16 厘米D. 3 厘米, 4 厘米, 5 厘米3.正方形拥有,而菱形不用然拥有的性质是()A.四条边都相等 B .对角线垂直且相互均分C.对角线相等D.对角线均分一组对角4.已知 m=+1,n=,则 m和 n 的大小关系为()A. m=n B. mn=1 C. m=﹣ n D. mn=﹣ 15.在一块平川上,张大爷家屋前9 米远处有一颗大树,在一次强风中,这课大树从离地面6 米处折断倒下,量得倒下部分的长是10 米,大树倒下时能砸到张大爷的房屋吗?()A.必定不会 B .可能会C.必定会D.以上答案都不对6.在平行四边形ABCD中,∠ B=110°,延伸 AD至 F,延伸 CD至 E,连结 EF,则∠ E+∠F=()A.110°B.30° C .50° D .70°7.若=﹣ a 建立,则知足的条件是()A. a> 0 B. a< 0 C . a≥ 0 D . a≤ 08.预计×+的运算结果是()A. 3 到 4 之间B. 4 到 5 之间C. 5 到 6 之间D. 6 到 7 之间9.如图,已知暗影部分是一个正方形,AB=4,∠ B=45°,此正方形的面积()A. 16B. 8C. 4D. 210.如图,由四个边长为 1 的正方形组成的田字格,只用没有刻度的直尺在田字格中最多可以作长为的线段()A. 4 条B. 6 条C. 7 条D. 8 条11.如图,在平面直角坐标系中,以O( 0, 0), A(1, 1),B(3, 0)为极点,结构平行四边形,以下各点中不可以作为平行四边形极点坐标的是()A.(﹣ 3, 1)B.( 4, 1) C.(﹣ 2, 1)D.( 2,﹣ 1)12.如图,分别以直角△ ABC的斜边 AB,直角边 AC为边向△ ABC外作等边△ ABD和等边△ ACE,F 为 AB的中点, DE与 AB 交于点 G, EF 与 AC交于点 H,∠ ACB=90°,∠ BAC=30°.给出以下结论:①EF⊥ AC;②四边形 ADFE为菱形;③ AD=4AG;④ FH=BD;此中正确结论的是()A.①②③B.①②④C.①③④D.②③④二、填空题(此题共 6 小题,每题 3 分,共21 分)13.二次根式是一个整数,那么正整数 a 最小值是.14.一个四边形的边长挨次为a、b、c、d,且 a2+b2+c2+d2﹣2ac﹣ 2bd=0,则这个四边形的形状是.15.已知一个三角形的三条边的长分别为、和,那么这个三角形的最大内角度数为.16.在?ABCD中,∠ABC和∠ BCD的均分线分别交AD于点 E 和点 F,AB=3cm,EF=1cm,则?ABCD 的边 AD的长是.17.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、 3dm、2dm.A 和 B 是这个台阶上两个相对的端点,点 A 处有一只蚂蚁,想到点 B 处去吃爽口的食品,则蚂蚁沿着台阶面爬行到点 B 的最短行程为dm.18.如图,正方形 OABC的边长为 6,点 A、 C 分别在 x 轴, y 轴的正半轴上,点D( 2, 0)在 OA上, P 是 OB上一动点,则 PA+PD的最小值为.三、(此题共 1 小题,共10 分)19.计算:①( 4﹣ 6)÷ 2②﹣(﹣ 2)0+.四、(此题共1 小题,共14 分)20.已知: x=+,y=﹣,求代数式x2﹣ y2+5xy 的值.五、(此题共2 小题,共14 分)21.如图,已知,在四边形ABCD中: AO=BO=CO=DO.求证:四边形ABCD是矩形.22.如图,在Rt △ ABC中,∠ ACB=90°,点D,E 分别是边AB,AC的中点,延伸BC到点 F,使CF= BC.若 AB=12,求 EF的长.六、(此题共1 小题,共7 分)23.如图,在四边形ABCD中, AB∥ CD, AB=12,BC=17, CD=20, AD=15.(1)请你在图中增添一条直线,将四边形ABCD分红一个平行四边形和一个三角形.(2)求四边形ABCD的面积?七、(此题共1 小题,共8 分)24.如图,北部湾海面上,一艘解放军军舰在基地 A 的正东方向且距 A 地 60 海里的 B 处训练,忽然接到基地命令,要该舰前去 C 岛,接送一名病危的渔民到基地医院救治.已知C岛在 A 的北偏东30°方向,且在 B 的北偏西60°方向,军舰从 B 处出发,均匀每小时行驶30 海里,需要多少时间才能把生病渔民送到基地医院.(精准到小时,≈ )八、(此题共2 小题,共10 分)25.以以以下图,四边形 ABCD是正方形, M是 AB延伸线上一点.直角三角尺的一条直角边经过点 D,且直角极点 E在 AB边上滑动(点 E 不与点 A、B 重合),另向来角边与∠ CBM的均分线 BF 订交于点 F.(1)如图 1,当点 E 在 AB 边得中点地点时:①经过丈量DE、 EF的长度,猜想DE与 EF 知足的数目关系是.②连结点 E 与 AD边的中点N,猜想 NE与 BF 知足的数目关系是,请证明你的猜想.(2)如图 2,当点 E 在 AB边上的随意地点时,猜想此时DE与 EF有如何的数目关系,并证明你的猜想.26.如图, BD是菱形 ABCD的对角线,点 E,F 分别在边CD,DA上,且 CE=AF.求证: DE=DF.2015-2016 学年广西南宁四十九中八年级(下)第二次月考数学试卷参照答案与试题分析一、选择题(此题共12 小题,每题 3 分,共 36 分)1.已知是二次根式,则 a 的值可以是()A.﹣ 2 B.﹣ 1 C. 2D.﹣ 7【考点】二次根式的定义.【分析】依据二次根式的被开方数是非负数,可得答案.【解答】解:是二次根式,则 a 的值可以是2,故 C 吻合题意;应选: C.2.以下四组木棒中,哪一组的三条可以恰好做成直角三角形的木架()A. 7 厘米, 12 厘米, 15 厘米B. 7厘米, 12 厘米, 13 厘米C. 8 厘米, 15 厘米, 16 厘米D. 3厘米, 4 厘米, 5 厘米【考点】勾股定理的逆定理.【分析】由勾股定理的逆定理,只需考证两小边的平方和等于最长边的平方即可.222B、 72+122≠ 132,故不是直角三角形,故此选项错误;222C、 8 +15 =16 ,故不是直角三角形,故此选项错误;222D、 3 +4 =5 ,故不是直角三角形,故此选项正确.应选 D.3.正方形拥有,而菱形不用然拥有的性质是()A.四条边都相等 B .对角线垂直且相互均分C.对角线相等D.对角线均分一组对角【考点】正方形的性质;菱形的性质.【分析】举出正方形拥有而菱形不用然拥有的全部性质,即可得出答案.【解答】解:正方形拥有而菱形不用然拥有的性质是:①正方形的对角线相等,而菱形不用然对角线相等,②正方形的四个角是直角,而菱形的四个角不用然是直角,应选 C.4.已知 m= +1,n=,则m和n的大小关系为()A. m=n B. mn=1 C. m=﹣ n D. mn=﹣ 1【考点】分母有理化.【分析】第一依据分母有理化的方法,把n=分母有理化,此后再把它和m比较大小,判断出 m和 n 的大小关系;最后求出mn的值是多少即可.【解答】解:由于n==,m=+1,因此 m=n;又由于 mn==4因此 mn≠ 1, mn≠﹣ 1,因此选项B、 D 错误.应选: A.5.在一块平川上,张大爷家屋前9 米远处有一颗大树,在一次强风中,这课大树从离地面6 米处折断倒下,量得倒下部分的长是10 米,大树倒下时能砸到张大爷的房屋吗?()A.必定不会 B .可能会C.必定会D.以上答案都不对【考点】勾股定理的应用.【分析】由题意知树折断的两部分与地面形成向来角三角形,依据勾股定理求出BC的长即可解答.【解答】解:以以以下图,AB=10米, AC=6米,依据勾股定理得,BC===8 米< 9 米.应选: A.6.在平行四边形ABCD中,∠ B=110°,延伸 AD至 F,延伸 CD至 E,连结 EF,则∠ E+∠F=()A.110°B.30° C .50° D .70°【考点】平行四边形的性质.【分析】要求∠ E+∠ F,只需求∠ ADE,而∠ ADE=∠ A 与∠ B 互补,因此可以求出∠ A,从而求解问题.【解答】解:∵四边形ABCD是平行四边形,∴∠ A=∠ADE=180°﹣∠ B=70°∵∠ E+∠ F=∠ ADE∴∠ E+∠F=70°应选 D.7.若=﹣ a 建立,则知足的条件是()A. a> 0 B. a< 0 C . a≥ 0 D . a≤ 0【考点】二次根式的性质与化简.【分析】依据=,进行选择即可.【解答】解:∵=﹣ a,∴a≤ 0,应选 D.8.预计×+ 的运算结果是()A. 3 到 4 之间B. 4 到 5 之间C. 5 到 6 之间D. 6 到 7 之间【考点】预计无理数的大小.【分析】先预计的范围,即可解答.【解答】解:原式 =,∵,∴,应选: B.9.如图,已知暗影部分是一个正方形,AB=4,∠ B=45°,此正方形的面积()A. 16B. 8C. 4D. 2【考点】二次根式的应用.【分析】依据特别角的三角函数求得 AC的长,也就是正方形的边长,进一步求得面积即可.【解答】解:∵ AB=4,∠ B=45°,∴A C=AB?sin∠ B=4×=2 ,∴此正方形的面积为2×2=8.应选: B.10.如图,由四个边长为 1 的正方形组成的田字格,只用没有刻度的直尺在田字格中最多可以作长为的线段()A. 4 条B. 6 条C. 7 条D. 8 条【考点】勾股定理.【分析】联合图形,获得1, 2,是一组勾股数,以以以下图,找出长度为的线段即可.【解答】解:依据勾股定理得:=,即 1, 2,是一组勾股数,以以以下图,在这个田字格中最多可以作出8 条长度为的线段.应选 D.11.如图,在平面直角坐标系中,以O( 0, 0), A(1, 1),B(3, 0)为极点,结构平行四边形,以下各点中不可以作为平行四边形极点坐标的是()A.(﹣ 3, 1)B.( 4, 1) C.(﹣ 2, 1)D.( 2,﹣ 1)【考点】坐标与图形性质;平行四边形的性质.【分析】所给点的纵坐标与 A 的纵坐标相等,说明这两点所在的直线平行于x 轴,这两点的距离为: 1﹣(﹣ 3)=4;点 O和点 B 的纵坐标相等,这两点所在的直线平行于x 轴,这两点的距离为: 3﹣ 0,相对的边平行,但不相等,因此 A 选项的点不可以能是行四边形极点坐标.【解答】解:由于经过三点可结构三个平行四边形,即?AOBC1、 ?ABOC2、?AOC3B.依据平行四边形的性质,可知B、C、D正好是C1、C2、C3的坐标,应选 A.12.如图,分别以直角△ ABC的斜边 AB,直角边 AC为边向△ ABC外作等边△ ABD和等边△ ACE,F 为 AB的中点, DE与 AB 交于点 G, EF 与 AC交于点 H,∠ ACB=90°,∠ BAC=30°.给出以下结论:①EF⊥ AC;②四边形 ADFE为菱形;③ AD=4AG;④ FH=BD;此中正确结论的是()A.①②③B.①②④C.①③④D.②③④【考点】菱形的判断;等边三角形的性质;含30 度角的直角三角形.【分析】依据已知先判断△ ABC≌△ EFA,则∠ AEF=∠ BAC,得出 EF⊥ AC,由等边三角形的性质得出∠ BDF=30°,从而证得△ DBF≌△ EFA,则 AE=DF,再由 FE=AB,得出四边形 ADFE为平行四边形而不是菱形,依据平行四边形的性质得出AD=4AG,从而获得答案.【解答】解:∵△ ACE是等边三角形,∴∠ EAC=60°, AE=AC,∵∠ BAC=30°,∴∠ FAE=∠ACB=90°, AB=2BC,∵F 为 AB的中点,∴AB=2AF,∴BC=AF,∴△ ABC≌△ EFA,∴FE=AB,∴∠ AEF=∠BAC=30°,∴EF⊥ AC,故①正确,∵EF⊥ AC,∠ ACB=90°,∴HF∥ BC,∵F 是 AB的中点,∴HF=BC,∵BC=AB, AB=BD,∴HF=BD,故④说法正确;∵AD=BD, BF=AF,∴∠ DFB=90°,∠ BDF=30°,∵∠ FAE=∠BAC+∠CAE=90°,∴∠ DFB=∠EAF,∵EF⊥ AC,∴∠ AEF=30°,∴∠ BDF=∠AEF,∴△ DBF≌△ EFA( AAS),∴AE=DF,∵FE=AB,∴四边形ADFE为平行四边形,∵AE≠ EF,∴四边形ADFE不是菱形;故②说法不正确;∴AG=AF,∴AG=AB,∵A D=AB,则AD=4AG,故③说法正确,应选: C.二、填空题(此题共 6 小题,每题 3 分,共 21 分)13.二次根式是一个整数,那么正整数 a 最小值是2.【考点】二次根式的定义.【分析】依据二次根式的乘法,可得答案.【解答】解:由二次根式是一个整数,那么正整数 a 最小值是 2,故答案为: 2.14.一个四边形的边长挨次为a、b、c、d,且 a2+b2+c2+d2﹣2ac﹣ 2bd=0,则这个四边形的形状是平行四边形.【考点】因式分解的应用;平行四边形的判断.【分析】由 a2+b2+c2+d2﹣ 2ac﹣ 2bd=0,可整理为( a﹣ c)2+( b﹣ d)2 =0,即 a=c,b=d,进一步判断四边形为平行四边形即可.2222【解答】解:∵ a +b +c +d ﹣ 2ac﹣ 2bd=0,∴a=c, b=d,∴这个四边形必定是平行四边形.故答案为:平行四边形.15.已知一个三角形的三条边的长分别为、和,那么这个三角形的最大内角度数为90° .【考点】勾股定理的逆定理.【分析】依据勾股定理的逆定理:假如三角形有两边的平方和等于第三边的平方,那么这个是直角三角形,从而可得答案.【解答】解:∵()2+()2=()2,∴三角形为直角三角形,∴这个三角形的最大内角度数为90°,故答案为: 90°16.在?ABCD中,∠ABC和∠ BCD的均分线分别交AD于点 E 和点 F,AB=3cm,EF=1cm,则?ABCD 的边 AD的长是5cm或 7cm.【考点】平行四边形的性质.【分析】第一依据题意画出图形,由在?ABCD中,∠ ABC和∠ BCD的均分线分别交A D于点 E 和点 F,易证得△ ABE与△ CDF是等腰三角形,既而求得AE=DF=3cm,此后分别从图(1)与(2)两种状况去分析,既而求得答案.【解答】解:∵四边形 ABCD是平行四边形,∴AB=CD=3cm, AD∥ BC,∴∠ AEB=∠EBC,∵BE 均分∠ ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AE=AB=3cm,同理: DF=CD=3cm,如图(1),AD=AE+DF﹣EF=3+3﹣1=5(cm);如图( 2),AD=AE+EF+DF=3+1+3=7( cm),∴?ABCD的边 AD的长是: 5cm或 7cm.故答案为: 5cm 或 7cm.17.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、 3dm、2dm.A 和 B 是这个台阶上两个相对的端点,点 A 处有一只蚂蚁,想到点 B 处去吃爽口的食品,则蚂蚁沿着台阶面爬行到点 B 的最短行程为 25 dm.【考点】平面张开 - 最短路径问题.【分析】先将图形平面张开,再用勾股定理依据两点之间线段最短进行解答.【解答】解:三级台阶平面张开图为长方形,长为 20dm,宽为( 2+3)× 3dm,则蚂蚁沿台阶面爬行到 B 点最短行程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到 B 点最短行程为xdm,由勾股定理得:x2=202+[ ( 2+3)× 3] 2=252,解得 x=25.故答案为25.18.如图,正方形 OABC的边长为 6,点 A、 C 分别在 x 轴, y 轴的正半轴上,点D( 2, 0)在 OA上, P 是 OB上一动点,则 PA+PD的最小值为 2.【考点】轴对称 - 最短路线问题;坐标与图形性质.【分析】过 D 点作对于OB的对称点D′,连结 D′A交 OB于点 P,由两点之间线段最短可知D′A即为 PA+PD的最小值,由正方形的性质可求出D′点的坐标,再依据OA=6可求出 A 点的坐标,利用两点间的距离公式即可求出D′A的值.【解答】解:过 D 点作对于OB的对称点 D′,连结 D′A交 OB于点 P,由两点之间线段最短可知 D′A即为 PA+PD的最小值,∵D( 2, 0),四边形OABC是正方形,∴D′点的坐标为(0, 2), A 点坐标为( 6, 0),∴D′A==2,即PA+PD的最小值为2.故答案为2.三、(此题共 1 小题,共10 分)19.计算:①( 4﹣ 6)÷ 2②﹣(﹣ 2)0+.【考点】二次根式的混淆运算;零指数幂.【分析】( 1)先进行二次根式的除法运算,此后归并;(2)分别进行二次根式的化简、零指数幂等运算,此后归并.【解答】解:( 1)原式 =2﹣3;(2)原式 =3﹣1+=4﹣ 1.四、(此题共1 小题,共14 分)20.已知: x=+,y=﹣,求代数式x2﹣ y2+5xy 的值.【考点】二次根式的化简求值.【分析】第一把代数式利用平方差公式因式分解,再进一步代入求得答案即可.【解答】解:∵ x=+,y=﹣,∴x2﹣ y2+5xy=( x+y )( x﹣ y) +5xy=2× 2+5(+)(﹣)=4+5.五、(此题共2 小题,共14 分)21.如图,已知,在四边形ABCD中: AO=BO=CO=DO.求证:四边形ABCD是矩形.【考点】矩形的判断.【分析】第一依据AO=BO=CO=DO判断平行四边形,此后依据其对角线相等判断矩形即可.【解答】证明:∵ AO=C0=BO=DO,∴四边形ABCD是平行四边形,∵AO=C0=BO=DO,∴AC=DB,∴四边形ABCD是矩形.22.如图,在Rt △ ABC中,∠ ACB=90°,点D,E 分别是边AB,AC的中点,延伸BC到点 F,使CF= BC.若 AB=12,求 EF的长.【考点】平行四边形的判断与性质;直角三角形斜边上的中线;三角形中位线定理.【分析】利用三角形中位线定理以及直角三角形的性质得出DE BC,DC= AB,从而得出四边形 DEFC是平行四边形,即可得出答案.【解答】解:连结DC,∵点 D, E分别是边AB, AC的中点,∴DE BC, DC= AB,∵C F= BC,∴DE FC,∴四边形DEFC是平行四边形,∴D C=EF,∴E F= AB=6.六、(此题共1 小题,共7 分)23.如图,在四边形ABCD中, AB∥ CD, AB=12,BC=17, CD=20, AD=15.(1)请你在图中增添一条直线,将四边形ABCD分红一个平行四边形和一个三角形.(2)求四边形 ABCD的面积?【考点】平行四边形的性质;勾股定理的逆定理.【分析】( 1)第一过点 B 作 BE∥ AD,交 CD于点 E,可得四边形ABED是平行四边形;(2)由四边形 ABED是平行四边形,可求得 CE, BE的长,此后利用勾股定理的逆定理证得△BCE是直角三角形,既而求得答案.【解答】解:(1)如图,过点B作BE∥AD,交CD于点E,∵在四边形 ABCD中, AB∥ CD,∴四边形 ABED是平行四边形;(2)∵四边形 ABED是平行四边形,∴D E=AB=12, BE=AD=15,∴C E=CD﹣ DE=20﹣ 12=8,∵B C=17,222∴BE +CE=BC,∴S= ( AB+CD)?BE=×( 12+20)× 15=240 .四边形 ABCD七、(此题共1 小题,共8 分)24.如图,北部湾海面上,一艘解放军军舰在基地 A 的正东方向且距 A 地 60 海里的 B 处训练,忽然接到基地命令,要该舰前去 C 岛,接送一名病危的渔民到基地医院救治.已知C 岛在 A 的北偏东30°方向,且在 B 的北偏西60°方向,军舰从 B 处出发,均匀每小时行驶30 海里,需要多少时间才能把生病渔民送到基地医院.(精准到小时,≈ )【考点】勾股定理的应用;方向角.【分析】依据题意知应求( BC+AC)的长,△ ABC为斜三角形,因此需作高转变为直角三角形求解.【解答】解:依据题意,得∠ A=60°,∠ B=30°作CD⊥ AB于 D,设CD=x,∵=tan60 °∴AD=x∵=tan30 °∴B D= x∵A B=60,∴x+x=60,解得: x=15 海里,∴AC=x=30 海里,BC=2x=30海里,∴A C=2x∴= +1≈ 2.7 小时,答:需要大概 2.7 小时才能把生病渔民送到基地医院.八、(此题共2 小题,共10 分)25.以以以下图,四边形 ABCD是正方形, M是 AB延伸线上一点.直角三角尺的一条直角边经过点 D,且直角极点 E在 AB边上滑动(点 E 不与点 A、B 重合),另向来角边与∠ CBM的均分线 BF 订交于点 F.(1)如图 1,当点 E 在 AB 边得中点地点时:①经过丈量DE、 EF的长度,猜想DE与 EF 知足的数目关系是DE=EF .②连结点 E 与 AD边的中点N,猜想 NE与 BF知足的数目关系是NE=BF ,请证明你的猜想.(2)如图 2,当点 E 在 AB边上的随意地点时,猜想此时DE与 EF有如何的数目关系,并证明你的猜想.【考点】全等三角形的判断与性质;正方形的性质.【分析】( 1)①依据图形可以获得DE=EF,NE=BF,②要证明这两个关系,只需证明△DNE≌△E BF即可.(2) DE=EF,连结 NE,在 DA边上截取 DN=EB,证出△ DNE≌△ EBF即可得出答案.【解答】解:( 1)① DE=EF;②NE=BF;原因以下:∵四边形 ABCD为正方形,∴AD=AB,∠ DAB=∠ABC=90°,∵N,E 分别为 AD, AB中点,∴AN=DN= AD, AE=EB= AB,∴DN=BE, AN=AE,∵∠ DEF=90°,∴∠ AED+∠FEB=90°,又∵∠ ADE+∠AED=90°,∴∠ FEB=∠ADE,又∵ AN=AE,∴∠ ANE=∠AEN,又∵∠ A=90°,∴∠ ANE=45°,∴∠ DNE=180°﹣∠ ANE=135°,又∵∠ CBM=90°, BF均分∠ CBM,∴∠ CBF=45°,∠ EBF=135°,在△ DNE和△ EBF中,∴△ DNE≌△ EBF( ASA),∴D E=EF, NE=BF.(2) DE=EF,原因以下:连结 NE,在 DA边上截取 DN=EB,∵四边形 ABCD是正方形, DN=EB,∴AN=AE,∴△AEN为等腰直角三角形,∴∠ ANE=45°,∴∠ DNE=180°﹣ 45°=135°,∵BF 均分∠ CBM, AN=AE,∴∠ EBF=90° +45°=135°,∴∠ DNE=∠EBF,∵∠ NDE+∠DEA=90°,∠BEF+∠DEA=90°,∴∠ NDE=∠BEF,在△ DNE和△ EBF中,∴△ DNE≌△ EBF( ASA),∴D E=EF.26.如图, BD是菱形 ABCD的对角线,点E,F 分别在边CD,DA上,且 CE=AF.求证: DE=DF.【考点】菱形的性质;全等三角形的判断与性质.【分析】依据菱形的性质可得AD=CD,即可得出结论.【解答】证明:∵四边形ABCD是菱形,∴AD=CD,∵CE=AF,∴DE=DF.。
人教版八年级数学下册第二次月考试题

初二下学期第二次月考试题一、请你填一填。
(每题3分,共30分) 1.计算4133m m m -+++= . 2.计算y —y ÷x= 。
3.反比例函数x ky =的图象过点P (3,7),那么k 的值是 .4.顺次连结矩形各边中点所得的四边形是_____5.如图,一架云梯长10米,斜靠在一面墙上,梯子顶端离地面6米,要使梯子顶端离地面8 米,则梯子的底部在水平面方向要向左滑动_______________米.第5题图 第6题图 第7题图6.如图,P 是正方形ABCD 内一点,将△ABP 绕点B 顺时针方向旋转能与△CBP′重合,PB=1,则PP′=__________________.7.你吃过兰州拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度у(cm )是面条粗细(横截面积)x (cm 2)的反比例函数,假设其图象如图所示,则у与x 的函数关系式为__ _ .8.某射击运动员五次射击成绩分别为9环,5环,8环,8环,10环,则他这五次成绩的平均数为 ,众数为 . 9. 我县某天的最高温度是32℃,最低温度是21℃,则气温的极差为 _______℃ 10.某商店选用每千克28元的A 型糖3千克,每千克20元的B 型糖2千克,每千克12元的C 型糖5千克混合杂拌后出售,这种杂拌糖平均每千克售价为____元. 二、请你选一选。
(每题3分,共18分) 11.(辽宁省) 五名同学在“爱心捐助”活动中,捐款数额为8,10,10,4,6(单位:元),这组数据的中位数是 ( ) A .10 B .9 C .8 D . 6 12.下列结论正确的是 ( )A .邻角相等的四边形是菱形B .有一组邻边相等的四边形是菱形C .对角线互相垂直的四边形是菱形D .对角线互相垂直平分的四边形是菱形13.如图所示,在□ABCD 中,对角线AC 、BD 交于 点O ,下列式子中一定成立的是 ( )A .OA=ODB .AC=BDC .AC ⊥BD D .OB=0D 14.下列命题中的假命题是 ( ) A .在△ABC 中,若∠A=∠C-∠B ,则△ABC 是直角三角形 B .在△ABC 中,若a 2+b 2=c 2,则△ABC 是直角三角形C .在△ABC 中,若∠A 、∠B 、∠C 的度数比是5∶2∶3,则△ABC 是直角三角形D .在△ABC 中,若三边长a ∶b ∶c=2∶2∶3,则△ABC 是直角三角形 15.以A 、B 、C 三点为平行四边形的三个顶点,作形状不同的平行四边形,一共可以作( ) A .0个或3个 B .2个 C .3个 D .4个 16.(漳州市) 甲、乙两名运动员在10次的百米跑练习中,平均成绩分别为x甲7.10=秒,x 乙7.10=秒,方差分别为S 2甲054.0=,S 2乙103.0=,那么在这次百米跑练习中,甲、乙两名运动员成绩较为稳定的是 ( )A .甲运动员B .乙运动员C .甲、乙两人一样稳定D .无法确定 三、请你来解答。
人教版八年级第二学期 第二次 月考检测数学试卷及解析

一、选择题1.已知点A (4,0),B (0,﹣4),C (a ,2a )及点D 是一个平行四边形的四个顶点,则线段CD 的长的最小值为( )A .655B .1255C .32D .422.正方形ABCD ,CEFG 按如图放置,点B ,C ,E 在同一条直线上,点P 在BC 边上,PA PF =,且APF 90∠=︒,连接AF 交CD 于点M ,有下列结论:EC BP =①;BAP GFP ∠∠=②;2221AB CE AF 2+=③;APF ABCD CEFG S S 2S +=正方形正方形④.其中正确的是( )A .①②③B .①③④C .①②④D .①②③④ 3.如图,正方形ABCD 的边长为5,4AG CH ==,3BG DH ==,连接GH ,则线段GH 的长为( )A .435B .75 C .2 D .52-4.如图,在ABCD 中,1234532,,,,AB AD E E E E E =,,依次是CB 上的五个点,并且1122334455CE E E E E E E E E E B =====,在三个结论:(1)33⊥DE AE ;(2)24⊥AE DE ;(3)22AE DE ⊥之中,正确的个数是( )A .0B .1C .2D .35.如图,在平面直角坐标系中,A 点坐标为(8,0),点P 从点O 出发以1个单位长度/秒的速度沿y 轴正半轴方向运动,同时,点Q 从点A 出发以1个单位长度/秒的速度沿x 轴负半轴方向运动,设点P 、Q 运动的时间为(08)t t <<秒.以PQ 为斜边,向第一象限内作等腰Rt PBQ ∆,连接OB .下列四个说法:①8OP OQ +=;②B 点坐标为(4,4);③四边形PBQO 的面积为16;④PQ OB >.其中正确的说法个数有( )A .4B .3C .2D .16.矩形纸片ABCD 中,AB =5,AD =4,将纸片折叠,使点B 落在边CD 上的点B '处,折痕为AE .延长B E '交AB 的延长线于点M ,折痕AE 上有点P ,下列结论中:①M DAB '∠∠=;②PB PB '=;③AE =552;④MB CD '=;⑤若B P CD '⊥,则EB B P ''=.正确的有( )个A .2B .3C .4D .57.如图,在菱形ABCD 中,若E 为对角线AC 上一点,且CE CD =,连接DE ,若5,8AB AC ==,则DE AD=( )A .104B .105C .35D .458.如图,在ABC 中,ACB 90∠=︒,2AC BC ==,D 是AB 的中点,点E 在AC 上,点F 在BC 上,且AE CF =,给出以下四个结论:(1)DE DF =;(2)DEF 是等腰直角三角形;(3)四边形CEDF 面积ABC 1S 2=△;(4)2EF 的最小值为2.其中正确的有( ).A .4个B .3个C .2个D .1个9.如图,在平行四边形ABCD 中,对角线AC ,BD 交于点O ,2BD AD =,点E ,F ,G 分别是OA ,OB ,CD 的中点,EG 交FD 于点H ,下列4个结论中说法正确的有( )①ED CA ⊥;②EF EG =;③12FH FD =;④12EFD ACD S S =△△.A .①②B .①②③C .①③④D .①②③④10.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =185.其中正确结论的个数是( )A .1B .2C .3D .4二、填空题11.如图,正方形ABCD 的对角线相交于点O ,对角线长为1cm ,过点O 任作一条直线分别交AD ,BC 于E ,F ,则阴影部分的面积是_____.12.已知在矩形ABCD 中,3,3,2AB BC ==点P 在直线BC 上,点Q 在直线CD 上,且,AP PQ ⊥当AP PQ =时,AP =________________.13.如图,在菱形ABCD 中,AB 的垂直平分线EF 交对角线AC 于点F ,垂足为点E ,若27CDF ∠=︒,则DAB ∠的度数为____________.14.如图,四边形纸片ABCD 中,AB BC =, 90ABC ADC ∠=∠=︒.若该纸片的面积为10 cm 2,则对角线BD =______cm .15.如图,菱形ABCD 的边长是4,60ABC ∠=︒,点E ,F 分别是AB ,BC 边上的动点(不与点A ,B ,C 重合),且BE BF =,若//EG BC ,//FG AB ,EG 与FG 相交于点G ,当ADG 为等腰三角形时,BE 的长为________.16.如图,在平面直角坐标系中,直线112y x =+与x 轴、y 轴分别交于A ,B 两点,以AB 为边在第二象限内作正方形ABCD ,则D 点坐标是_______;在y 轴上有一个动点M ,当MDC △的周长值最小时,则这个最小值是_______.17.如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E ,若∠CBF=20°,则∠AED 等于__度.18.如图,在矩形纸片ABCD 中,AB =6,BC =10,点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处,点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,有下列结论:①∠EBG =45°;②S △ABG =32S △FGH ;③△DEF ∽△ABG ;④AG+DF =FG .其中正确的是_____.(把所有正确结论的序号都选上)19.如图,菱形OABC 的两个顶点坐标为()0,0O ,()4,4B ,若将菱形绕点O 以每秒45︒的速度逆时针旋转,则第2019秒时,菱形两对角线交点D 的坐标为__________.20.在菱形ABCD 中,M 是AD 的中点,AB =4,N 是对角线AC 上一动点,△DMN 的周长最小是2+23,则BD 的长为___________.三、解答题21.在数学的学习中,有很多典型的基本图形.(1)如图①,ABC 中,90BAC ∠=︒,AB AC =,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为D 、E .试说明ABD CAE ≌;(2)如图②,ABC 中,90BAC ∠=︒,AB AC =,点D 、A 、F 在同一条直线上,BD DF ⊥,3AD =,4BD =.则菱形AEFC 面积为______.(3)如图③,分别以Rt ABC 的直角边AC 、AB 向外作正方形ACDE 和正方形ABFG ,连接EG ,AH 是ABC 的高,延长HA 交EG 于点I ,若6AB =,8AC =,求AI 的长度.22.如图,在Rt ABC 中,∠B =90°,AC =60cm ,∠A =60°,点D 从点C 出发沿CA 方向以4cm/s 的速度向点A 匀速运动.同时点E 从点A 出发沿AB 方向以2cm/秒的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D 、E 运动的时间是ts (0<t≤15).过点D 作DF ⊥BC 于点F ,连接DE ,EF .(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,DEF为直角三角形?请说明理由.23.如图,点E为▱ABCD的边AD上的一点,连接EB并延长,使BF=BE,连接EC并延长,使CG=CE,连接FG.H为FG的中点,连接DH,AF.(1)若∠BAE=70°,∠DCE=20°,求∠DEC的度数;(2)求证:四边形AFHD为平行四边形;(3)连接EH,交BC于点O,若OC=OH,求证:EF⊥EG.24.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形;(2)若∠DEF=90°,DE=8,EF=6,当AF为时,四边形BCEF是菱形.25.如图.正方形ABCD的边长为4,点E从点A出发,以每秒1个单位长度的速度沿射线AD运动,运动时间为t秒(t>0),以AE为一条边,在正方形ABCD左侧作正方形AEFG,连接BF.(1)当t=1时,求BF的长度;(2)在点E运动的过程中,求D、F两点之间距离的最小值;(3)连接AF、DF,当△ADF是等腰三角形时,求t的值.26.(解决问题)如图1,在ABC ∆中,10AB AC ==,CG AB ⊥于点G .点P 是BC 边上任意一点,过点P 作PE AB ⊥,PF AC ⊥,垂足分别为点E ,点F .(1)若3PE =,5PF =,则ABP ∆的面积是______,CG =______.(2)猜想线段PE ,PF ,CG 的数量关系,并说明理由.(3)(变式探究)如图2,在ABC ∆中,若10AB AC BC ===,点P 是ABC ∆内任意一点,且PE BC ⊥,PF AC ⊥,PG AB ⊥,垂足分别为点E ,点F ,点G ,求PE PF PG ++的值.(4)(拓展延伸)如图3,将长方形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C '处,点P 为折痕EF 上的任意一点,过点P 作PG BE ⊥,PH BC ⊥,垂足分别为点G ,点H .若8AD =,3CF =,直接写出PG PH +的值.27.点E在正方形ABCD的边BC上,点F在AE上,连接FB,FD,∠ABF=∠AFB.(1)如图1,求证:∠AFD=∠ADF;(2)如图2,过点F作垂线交AB于G,交DC的延长线于H,求证:DH=2 AG;(3)在(2)的条件下,若EF=2,CH=3,求EC的长.28.如图,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B出发,以2cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒:(1)PC=cm.(用t的代数式表示)(2)当t为何值时,△ABP≌△DCP?(3)当点P从点B开始运动,同时,点Q从点C出发,以vcm/秒的速度沿CD向点D运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.29.已知:正方形ABCD和等腰直角三角形AEF,AE=AF(AE<AD),连接DE、BF,P是DE的中点,连接AP.将△AEF绕点A逆时针旋转.(1)如图①,当△AEF的顶点E、F恰好分别落在边AB、AD时,则线段AP与线段BF的位置关系为,数量关系为.(2)当△AEF绕点A逆时针旋转到如图②所示位置时,证明:第(1)问中的结论仍然成立.(3)若AB=3,AE=1,则线段AP的取值范围为.30.如图,ABCD 的对角线,AC BD 相交于点,,6,10O AB AC AB cm BC cm ⊥==,点P 从点A 出发,沿AD 方向以每秒1cm 的速度向终点D 运动,连接PO ,并延长交BC 于点Q .设点P 的运动时间为t 秒.(1)求BQ 的长(用含t 的代数式表示);(2)当四边形ABQP 是平行四边形时,求t 的值;(3)当325t =时,点O 是否在线段AP 的垂直平分线上?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据题意可判定此题需分两种情况讨论,如果AB 、CD 为对角线,AB 与CD 交于点F ,当FC ⊥直线y =2x 时,CD 最小,根据垂直及F 点坐标可先求的直线FC 的函数解析式,进而通过求得点C 坐标来求CD ;如果CD 是平行四边形的边,则CD =AB =42况即可求得CD 最小值.【详解】解:如图,由题意点C 在直线y =2x 上,如果AB、CD为对角线,AB与CD交于点F,当FC⊥直线y=2x时,CD最小,易知直线AB为y=x﹣4,∵AF=FB,∴点F坐标为(2,﹣2),∵CF⊥直线y=2x,设直线CF为y=﹣12x+b′F(2,﹣2)代入得b′=﹣1∴直线CF为y=﹣12x﹣1,由2112y xy x=⎧⎪⎨=--⎪⎩解得2545xy⎧=-⎪⎪⎨⎪=-⎪⎩,∴点C坐标(25-,45-).∴CD=2CF=222242255⎛⎫⎛⎫++-+⎪ ⎪⎝⎭⎝⎭125.如果CD是平行四边形的边,则CD=AB=421255,∴CD125故选:B.【点睛】本题考查了一次函数与平行四边形的综合题,解本题的关键是找到何时CD最短.2.D解析:D【分析】①由同角的余角相等可证出EPF BAP≅,由此即可得出EF BP=,再根据正方形的性质即可得出①成立;②根据平行线的性质可得出GFP EPF∠=∠,再由EPF BAP∠=∠即可得出②成立;③在Rt ABP∆中,利用勾股定理即可得出③成立;④结合③即可得出④成立.【详解】解:①90EPF APB ∠+∠=︒,90APB BAP ∠+∠=︒,EPF BAP ∴∠=∠,在EPF ∆和BAP ∆中,EPF BAP FEP PBA PA PF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()EPF BAP AAS ∴∆≅∆,EF BP ∴=,四边形CEFG 为正方形,EC EF BP ∴==,即①成立;②//FG EC ,GFP EPF ∴∠=∠,又EPF BAP ∠=∠,BAP GFP ∴∠=∠,即②成立;③由①可知EC BP =,在Rt ABP ∆中,222AB BP AP +=,PA PF =,且90APF ∠=︒,APF ∴∆为等腰直角三角形, 22222AF AP FP AP ∴=+=,22222212AB BP AB CE AP AF ∴+=+==,即③成立;④由③可知:222AB CE AP +=,2APF ABCD CGFE S S S ∆∴+=正方形正方形,即④成立.故成立的结论有①②③④. 故选:D .【点睛】本题考查了正方形的性质、全等三角形的判定及性质、平行线的性质以及勾股定理,解题的关键是逐条分析五条结论是否正确.本题属于中档题,难度不大,解决该题型题目时,通过证明三角形全等以及利用勾股定理等来验证题中各结论是否成立是关键.3.C解析:C 【分析】延长BG 交CH 于点E ,根据正方形的性质证明△ABG ≌△CDH ≌△BCE ,可得GE=BE-BG=1,HE=CH-CE=1,∠HEG=90°,由勾股定理可得GH 的长. 【详解】解:如图,延长BG 交CH 于点E ,在△ABG 和△CDH 中,AB CD AG CH BG DH =⎧⎪=⎨⎪=⎩, ∴△ABG ≌△CDH (SSS ), AG 2+BG 2=AB 2,∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°, ∴∠1+∠2=90°,∠5+∠6=90°, 又∵∠2+∠3=90°,∠4+∠5=90°, ∴∠1=∠3=∠5,∠2=∠4=∠6, 在△ABG 和△BCE 中,1324AB BC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABG ≌△BCE (ASA ),∴BE=AG=4,CE=BG=3,∠BEC=∠AGB=90°, ∴GE=BE -BG=4-3=1, 同理可得:HE=1,在Rt △GHE 中,2222112GE EH +=+ 故选:C. 【点睛】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE 为等腰直角三角形是解题的关键.4.B解析:B 【分析】先根据平行四边形性质和等腰三角形性质可得2AE 是BAD ∠的角平分线,4DE 是ADC ∠的角平分线,结论(2)正确.再利用结论(2)可得3390DAE ADE ∠+∠>︒,2290DAE ADE ∠+∠>︒即可判断结论(1)(3)错误,【详解】解:设1122334455CE E E E E E E E E E B m ======,则6BC m =, ABCD ,32AB AD =6AD BC m ∴==,//AD BC ,//AB CD ,4AB CD m ==在2ABE ∆中,24BE m AB == 22AE B BAE ∴∠=∠,//AD BC ,∴22AE B DAE ∠=∠, 221=2DAE BAE BAD ∴∠=∠∠,同理可得:4412ADE CDE ADC ∠==∠∠,//AB CD ,∴180BAD ADC ∠+∠=︒,2490DAE ADE ∴∠+∠=︒ 42AE DE ∴⊥,故(2)正确;∵32DAE DAE ∠>∠,34ADE ADE ∠>∠,∴3324DAE ADE DAE ADE ∠+∠>∠+∠,即3390DAE ADE ∠+∠>︒, ∴390AE D ∠<︒所以3DE 与3AE 不垂直,故(1)不正确; ∵,24ADE ADE ∠>∠,∴2224DAE ADE DAE ADE ∠+∠>∠+∠,即2290DAE ADE ∠+∠>︒, ∴290AE D ∠<︒ 故(3)不正确; 故选:B . 【点睛】本题考查了平行四边形性质,等腰三角形性质,三角形内角和定理等,证明2AE 是BAD ∠的角平分线,4DE 是ADC ∠的角平分线是解题关键.5.B解析:B 【分析】根据题意,有OP=AQ ,即可得到8OP OQ OA +==,①正确;当4t =时,OP=OQ=4,此时四边形PBQO 是正方形,则PB=QB=OP=OQ=4,即点B 坐标为(4,4),②正确;四边形PBQO 的面积为:4416⨯=,在P 、Q 运动过程面积没有发生变化,故③正确;由正方形PBQO的性质,则此时对角线PQ=OB,故④错误;即可得到答案.【详解】解:根据题意,点P与点Q同时以1个单位长度/秒的速度运动,∴OP=AQ,∵OQ+AQ=OA=8,∴OQ+OP=8,①正确;由题意,点P与点Q运动时,点B的位置没有变化,四边形PBQO的面积没有变化,当4t=时,如图:则AQ=OP=4,∴OQ=844-=,∴点B的坐标为:(4,4),②正确;此时四边形PBQO是正方形,则PB=QB=OP=OQ=4,∴四边形PBQO的面积为:4416⨯=,③正确;∵四边形PBQO是正方形,∴PQ=OB,即当4t=时,PQ=OB,故④错误;∴正确的有:①②③,共三个;故选择:B.【点睛】本题考查了正方形的判定和性质,等腰直角三角形的性质,以及坐标与图形,解题的关键是根据点P、Q的运动情况,进行讨论分析来解题.6.C解析:C【分析】①由翻折知∠ABE=∠AB'E=90º,再证∠M=∠CB'E=∠B'AD即可;②借助轴对称可知;③利用计算,勾股定理求B′D,构造方程,求EB,在构造勾股定理求55;④由相似CB':BM=CE:BE,BM=103,在计算B'M>5;⑤证△BEG≌△B′PG得BE=B′P,再证菱形即可.【详解】①由折叠性质知∠ABE=∠AB'E=90º,∴∠CB'E+∠AB'D=90º∵∠D=90º∴∠B'AD+∠AB'D=90º∴∠CB'E=∠B'AD,∵CD∥MB,∴∠M=∠CB'E=∠B'AD;②点P在对称轴上,则B'P=BP;③由翻折,AB=AB'=5,AD=4,由勾股定理DB'=3,∴CB'=5-3=2,设BE=x=B'E,CE=4-x,在Rt△B′CE中,∠C=90º,由勾股定理(4-x)2+22=x2,解得x=52,∴CE=4-52=32,在Rt△ABE中,∠ABE=90º,AE=22555+5=2⎛⎫⎪⎝⎭;④由BM∥CB′∴△ECB′∽△EBM,∴CB':BM=CE:BE,∴2:BM=32:52,∴BM=103,则B'M=221020+4=33⎛⎫ ⎪⎝⎭>5=CD ; ⑤连接BB′,由对称性可知,BG=B′G ,EP ⊥BB′, BE ∥B′P , ∴△BEG ≌△B′PG , ∴BE=B′P ,∴四边形BPB′E 为平行四边形, 又BE=EB′,所以四边形BPB′E 是菱形, 所以PB′=B'E .故选择:C . 【点睛】此题考查了矩形的性质、图形的翻折变换以及相似三角形的性质等知识的应用,此题的关键是能够发现△BEG ≌△B′PG .7.B解析:B 【分析】连接BD ,与AC 相交于点O ,则AC ⊥BD ,142AO AC ==,由5AD AB ==,根据勾股定理求出DO ,求出EO ,由勾股定理求出DE ,即可得到答案. 【详解】解:连接BD ,与AC 相交于点O ,则AC ⊥BD ,在菱形ABCD 中,142AO AC ==, ∵5AD AB CD ===,在Rt △AOD 中,由勾股定理,得:22543DO =-=,∵=5CE CD =,8AC =, ∴853AE =-=, ∴431OE =-=,在Rt △ODE 中,由勾股定理,得DE ==∴DE AD =故选:B. 【点睛】本题考查了菱形的性质,勾股定理,以及线段的和差关系,解题的关键是正确作出辅助线,利用勾股定理求出DE 的长度.8.A解析:A 【分析】根据等腰三角形的性质,可得到:CD AB ⊥,从而证明ADE ≌CDF 且ADC 90∠=︒,即证明DE DF =和DEF 是等腰直角三角形,以及四边形CEDF 面积ABC 1S 2=△;再根据勾股定理求得EF ,即可得到答案. 【详解】∵ACB 90∠=︒,2AC BC ==∴AB ==∴A B 45∠=∠=︒ ∵点D 是AB 的中点∴CD AB ⊥,且1AD BD CD AB 2====∴DCB 45∠=︒ ∴A DCF ∠∠=, 在ADE 和CDF 中AD CD A DCF AE CF =⎧⎪∠=∠⎨⎪=⎩∴ADE ≌()CDF SAS ∴DE DF =,ADE CDF ∠∠= ∵CD AB ⊥ ∴ADC 90∠=︒∴EDF EDC CDF EDC ADE ADC 90∠∠∠∠∠∠=+=+==︒ ∴DEF 是等腰直角三角形∵ADE ≌CDF∴ADE 和CDF 的面积相等 ∵D 为AB 中点 ∴ADC 的面积1ABC 2=的面积 ∴四边形CEDF 面积EDC CDFEDC ADEADCABC1S SSSSS 2=+=+==;当DE AC ⊥,DF BC ⊥时,2EF 值最小 根据勾股定理得:222EF DE DF =+ 此时四边形CEDF 是正方形 即EF CD 2==∴22EF (2)2== ∴正确的个数是4个 故选:A . 【点睛】本题考察了等腰三角形、全等三角形、正方形、直角三角形、勾股定理的知识;解题的关键是熟练掌握等腰三角形、全等三角形、正方形、直角三角形的性质,从而完成求解.9.B解析:B 【分析】由等腰三角形“三线合一”得ED ⊥CA ,根据三角形中位线定理可得EF=12AB ;由直角三角形斜边上中线等于斜边一半可得EG=12CD ,即可得EF=EG ;连接FG ,可证四边形DEFG 是平行四边形,即可得FH=12FD ,由三角形中位线定理可证得S △OEF =14S △AOB ,进而可得S △EFD =S △OEF +S △ODE =316S ▱ABCD ,而S △ACD =12S ▱ABCD ,推出S △EFD 12≠S △ACD ,即可得出结论. 【详解】连接FG ,如图所示:∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD ,AD=BC ,AD ∥BC ,AB=CD ,AB ∥CD ,∵BD=2AD,∴OD=AD,∵点E为OA中点,∴ED⊥CA,故①正确;∵E、F、G分别是OA、OB、CD的中点,∴EF∥AB,EF=12 AB,∵∠CED=90°,G是CD的中点,∴EG=12 CD,∴EF=EG,故②正确;∵EF∥AB,AB∥CD,∴EF∥CD,EF=EG=DG,∴四边形DEFG是平行四边形,∴FH=DH,即FH=12FD,故③正确;∵△OEF∽△OAB,∴S△OEF=14S△AOB,∵S△AOB=S△AOD=14S▱ABCD,S△ACD=12S▱ABCD,∴S△OEF=116S▱ABCD,∵AE=OE,∴S△ODE=12S△AOD=18S▱ABCD,∴S△EFD=S△OEF+S△ODE=116S▱ABCD+18S▱ABCD316=S▱ABCD,∵12S△ACD14=S▱ABCD,∴S△EFD12≠S△ACD,故④错误;综上,①②③正确;故选:B.【点睛】本题考查了平行四边形性质和判定,三角形中位线定理,三角形面积,直角三角形斜边上中线性质,等腰三角形性质等知识;熟练运用三角形中位线定理、等腰三角形的性质是解题关键.10.D解析:D【分析】由正方形和折叠的性质得出AF =AB ,∠B =∠AFG =90°,由HL 即可证明Rt △ABG ≌Rt △AFG ,得出①正确;设BG =x ,则CG =BC−BG =6−x ,GE =GF +EF =BG +DE =x +2,由勾股定理求出x =3,得出②正确;由等腰三角形的性质和外角关系得出∠AGB =∠FCG ,证出平行线,得出③正确; 根据三角形的特点及面积公式求出△FGC 的面积=185,得出④正确. 【详解】∵四边形ABCD 是正方形,∴AB =AD =DC =6,∠B =D =90°,∵CD =3DE ,∴DE =2,∵△ADE 沿AE 折叠得到△AFE ,∴DE =EF =2,AD =AF ,∠D =∠AFE =∠AFG =90°,∴AF =AB ,∵在Rt △ABG 和Rt △AFG 中, AG AG AB AF =⎧⎨=⎩, ∴Rt △ABG ≌Rt △AFG (HL ),∴①正确;∵Rt △ABG ≌Rt △AFG ,∴BG =FG ,∠AGB =∠AGF ,设BG =x ,则CG =BC−BG =6−x ,GE =GF +EF =BG +DE =x +2,在Rt △ECG 中,由勾股定理得:CG 2+CE 2=EG 2,∵CG =6−x ,CE =4,EG =x +2∴(6−x )2+42=(x +2)2解得:x =3,∴BG =GF =CG =3,∴②正确;∵CG =GF ,∴∠CFG =∠FCG ,∵∠BGF =∠CFG +∠FCG ,又∵∠BGF =∠AGB +∠AGF ,∴∠CFG +∠FCG =∠AGB +∠AGF ,∵∠AGB =∠AGF ,∠CFG =∠FCG ,∴∠AGB =∠FCG ,∴AG∥CF,∴③正确;∵△CFG和△CEG中,分别把FG和GE看作底边,则这两个三角形的高相同.∴35 CFGCEGS FGS GE==,∵S△GCE=12×3×4=6,∴S△CFG=35×6=185,∴④正确;正确的结论有4个,故选:D.【点睛】本题考查了正方形性质、折叠性质、全等三角形的性质和判定、等腰三角形的性质和判定、平行线的判定等知识点的运用;主要考查学生综合运用性质进行推理论证与计算的能力,有一定难度.二、填空题11.218cm【分析】根据正方形的性质可以证明△AEO≌CFO,就可以得出S△AEO=S△CFO,就可以求出△AOD面积等于正方形面积的14,根据正方形的面积就可以求出结论.【详解】解:如图:∵正方形ABCD的对角线相交于点O,∴△AEO与△CFO关于O点成中心对称,∴△AEO≌CFO,∴S△AEO=S△CFO,∴S△AOD=S△DEO+S△CFO,∵对角线长为1cm,∴S 正方形ABCD =1112⨯⨯=12cm 2, ∴S △AOD =18cm 2, ∴阴影部分的面积为18cm 2. 故答案为:18cm 2. 【点睛】 本题考查了正方形的性质的运用,全等三角形的判定及性质的运用正方形的面积及三角形的面积公式的运用,在解答时证明△AEO ≌CFO 是关键.12.322或3102【分析】 根据点P 在直线BC 上,点Q 在直线CD 上,分两种情况:1.P 、Q 点位于线段上;2.P 、Q 点位于线段的延长上,再通过三角形全等得出相应的边长,最后根据勾股即可求解.【详解】解:当P 点位于线段BC 上,Q 点位于线段CD 上时:∵四边形ABCD 是矩形,AP PQ ⊥∴∠BAP=∠CPQ ,∠APB=∠PQC∵AP PQ =∴ABP PCQ ≅∴PC=AB=32,BP=BC-PC=3-32=32∴AP=223322+()()=322当P 点位于线段BC 的延长线上,Q 点位于线段CD 的延长线上时:∵四边形ABCD 是矩形,AP PQ ⊥∴∠BAP=∠CPQ ,∠APB=∠PQC∵AP PQ =∴ABP PCQ ≅∴PC=AB=32,BP=BC+PC=3+32=92∴AP=223922+()()=3102故答案为:322或3102【点睛】 此题主要考查三角形全等的判定及性质、勾股定理,熟练运用判定定理和性质定理是解题的关键.13.102︒【分析】根据菱形的性质求出∠DAB=2∠DAC ,AD=CD ;再根据垂直平分线的性质得出AF=DF ,利用三角形内角和定理可以求得3∠CAD+∠CDF=180°,从而得到∠DAB 的度数.【详解】连接BD ,BF ,∵四边形ABCD 是菱形,∴AD=CD ,∴∠DAC=∠DCA .∵EF 垂直平分AB ,AC 垂直平分BD ,∴AF=BF ,BF=DF ,∴AF=DF ,∴∠FAD=∠FDA ,∴∠DAC+∠FDA+∠DCA+∠CDF=180°,即3∠DAC+∠CDF=180°,∵∠CDF=27°,∴3∠DAC+27°=180°,则∠DAC=51°,∴∠DAB=2∠DAC=102°.故答案为:102°.【点睛】本题主要考查了线段的垂直平分线的性质,三角形内角和定理的应用以及菱形的性质,有一定的难度,解答本题时注意先先连接BD ,BF ,这是解答本题的突破口.14.25【分析】作BE ⊥AD 于E ,BF ⊥CD 于F ,则四边形BEDF 是矩形,证明△ABE ≌△CBF (AAS ),得出BE=BF ,△ABE 的面积=△CBF 的面积,则四边形BEDF 是正方形,四边形ABCD 的面积=正方形BEDF 的面积,求出BE=10,即可求得BD 的长.【详解】解:作BE ⊥AD 交DA 延长线于E ,BF ⊥CD 于F ,如图所示:则∠BEA=∠BFC=90°,∵∠ADC=90°,∴四边形BEDF 是矩形,∴∠EBF=90°,∵∠ABC=90°,∴∠EBF=∠ABC=90°,∴∠ABE=∠CBF ,在△ABE 和△CBF 中,BEA BFC ABE CBF AB CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△CBF (AAS ),∴BE=BF ,△ABE 的面积=△CBF 的面积,∴四边形BEDF 是正方形,四边形ABCD 的面积=正方形BEDF 的面积,∴BE=DE ,BE 2=10 cm 2,∴10(cm),∴25.故答案为:5【点睛】本题考查了正方形的判定与性质、全等三角形的判定与性质、矩形的判定与性质等知识;熟练掌握正方形的判定与性质,证明三角形全等是解题的关键.15.83或4433 【分析】 连接AC 交BD 于O ,由菱形的性质可得AB=BC=4,∠ABD=30°,AC ⊥BD ,BO=DO ,AO=CO ,可证四边形BEGF 是菱形,可得∠ABG=30°,可得点B ,点G ,点D 三点共线,由直角三角形性质可求BD=43,AC=4,分两种情况讨论,利用等腰三角形的性质可求解.【详解】如图,连接AC 交BD 于O ,∵菱形ABCD 的边长是4,∠ABC=60°,∴AB=BC=4,∠ABD=30°,AC ⊥BD ,BO=DO ,AO=CO ,∵EG ∥BC ,FG ∥AB ,∴四边形BEGF 是平行四边形,又∵BE=BF ,∴四边形BEGF 是菱形,∴∠ABG=30°,∴点B ,点G ,点D 三点共线,∵AC ⊥BD ,∠ABD=30°,∴AO=12AB=2,22224223AB AO --= ∴BD=3AC=4, 同理可求3BE ,即3, 若AD=DG'=4时,∴BG'=BD-DG'=434,∴BE'4344343-==; 若AG''=G''D 时,过点G''作G''H ⊥AD 于H ,∴AH=HD=2,∵∠ADB=30°,G''H ⊥AD ,∴DG''=2HG'',∵222HD HG''DG''+=,解得:HG''33=,DG''=2HG''433=, ∴BG''=BD-DG''=438343-=∴BE''=83, 综上所述:BE 为83或43-. 【点睛】 本题考查了菱形的性质,含30度角的直角三角形的性质,勾股定理等知识,利用分类讨论思想解决问题是本题的关键.16.(3,2)-【分析】如图(见解析),先根据一次函数的解析式可得点A 、B 的坐标,从而可得OA 、OB 、AB 的长,再根据正方形的性质可得90BAD ∠=︒,DA AB =,然后根据三角形全等的判定定理与性质可得,AE OB DE OA ==,由此即可得出点D 的坐标;同样的方法可求出点C 的坐标,再根据轴对称的性质可得点C '的坐标,然后根据轴对称的性质和两点之间线段最短得出MDC △的周长值最小时,点M 的位置,最后利用两点之间的距离公式、三角形的周长公式即可得.【详解】如图,过点D 作DE x ⊥轴于点E ,作点C 关于y 轴的对称点C ',交y 轴于点F ,连接C D ',交y 轴于点M ',连接C M ',则CF y ⊥轴 对于112y x =+ 当0y =时,1102x +=,解得2x =-,则点A 的坐标为(2,0)A - 当0x =时,1y =,则点B 的坐标为(0,1)B2,1,OA OB AB ∴====四边形ABCD 是正方形90BAD ∴∠=︒,CD DA AB ===90DAE OAB ABO OAB ∴∠+∠=∠+∠=︒DAE ABO ∴∠=∠在ADE 和BAO 中,90AED BOA DAE ABO DA AB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()ADE BAO AAS ∴≅1,2AE OB DE OA ∴====213OE OA AE ∴=+=+=则点D 的坐标为(3,2)D -同理可证:CBF BAO ≅1,2CF OB BF OA ∴====123OF OB BF ∴=+=+=则点C 的坐标为(1,3)C -由轴对称的性质得:点C '的坐标为(1,3)C ',且CM C M '=MDC ∴△的周长为5CD DM CM DM C M'++=++由两点之间线段最短得:当点M 与点M '重合时,DM C M '+取得最小值DC ' (3,2),(1,3)D C '-22(31)(23)17DC '∴=--+-=则MDC △的周长的最小值为5517DC '+=+故答案为:(3,2)-,517+.【点睛】本题是一道较难的综合题,考查了正方形的性质、三角形全等的判定定理与性质、轴对称的性质等知识点,正确找出MDC △的周长最小时,点M 的位置是解题关键. 17.65【分析】先由正方形的性质得到∠ABF 的角度,从而得到∠AEB 的大小,再证△AEB ≌△AED ,得到∠AED 的大小【详解】∵四边形ABCD 是正方形∴∠ACB=∠ACD=∠BAC=∠CAD=45°,∠ABC=90°,AB=AD∵∠FBC=20°,∴ABF=70°∴在△ABE 中,∠AEB=65°在△ABE 与△ADE 中45AB AD BAE EAD AE AE =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE≌△ADE∴∠AED=∠AEB=65°故答案为:65°【点睛】本题考查正方形的性质和三角形全等的证明,解题关键是利用正方形的性质,推导出∠AEB的大小.18.①②④.【分析】利用折叠性质得∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,则可得到∠EBG=12∠ABC,于是可对①进行判断;在Rt△ABF中利用勾股定理计算出AF=8,则DF=AD-AF=2,设AG=x,则GH=x,GF=8-x,HF=BF-BH=4,利用勾股定理得到x2+42=(8-x)2,解得x=3,所以AG=3,GF=5,于是可对②④进行判断;接着证明△ABF∽△DFE,利用相似比得到43DE AFDF AB==,而623ABAG==,所以AB DEAG DF≠,所以△DEF与△ABG不相似,于是可对③进行判断.【详解】解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,∴∠EBG=∠EBF+∠FBG=12∠CBF+12∠ABF=12∠ABC=45°,所以①正确;在Rt△ABF中,AF=8,∴DF=AD﹣AF=10﹣8=2,设AG=x,则GH=x,GF=8﹣x,HF=BF﹣BH=10﹣6=4,在Rt△GFH中,∵GH2+HF2=GF2,∴x2+42=(8﹣x)2,解得x=3,∴GF=5,∴AG+DF=FG=5,所以④正确;∵△BCE沿BE折叠,点C恰落在边AD上的点F处,∴∠BFE=∠C=90°,∴∠EFD+∠AFB=90°,而∠AFB+∠ABF=90°,∴∠ABF=∠EFD,∴△ABF∽△DFE,∴ABDF=AFDE,∴DEDF=AFAB=86=43,而AB AG =63=2, ∴AB AG ≠DE DF, ∴△DEF 与△ABG 不相似;所以③错误. ∵S △ABG =12×6×3=9,S △GHF =12×3×4=6, ∴S △ABG =32S △FGH ,所以②正确. 故答案是:①②④.【点睛】本题考查了三角形相似的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用;在利用相似三角形的性质时,主要利用相似比计算线段的长.也考查了折叠和矩形的性质.19.(-2,0)【分析】先计算得到点D 的坐标,根据旋转的性质依次求出点D 旋转后的点坐标,得到变化的规律即可得到答案.【详解】∵菱形OABC 的两个顶点坐标为()0,0O ,()4,4B ,∴对角线的交点D 的坐标是(2,2), ∴22222OD =+=将菱形绕点O 以每秒45︒的速度逆时针旋转,旋转1次后坐标是(0,22),旋转2次后坐标是(-2,2),旋转3次后坐标是(-2,0),旋转4次后坐标是(-2,-2),旋转5次后坐标是(0,-22旋转6次后坐标是(2,-2),旋转7次后坐标是(2,0),旋转8次后坐标是(2,2)旋转9次后坐标是(0,22由此得到点D 旋转后的坐标是8次一个循环,∵201982523÷=,∴第2019秒时,菱形两对角线交点D 的坐标为(-22,0)故答案为:(-22,0).【点睛】此题考查了菱形的性质,旋转的性质,勾股定理,直角坐标系中点坐标的变化规律,根据点D 的坐标依次求出旋转后的坐标得到变化规律是解题的关键.20.4【分析】根据题意,当B 、N 、M 三点在同一条直线时,△DMN 的周长最小为:BM+DM=2+23,由DM=122AD =,则BM=23,利用勾股定理的逆定理,得到∠AMB=90°,则得到△ABD 为等边三角形,即可得到BD 的长度.【详解】解:如图:连接BD ,BM ,则AC 垂直平分BD ,则BN=DN ,当B 、N 、M 三点在同一条直线时,△DMN 的周长最小为:BM+DM=2+3 ∵AD=AB=4,M 是AD 的中点,∴AM=DM=122AD =, ∴BM=3∵2222223)16AM BM AB +=+==,∴△ABM 是直角三角形,即∠AMB=90°;∵BM 是△ABD 的中线,∴△ABD 是等边三角形,∴BD=AB=AD=4.故答案为:4.【点睛】本题考查了菱形的性质,等边三角形的判定和性质,勾股定理的逆定理,以及三线合一定理.解题的关键是熟练掌握所学的知识,正确得到△ABD 是等边三角形.三、解答题21.(1)见解析;(2)24;(3)5AI =.【分析】(1)证∠BDA =∠CEA =90°,∠CAE =∠ABD ,由AAS 证明△ABD ≌△CAE 即可; (2)连接CE ,交AF 于O ,由菱形的性质得∠COA =∠ADB =90°,同(1)得△ABD ≌△CAO (AAS ),得OC =AD =3,OA =BD =4,由三角形面积公式求出S △AOC =6,即可得出答案;(3)过E 作EM ⊥HI 的延长线于M ,过点G 作GN ⊥HI 于N ,同(1)得△ACH ≌△EAM (AAS ),△ABH ≌△GAN (AAS ),得EM =AH =GN ,证△EMI ≌△GNI (AAS ),得EI =GI ,证∠EAG =90°,由勾股定理求出EG =10,再由直角三角形的性质即可得出答案.【详解】(1)证明:∵BD ⊥直线l ,CE ⊥直线l ,∴∠BDA =∠CEA =90°,∵∠BAC =90°,∴∠BAD +∠CAE =90°∵∠BAD +∠ABD =90°,∴∠CAE =∠ABD在△ABD 和△CAE 中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△CAE (AAS );(2)解:连接CE ,交AF 于O ,如图②所示:∵四边形AEFC 是菱形,∴CE ⊥AF ,∴∠COA =∠ADB =90°,同(1)得:△ABD ≌△CAO (AAS ),∴OC =AD =3,OA =BD =4,∴S △AOC =12OA •OC =12×4×3=6, ∴S 菱形AEFC =4S △AOC =4×6=24,故答案为:24;(3)解:过E 作EM ⊥HI 的延长线于M ,过点G 作GN ⊥HI 于N ,如图③所示: ∴∠EMI =∠GNI =90°,∵四边形ACDE 和四边形ABFG 都是正方形,∴∠CAE =∠BAG =90°,AC =AE =8,AB =AG =6,同(1)得:△ACH ≌△EAM (AAS ),△ABH ≌△GAN (AAS ),∴EM =AH =GN ,在△EMI 和△GNI 中,EIM GIH EMI GNI EM GN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EMI ≌△GNI (AAS ),∴EI =GI ,∴I 是EG 的中点,∵∠CAE =∠BAG =∠BAC =90°,∴∠EAG =90°,在Rt △EAG 中, EG =22AEAG+=2286+=10,∵I 是EG 的中点,∴AI =12EG =12×10=5.【点睛】本题是四边形综合题目,考查了正方形的性质、菱形的性质、等腰直角三角形的性质、全等三角形的判定与性质、直角三角形斜边上的中线性质、勾股定理、三角形面积等知识;本题综合性强,熟练掌握正方形的性质和菱形的性质,证明三角形全等是解题的关键.22.(1)证明见解析;(2)能,10;(3)152,理由见解析; 【分析】(1)利用题中所给的关系式,列出CD ,DF ,AE 的式子,即可证明.(2)由题意知,四边形AEFD 是平行四边形,令AD=DF ,求解即可得出t 值.(3)由题意可知,当DE ∥BC 时,△DEF 为直角三角形,利用AD+CD=AC 的等量关系,代入式子求值即可.【详解】(1)由题意知:三角形CFD是直角三角形∵∠B=90°,∠A=60°∴∠C=30°,CD=2DF,又∵由题意知CD=4t,AE=2t,∴CD=2AE∴AE=DF.(2)能,理由如下;由(1)知AE=DF又∵DF⊥BC,∠B=90°∴AE∥DF∴四边形AEFD是平行四边形.当AD=DF时,平行四边形AEFD是菱形∵AC=60cm,DF=12CD,CD=4t,∴AD=60-4t,DF=2t,∴60-4t=2t∴t=10.(3)当t为152时,△DEF为直角三角形,理由如下;由题意知:四边形AEFD是平行四边形,DF⊥BC,AE∥DF,∴当DE∥BC时,DF⊥DE∴∠FDE=∠DEA=90°在△AED中,∵∠DEA=90°,∠A=60°,AE=2t∴AD=4t,又∵AC=60cm,CD=4t,∴AD+CD=AC,8t=60,∴t=152.即t=152时,∠FDE=∠DEA=90°,△DEF为直角三角形.【点睛】本题主要考查了三角形、平行四边形及菱形的性质,正确掌握三角形、平行四边形及菱形的性质是解题的关键.23.(1)50°;(2)见解析;(3)见解析【分析】(1)由平行四边形的性质和平行线的判定和性质得出答案即可;(2)由平行四边形的性质得出AD=BC,AD∥BC;证明BC是△EFG的中位线,得出BC∥FG,BC=12FG,证出AD∥FH,AD∥FH,由平行四边形的判定方法即可得出结论;。
人教版2022-2021年八年级下第二次月考数学试卷含解析

八年级(下)第二次月考数学试卷一、选择题(本大题共6个小题,每小题3分,共18分,每小题只有一个正确选项)1.(3分)下列说法中,正确的是()A.相等的角一定是对顶角B.四个角都相等的四边形一定是正方形C.平行四边形的对角线互相平分D.矩形的对角线一定垂直2.(3分)将一包卷筒卫生纸按如图所示的方式摆放在水平桌面上,则它的俯视图是()A.B.C.D.3.(3分)在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为()A.B.C.D.4.(3分)若x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,则a的值为()A.1或﹣4 B.﹣1或﹣4 C.﹣1或4 D.1或45.(3分)在反比例函数y=的图象中,阴影部分的面积不等于4的是()A.B.C.D.6.(3分)关于x的一元二次方程kx2+2x+1=0有两个实根,则实数k的取值范围是()A.k≤1 B.k<1 C.k≤1且k≠0 D.k<1且k≠0二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)若==(y≠n),则=.8.(3分)某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率相同,则这个百分率为.9.(3分)如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,添加一个条件,使四边形ABCD为矩形.10.(3分)如图是两个形状相同的红绿灯图案,则根据图中给出的部分数值,得到x的值是.11.(3分)如图,直线x=2与反比例函数和的图象分别交于A、B两点,若点P是y轴上任意一点,则△PAB的面积是.12.(3分)如图,平面直角坐标系xOy中,已知A(4,0)和B点(0,3),点C是AB的中点,点P在x轴上,若以P、A、C为顶点的三角形与△AOB相似,那么点P的坐标是.三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)解方程:x2+16x=0(2)已知反比例函数y=的图象上有一点(3,6),试确定反比例函数的解析式.14.(6分)小亮在某一时刻测得小树高为1.5m,其影长为1.2m,当他测量教学楼旁的一棵大树影长时,因大树靠近教学楼,它的一部分影子便落在了教学楼的墙上,经测量,地面部分影长为6.4m,墙上影长为2m,那么这棵大树高为多少米?15.(6分)在函数的图象上有点P1,P2,P3,P4,它的横坐标依次为1,2,3,4,分别过这些点作x轴与y轴的垂线,图中构成的阴影部分面积从左到右依次为S1,S2,S3,求S1+S2+S3的值.16.(6分)如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.(1)证明:四边形AECF是矩形;(2)若AB=8,求菱形的面积.17.(6分)如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.(1)在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;(2)在图2中画出线段AB的垂直平分线.四、(本大题共3小题,每小题8分,共24分)18.(8分)如图,已知A、B、C是数轴上异于原点O的三个点,且O为AB的中点,B为AC的中点.若点B对应的数是x,点C对应的数是x2﹣3x,求x的值.19.(8分)在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小完全相同,小明从布袋里随机取出一个小球,记下数字为x,小红在剩下的3个小球中随机取出一个小球,记下数字为y.(1)计算由x、y确定的点(x,y)在函数y=﹣x+5的图象上的概率.(2)小明和小红约定做一个游戏,其规则为:若x、y满足xy>6则小明胜,若x、y满足xy<6则小红胜,这个游戏公平吗?说明理由.若不公平,请写出公平的游戏规则.20.(8分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6,AF=4,求AE的长.五、(本大题共2小题,每小题9分,共18分)21.(9分)如图,点B(3,3)在双曲线y=(x>0)上,点D在双曲线y=﹣(x<0)上,点A和点C分别在x轴,y轴的正半轴上,且点A,B,C,D构成的四边形为正方形.(1)求k的值;(2)求点A的坐标.22.(9分)将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF 中,∠EDF=90°,∠E=45°)如图①摆放,点D为AB的中点,DE交AC于点P,DF经过点C.(1)求∠ADE的度数;(2)如图②,将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,试判断的值是否随着α的变化而变化?如果不变,请求出的值;反之,请说明理由.六、(本大题共共12分)23.(12分)在直角梯形OABC中,CB∥OA,∠COA=90°,CB=3,OA=6,BA=.分别以OA、OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.(1)求点B的坐标;(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F,求直线DE的解析式;(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一个点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.2021-2021学年江西省抚州市南城二中自强班八年级(下)第二次月考数学试卷参考答案与试题解析一、选择题(本大题共6个小题,每小题3分,共18分,每小题只有一个正确选项)1.(3分)下列说法中,正确的是()A.相等的角一定是对顶角B.四个角都相等的四边形一定是正方形C.平行四边形的对角线互相平分D.矩形的对角线一定垂直【解答】解:A、相等的角一定是对顶角错误,例如,角平分线分成的两个角相等,但不是对顶角,故本选项错误;B、四个角都相等的四边形一定是矩形,不一定是正方形,故本选项错误;C、平行四边形的对角线互相平分正确,故本选项正确;D、矩形的对角线一定相等,但不一定垂直,故本选项错误.故选:C.2.(3分)将一包卷筒卫生纸按如图所示的方式摆放在水平桌面上,则它的俯视图是()A.B.C.D.【解答】解:从几何体的上面看可得两个同心圆,故选:D.3.(3分)在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为()A.B.C.D.【解答】解:根据题意可得:大于2的有3,4,5三个球,共5个球,任意摸出1个,摸到大于2的概率是.故选:C.4.(3分)若x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,则a的值为()A.1或﹣4 B.﹣1或﹣4 C.﹣1或4 D.1或4【解答】解:∵x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,∴(﹣2)2+a×(﹣2)﹣a2=0,即a2+3a﹣4=0,整理,得(a+4)(a﹣1)=0,解得a1=﹣4,a2=1.即a的值是1或﹣4.故选:A.5.(3分)在反比例函数y=的图象中,阴影部分的面积不等于4的是()A.B.C.D.【解答】解:A、图形面积为|k|=4;B、阴影是梯形,面积为6;C、D面积均为两个三角形面积之和,为2×(|k|)=4.故选:B.6.(3分)关于x的一元二次方程kx2+2x+1=0有两个实根,则实数k的取值范围是()A.k≤1 B.k<1 C.k≤1且k≠0 D.k<1且k≠0【解答】解:∵关于x的一元二次方程kx2+2x+1=0有两个实根,∴,解得:k≤1且k≠0.故选:C.二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)若==(y≠n),则=.【解答】解:∵若==(y≠n),∴==∴=.故答案为.8.(3分)某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率相同,则这个百分率为10%.【解答】解:降价的百分率为x,根据题意列方程得100×(1﹣x)2=81解得x1=0.1,x2=1.9(不符合题意,舍去).所以降价的百分率为0.1,即10%.故答案为:10%.9.(3分)如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,添加一个条件∠B=90°,使四边形ABCD为矩形.【解答】解:∵△ABC绕AC的中点O顺时针旋转180°得到△CDA,∴AB=CD,∠BAC=∠DCA,∴AB∥CD,∴四边形ABCD为平行四边形,当∠B=90°时,平行四边形ABCD为矩形,∴添加的条件为∠B=90°.故答案为∠B=90°.10.(3分)如图是两个形状相同的红绿灯图案,则根据图中给出的部分数值,得到x的值是16.【解答】解:∵两个红绿灯的形状相同,∴=,∴x=16.故答案为:16.11.(3分)如图,直线x=2与反比例函数和的图象分别交于A、B两点,若点P是y轴上任意一点,则△PAB的面积是.【解答】解:∵把x=2分别代入、,得y=1、y=﹣.∴A(2,1),B(2,﹣),∴AB=1﹣(﹣)=.∵P为y轴上的任意一点,∴点P到直线x=2的距离为2,∴△PAB的面积=AB×2=AB=.故答案是:.12.(3分)如图,平面直角坐标系xOy中,已知A(4,0)和B点(0,3),点C是AB的中点,点P在x轴上,若以P、A、C为顶点的三角形与△AOB相似,那么点P的坐标是(2,0)或(,0).【解答】解:∵A(4,0)和B点(0,3),∴OA=4,OB=3,∴AB=5,∵C是AB的中点,∴AC=2.5,设P(x,0),由题意可知点P在点A的左侧,∴AP=4﹣x,∵以P、A、C为顶点的三角形与△AOB相似,∴有△APC∽△AOB和△ACP∽△AOB两种情况,当△APC∽△AOB时,则=,即=,解得x=2,∴P(2,0);当△ACP∽△AOB时,则=,即=,解得x=,∴P(,0);综上可知P点坐标为(2,0)或(,0).故答案为:(2,0)或(,0).三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)解方程:x2+16x=0(2)已知反比例函数y=的图象上有一点(3,6),试确定反比例函数的解析式.【解答】解:(1)x2+16x=0x(x+16)=0,解得x1=0,x2=﹣16;(2)把(3,6)代入y=,得k=xy=3×6=18,所以反比例函数的解析式为:y=.14.(6分)小亮在某一时刻测得小树高为1.5m,其影长为1.2m,当他测量教学楼旁的一棵大树影长时,因大树靠近教学楼,它的一部分影子便落在了教学楼的墙上,经测量,地面部分影长为6.4m,墙上影长为2m,那么这棵大树高为多少米?【解答】解:设被挡部分的影长为xm,则=,解得:x=1.6,设树高为ym,则=,解得:y=10,答:树高为10m.15.(6分)在函数的图象上有点P1,P2,P3,P4,它的横坐标依次为1,2,3,4,分别过这些点作x轴与y轴的垂线,图中构成的阴影部分面积从左到右依次为S1,S2,S3,求S1+S2+S3的值.【解答】解:由题意可知点P1、P2、P3、P4坐标分别为:(1,2),(2,1),(3,),(4,).∴由反比例函数的几何意义可知:S1+S2+S3=2﹣1×==1.5.16.(6分)如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.(1)证明:四边形AECF是矩形;(2)若AB=8,求菱形的面积.【解答】(1)证明:∵四边形ABCD是菱形,∴AB=BC,又∵AB=AC,∴△ABC是等边三角形,∵E是BC的中点,∴AE⊥BC(等腰三角形三线合一),∴∠1=90°,∵E、F分别是BC、AD的中点,∴AF=AD,EC=BC,∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∴AF∥EC且AF=EC,∴四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形),又∵∠1=90°,∴四边形AECF是矩形(有一个角是直角的平行四边形是矩形);(2)解:在Rt△ABE中,AE==4,=8×4=32.所以,S菱形ABCD17.(6分)如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.(1)在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;(2)在图2中画出线段AB的垂直平分线.【解答】解:(1)如图所示,∠ABC=45°.(AB、AC是小长方形的对角线).(2)线段AB的垂直平分线如图所示,点M是长方形AFBE是对角线交点,点N是正方形ABCD的对角线的交点,直线MN就是所求的线段AB的垂直平分线.四、(本大题共3小题,每小题8分,共24分)18.(8分)如图,已知A、B、C是数轴上异于原点O的三个点,且O为AB的中点,B为AC的中点.若点B对应的数是x,点C对应的数是x2﹣3x,求x的值.【解答】解:∵O是原点,且是AB的中点,∴OA=OB,∵B点表示的数是x,∴A点表示的数是﹣x.∵B是AC的中点,∴AB=BC,∴(x2﹣3x)﹣x=x﹣(﹣x),解得:x1=0,x2=6.∵B异于原点,∴x≠0,∴x=6.答:x的值为6.19.(8分)在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小完全相同,小明从布袋里随机取出一个小球,记下数字为x,小红在剩下的3个小球中随机取出一个小球,记下数字为y.(1)计算由x、y确定的点(x,y)在函数y=﹣x+5的图象上的概率.(2)小明和小红约定做一个游戏,其规则为:若x、y满足xy>6则小明胜,若x、y满足xy<6则小红胜,这个游戏公平吗?说明理由.若不公平,请写出公平的游戏规则.【解答】解:(1)画树状图得:∵共有12种等可能的结果,在函数y=﹣x+5的图象上的有:(1,4),(2,3),(3,2),(4,1),∴点(x,y)在函数y=﹣x+5的图象上的概率为:=;(2)∵x、y满足xy>6有:(2,4),(3,4),(4,2),(4,3)共4种情况,x、y满足xy<6有(1,2),(1,3),(1,4),(2,1),(3,1),(4,1)共6种情况,∴P(小明胜)==,P(小红胜)==,∴P(小明胜)≠P(小红胜),∴不公平;公平的游戏规则为:若x、y满足xy≥6则小明胜,若x、y满足xy<6则小红胜.20.(8分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6,AF=4,求AE的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠C+∠B=180°,∠ADF=∠DEC.∵∠AFD+∠AFE=180°,∠AFE=∠B,∴∠AFD=∠C.在△ADF与△DEC中,∴△ADF∽△DEC.(2)解:∵四边形ABCD是平行四边形,∴CD=AB=8.由(1)知△ADF∽△DEC,∴,∴DE===12.在Rt△ADE中,由勾股定理得:AE===6.五、(本大题共2小题,每小题9分,共18分)21.(9分)如图,点B(3,3)在双曲线y=(x>0)上,点D在双曲线y=﹣(x<0)上,点A和点C分别在x轴,y轴的正半轴上,且点A,B,C,D构成的四边形为正方形.(1)求k的值;(2)求点A的坐标.【解答】解:(1)∵点B(3,3)在双曲线y=上,∴k=3×3=9;(2)∵B(3,3),∴BN=ON=3,设MD=a,OM=b,∵D在双曲线y=﹣(x<0)上,∴ab=4,过D作DM⊥x轴于M,过B作BN⊥x轴于N,则∠DMA=∠ANB=90°,∵四边形ABCD是正方形,∴∠DAB=90°,AD=AB,∴∠MDA+∠DAM=90°,∠DAM+∠BAN=90°,∴∠ADM=∠BAN,在△ADM和△BAN中,,∴△ADM≌△BAN(AAS),∴BN=AM=3,DM=AN=a,∴0A=3﹣a,即AM=b+3﹣a=3,a=b,∵ab=4,∴a=b=2,∴OA=3﹣2=1,即点A的坐标是(1,0).22.(9分)将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF 中,∠EDF=90°,∠E=45°)如图①摆放,点D为AB的中点,DE交AC于点P,DF经过点C.(1)求∠ADE的度数;(2)如图②,将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,试判断的值是否随着α的变化而变化?如果不变,请求出的值;反之,请说明理由.【解答】解:(1)∵∠ACB=90°,点D为AB的中点,∴CD=AD=BD=AB,∴∠ACD=∠A=30°,∴∠ADC=180°﹣30°×2=120°,∴∠ADE=∠ADC﹣∠EDF=120°﹣90°=30°;(2)∵∠EDF=90°,∴∠PDM+∠E′DF=∠CDN+∠E′DF=90°,∴∠PDM=∠CDN,∵∠B=60°,BD=CD,∴△BCD是等边三角形,∴∠BCD=60°,∵∠CPD=∠A+∠ADE=30°+30°=60°,∴∠CPD=∠BCD,在△DPM和△DCN中,,∴△DPM∽△DCN,∴=,∵=tan∠ACD=tan30°=,∴的值不随着α的变化而变化,是定值.六、(本大题共共12分)23.(12分)在直角梯形OABC中,CB∥OA,∠COA=90°,CB=3,OA=6,BA=.分别以OA、OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.(1)求点B的坐标;(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F,求直线DE的解析式;(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一个点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.【解答】解:(1)作BH⊥x轴于点H,则四边形OHBC为矩形,∴OH=CB=3,∴AH=OA﹣OH=6﹣3=3,在Rt△ABH中,BH===6,∴点B的坐标为(3,6);(2)作EG⊥x轴于点G,则EG∥BH,∴△OEG∽△OBH,∴,又∵OE=2EB,∴,∴=,∴OG=2,EG=4,∴点E的坐标为(2,4),又∵点D的坐标为(0,5),设直线DE的解析式为y=kx+b,则,解得k=﹣,b=5,∴直线DE的解析式为:y=﹣x+5;(3)答:存在;①如图1,当OD=DM=MN=NO=5时,四边形ODMN为菱形.作MP⊥y轴于点P,则MP∥x轴,∴△MPD∽△FOD∴,又∵当y=0时,﹣x+5=0,解得x=10,∴F点的坐标为(10,0),∴OF=10,在Rt△ODF中,FD===5,∴,∴MP=2,PD=,∴点M的坐标为(﹣2,5+),∴点N的坐标为(﹣2,);②如图2,当OD=DN=NM=MO=5时,四边形ODNM为菱形.延长NM交x轴于点P,则MP⊥x轴.∵点M在直线y=﹣x+5上,∴设M点坐标为(a,﹣a+5),在Rt△OPM中,OP2+PM2=OM2,∴a2+(﹣a+5)2=52,解得:a1=4,a2=0(舍去),∴点M的坐标为(4,3),∴点N的坐标为(4,8);③如图3,当OM=MD=DN=NO时,四边形OMDN为菱形,连接NM,交OD于点P,则NM与OD互相垂直平分,∴y M=y N=OP=,∴﹣x M+5=,∴x M=5,∴x N=﹣x M=﹣5,∴点N的坐标为(﹣5,),综上所述,x轴上方的点N有三个,分别为N1(﹣2,),N2(4,8),N3(﹣5,).(其它解法可参照给分)。
新人教版八年级下第二次月考数学试卷含答案解析

八年级(下)第二次月考数学试卷一、选择题:(共8个小题,每小题3分,共24分)1.下列各点中,位于第二象限的是()A.(8,﹣1)B.(8,0)C.(﹣,3)D.(0,﹣4)2.若分式的值为0,则x的值是()A.0B.﹣l C.5D.13.已知点(,6)在函数y=的图象上,则m的值是()A.﹣3B.﹣12C.1D.﹣14.下列计算中,正确的是()A.3﹣2=﹣6B.=C.a﹣1•a﹣2=a2D.=5.下列说法正确的是()A.平行四边形对角线相等B.矩形的对角线互相垂直C.菱形的四个角都相等D.菱形的对角线互相垂直平分且平分一组对角6.菱形ABCD的面积为120,对角线BD=24,则这个菱形的周长是()A.64B.60C.52D.507.如图,已知矩形ABCD,将△BCD沿对角线BD折叠,记点C的对应点为C′,若∠ADC′=20°,则∠BDC的度数为()A.55°B.45°C.60°D.65°8.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12B.﹣27C.﹣32D.﹣36二、填空题:(本大题共8个小题,每小题3分,共24分).9.在函数y=中,自变量x的取值范围是.10.点P关于y轴的对称点P′的坐标是(﹣5,2),则点P的坐标是.11.分式方程的解是.12.造成宜宾雾霾天气的“元凶”是PM2.5,PM2.5是指大气中直径小于或等于0.00000025米的颗粒物,也称为可入肺颗粒物,它对空气质量和能见度等有重要的影响,会给人的健康带来严重危害.将0.00000025用科学记数法表示为.13.将直线y=7x﹣1向上平移8单位长度,得到的直线解析式为.14.如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=125°,则∠BCE=度.15.如图,在菱形ABCD中,点P是对角线AC上的一动点,PE⊥AB于点E.当P运动到一定位置时PE=4,则此时点P到AD的距离为.三、解答题:(本大题8个小题,共72分)解答应写出文字说明,证明过程或演算步骤. 16.(12分)(1)计算:(﹣2018)0﹣+||﹣3﹣1;(2)解分式方程:=﹣2;17.(6分)先化简再求值:(+)÷,其中a=2.18.(8分)已知:如图,E、F是平行四边形ABCD的对角线BD上的两点,BE=DF.求证:(1)△ADF≌△CBE;(2)CE∥AF.19.(8分)如图,直线y=kx+b与双曲线y=交于A(2,n)、B(﹣3,﹣2)两点,与x轴,y 轴分别交于C、D两点.(1)试求双曲线y=的解析式;(2)试求直线y=kx+b的解析式;(3)试求△AOB的面积.20.(8分)宜宾军分区帮助群众修建水渠抗旱减灾,原计划在规定时间内修建500m,由于加大了机械化作业程度,实际每天的进度是原来的1.5倍,结果不仅超额完成计划修建米数的20%,而且还比规定时间提前了5天.(1)设原计划的每天修建xm,利用工效、工作总量、时间之间的关系填写下表.(要求:填上适当的代数式,完成表格)速度(m/天)工作总量(m)所用时间(天)原计划x500实际(2)列出方程,并求原计划每天修建水渠的长度.21.(8分)宜宾绿源超市购进A、B两种白醋,已知每瓶B型白醋进价比A型贵0.50元,6瓶A 型白醋与3瓶B型白醋进价共42元.两种白醋的销售价格如下表:品名A B售价(元) 6.58.0(1)求这两种型号的白醋每瓶的进价;(2)宜宾绿源超市打算购进这两种白醋共100瓶,进货总价不超过480元,全部售出后总利润不低于250元.设应购进A型白醋m瓶,总利润为w元.①求w与m之间的函数关系式;②求m的取值范围,并求出全部售出这批白醋后的最大利润.22.(10分)如图,过矩形ABCD的四个顶点作对角线AC,BD的平行线,分别相交于E,F,G,H四点,若AB=6,BC=8.(1)求证:四边形EFGH是菱形;(2)求图中阴影部分的面积.23.(12分)已知直线与x轴交于点A(﹣4,0),与y轴交于点B.(1)求b的值;(2)把△AOB绕原点O顺时针旋转90°后,点A落在y轴的A′处,点B若在x轴的B′处.①求直线A′B′的函数关系式;②设直线AB与直线A′B′交于点C,矩形PQMN是△AB′C的内接矩形,其中点P,Q在线段AB′上,点M在线段B′C上,点N在线段AC上.若矩形PQMN的两条邻边的比为1:2,试求矩形PQMN的周长.参考答案与试题解析一、选择题:(共8个小题,每小题3分,共24分)1.下列各点中,位于第二象限的是()A.(8,﹣1)B.(8,0)C.(﹣,3)D.(0,﹣4)【分析】依据位于第二象限的点的横坐标为负,纵坐标为正,即可得到结论.【解答】解:∵位于第二象限的点的横坐标为负,纵坐标为正,∴位于第二象限的是(﹣,3)故选:C.【点评】本题主要考查了点的坐标,解题时注意:位于第二象限的点的横坐标为负,纵坐标为正.2.若分式的值为0,则x的值是()A.0B.﹣l C.5D.1【分析】直接利用分式的值为零则分子为零进而得出答案.【解答】解:∵分式的值为0,∴x=1=0,解得:x=﹣1,故选:B.【点评】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.3.已知点(,6)在函数y=的图象上,则m的值是()A.﹣3B.﹣12C.1D.﹣1【分析】根据点(,6)在函数y=的图象上,可以求得m的值,从而可以解答本题.【解答】解:∵点(,6)在函数y=的图象上,∴,解得,m=﹣3,故选:A.【点评】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.4.下列计算中,正确的是()A.3﹣2=﹣6B.=C.a﹣1•a﹣2=a2D.=【分析】利用负整数指数幂的意义对A、C进行判断;根据最简分式的定义对B进行判断;利用约分对D进行判断.【解答】解:A、原式==,所以A选项错误;B、为最简分式,所以B选项错误;C、原式=•=,所以C选项错误;D、原式==,所以D选项正确.故选:D.【点评】本题考查了约分:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.5.下列说法正确的是()A.平行四边形对角线相等B.矩形的对角线互相垂直C.菱形的四个角都相等D.菱形的对角线互相垂直平分且平分一组对角【分析】根据菱形的性质、矩形的性质、平行四边形的性质对各个命题分别判断,即可得出答案.【解答】解:A、平行四边形对角线互相平分,错误;B、矩形的对角线相等,错误;C、菱形的四条边都相等,错误;D、菱形的对角线互相垂直平分且平分一组对角,正确;故选:D.【点评】此题考查了命题与定理,解题的关键是掌握真命题与假命题的定义,能根据有关性质与判定对命题的真假进行判断是关键.6.菱形ABCD的面积为120,对角线BD=24,则这个菱形的周长是()A.64B.60C.52D.50【分析】菱形的面积可以根据对角线的长计算,已知菱形的面积,对角线BD的长即可计算AC的长,进而利用勾股定理解答即可.【解答】解:菱形ABCD的面积S=AC•BD=120,∵BD=24,∴AC==10,∴AB=,∴这个菱形的周长=13×4=52,故选:C.【点评】本题考查了根据对角线长计算菱形的面积的方法,本题中正确计算是解题的关键.7.如图,已知矩形ABCD,将△BCD沿对角线BD折叠,记点C的对应点为C′,若∠ADC′=20°,则∠BDC的度数为()A.55°B.45°C.60°D.65°【分析】由折叠的性质可知∠BDC=∠BDC′,故∠ADB=∠BDC′﹣∠ADC′=∠BDC﹣20°,根据∠ADB+∠BDC=90°,列方程求∠BDC.【解答】解:由折叠的性质,得∠BDC=∠BDC′,则∠ADB=∠BDC′﹣∠ADC′=∠BDC﹣20°,∵∠ADB+∠BDC=90°,∴∠BDC﹣20°+∠BDC=90°,解得∠BDC=55°.故选:A.【点评】本题考查了折叠的性质.关键是根据∠ADB+∠BDC=90°列方程求解.8.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12B.﹣27C.﹣32D.﹣36【分析】根据点C的坐标以及菱形的性质求出点B的坐标,然后利用待定系数法求出k的值即可.【解答】解:∵A(﹣3,4),∴OA==5,∵四边形OABC是菱形,∴AO=CB=OC=AB=5,则点B的横坐标为﹣3﹣5=﹣8,故B的坐标为:(﹣8,4),将点B的坐标代入y=得,4=,解得:k=﹣32.故选:C.【点评】本题考查了菱形的性质以及利用待定系数法求反比例函数解析式,解答本题的关键是根据菱形的性质求出点B的坐标.二、填空题:(本大题共8个小题,每小题3分,共24分).9.在函数y=中,自变量x的取值范围是x≥.【分析】根据二次根式的性质,被开方数大于等于0可知:2x﹣1≥0,解得x的范围.【解答】解:根据题意得:2x﹣1≥0,解得,x≥.【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.10.点P关于y轴的对称点P′的坐标是(﹣5,2),则点P的坐标是(5,2).【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【解答】解:点P关于y轴的对称点P′的坐标是(﹣5,2),则点P的坐标是(5,2),故答案为:(5,2).【点评】本题主要考查关于x轴、y轴对称点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.11.分式方程的解是x=13.【分析】解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.【解答】解:去分母,可得x﹣5=8,解得x=13,经检验:x=13是原方程的解.【点评】本题主要考查了解分式方程,解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应检验.12.造成宜宾雾霾天气的“元凶”是PM2.5,PM2.5是指大气中直径小于或等于0.00000025米的颗粒物,也称为可入肺颗粒物,它对空气质量和能见度等有重要的影响,会给人的健康带来严重危害.将0.00000025用科学记数法表示为 2.5×10﹣7.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000025=2.5×10﹣7.故答案为:2.5×10﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.将直线y=7x﹣1向上平移8单位长度,得到的直线解析式为y=7x+7.【分析】直接根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,把直线y=7x﹣1向上平移8个单位长度后所得直线的解析式为:y=7x﹣1+8,即y=7x+7.故答案为:y=7x+7.【点评】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.14.如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=125°,则∠BCE=35度.【分析】根据平行四边形的性质和已知,可求出∠B,再进一步利用直角三角形的性质求解即可.【解答】解:∵AD∥BC,∴∠A+∠B=180°,∴∠B=180°﹣125°=55°,∵CE⊥AB,∴在Rt△BCE中,∠BCE=90°﹣∠B=90°﹣55°=35°.故答案为:35.【点评】本题主要考查了平行四边形的性质,运用平行四边形对边平行的性质,得到邻角互补的结论,这是运用定义求四边形内角度数的常用方法.15.如图,在菱形ABCD中,点P是对角线AC上的一动点,PE⊥AB于点E.当P运动到一定位置时PE=4,则此时点P到AD的距离为4.【分析】作PF⊥AD于D,如图,根据菱形的性质得AC平分∠BAD,然后根据角平分线的性质得PF=PE=4.【解答】解:作PF⊥AD于D,如图,∵四边形ABCD为菱形,∴AC平分∠BAD,∵PE⊥AB,PF⊥AD,∴PF=PE=4,即点P到AD的距离为4.故答案为:4.【点评】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了菱形的性质.三、解答题:(本大题8个小题,共72分)解答应写出文字说明,证明过程或演算步骤. 16.(12分)(1)计算:(﹣2018)0﹣+||﹣3﹣1;(2)解分式方程:=﹣2;【分析】(1)原式利用零指数幂、负整数指数幂法则,以及算术平方根定义计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=1﹣6+﹣=﹣5;(2)去分母得:2x=3﹣4x+4,移项合并得:6x=7,解得:x=,经检验x=是分式方程的解.【点评】此题考查了解分式方程,以及实数的运算,熟练掌握运算法则是解本题的关键.17.(6分)先化简再求值:(+)÷,其中a=2.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=•=•=,当a=2时,原式=2.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.(8分)已知:如图,E、F是平行四边形ABCD的对角线BD上的两点,BE=DF.求证:(1)△ADF≌△CBE;(2)CE∥AF.【分析】(1)根据平行四边形的性质得到AD=BC,∠DAF=∠BCE,利用SAS地理证明;(2)根据全等三角形的性质得到∠AFD=∠CEB,根据邻补角的定义得到∠AFB=∠CED,根据平行线的判定定理证明CE∥AF.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,∠DAF=∠BCE,在△ADF和△CBE中,,∴△ADF≌△CBE;(2)∵△ADF≌△CBE∴∠AFD=∠CEB,∴∠AFB=∠CED,∴CE∥AF.【点评】本题考查的是平行四边形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.19.(8分)如图,直线y=kx+b与双曲线y=交于A(2,n)、B(﹣3,﹣2)两点,与x轴,y 轴分别交于C、D两点.(1)试求双曲线y=的解析式;(2)试求直线y=kx+b的解析式;(3)试求△AOB的面积.【分析】用待定系数法求函数解析式,重点是确定关键点坐标.【解答】解:双曲线y=交于A(2,n)、B(﹣3,﹣2)两点(1)由B(﹣3,﹣2)坐标知:m=6,反比例函数的表达式为:y=,将A(2,n)代入上式,得n=3,答:反比例函数的表达式为:y=;(2)将A、B两点坐标A(2,3)、B(﹣3,﹣2)代入直线y=kx+b方程,易求直线表达式为:y =x+1,C点坐标为(﹣1,0),答:直线表达式为:y=x+1;(3)△AOB可以看成由底均为OC的△OCA、△OCB组成,△AOB的面积=•OC•(y A﹣y B)=×1×(3+2)=2.5.答:△AOB的面积为2.5.【点评】本题考查了反比例函数与一次函数的交点,通过求坐标,确定函数表达式,体现了方程思想.20.(8分)宜宾军分区帮助群众修建水渠抗旱减灾,原计划在规定时间内修建500m,由于加大了机械化作业程度,实际每天的进度是原来的1.5倍,结果不仅超额完成计划修建米数的20%,而且还比规定时间提前了5天.(1)设原计划的每天修建xm,利用工效、工作总量、时间之间的关系填写下表.(要求:填上适当的代数式,完成表格)速度(m/天)工作总量(m)所用时间(天)原计划x500。
人教版八年级(下)学期 第二次月考数学试卷含答案

一、选择题1.如图所示,等边三角形ABC 沿射线BC 向右平移到DCE ∆的位置,连接AD 、BD ,则下列结论:(1)AD BC =(2)BD 与AC 互相平分(3)四边形ACED 是菱形(4)BD DE ⊥,其中正确的个数是( )A .1B .2C .3D .42.在数学拓展课上,小明发现:若一条直线经过平行四边形对角线的交点,则这条直线平分该平行四边形的面积. 如图是由5个边长为1的小正方形拼成的图形,P 是其中4个小正方形的公共顶点,小强在小明的启发下,将该图形沿着过点P 的某条直线剪一刀,把它剪成了面积相等的两部分,则剪痕的长度是( )A .22B .5C .35D .103.如图,将矩形ABCD 沿EF 折叠后点D 与B 重合.若原矩形的长宽之比为3:1,则AE BF的值为( )A .12B .13C .34D .454.正方形ABCD ,CEFG 按如图放置,点B ,C ,E 在同一条直线上,点P 在BC 边上,PA PF =,且APF 90∠=︒,连接AF 交CD 于点M ,有下列结论:EC BP =①;BAP GFP ∠∠=②;2221AB CE AF 2+=③;APF ABCD CEFG S S 2S +=正方形正方形④.其中正确的是( )A .①②③B .①③④C .①②④D .①②③④5.下列命题中,真命题的个数有( )①对角线相等的四边形是矩形;②三条边相等的四边形是菱形;③一组对边平行且相等的四边形是平行四边形.A .3个B .2个C .1个D .0个6.如图,点,,A B E 在同一条直线上,正方形ABCD 、正方形BEFC 的边长分别为23,、H 为线段DF 的中点,则BH 的长为( )A .212B .26C .33D .29 7.如图,在等腰Rt ABC △中,908C AC ∠==°,,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =.连接DE 、DF 、EF .在此运动变化的过程中,下列结论:①DFE △是等腰直角三角形; ②四边形CDFE 不可能为正方形,③DE 长度的最小值为4; ④四边形CDFE 的面积保持不变;⑤△CDE 面积的最大值为8.其中正确的结论是( )A .①②③B .①④⑤C .①③④D .③④⑤8.如图,△A 1B 1C 1中,A 1B 1=4,A 1C 1=5,B 1C 1=7.点A 2、B 2、C 2分别是边B 1C 1、A 1C 1、A 1B 1的中点;点A 3、B 3、C 3分别是边B 2C 2、A 2C 2、A 2B 2的中点;……;以此类推,则第2019个三角形的周长是( )A .201412B .201512C .201612D .2017129.如图,矩形ABCD 中,,AC BD 相交于点O ,过点B 作BF AC ⊥交CD 于点F ,交AC 于点M ,过点D 作//DE BF 交AB 于点E ,交AC 于点N ,连接,FN EM .则下列结论:①DN BM =;②//EM FN ;③AE FC =;④当AO AD =时,四边形DEBF 是菱形.其中,正确结论的个数是( )A .1个B .2个C .3个D .4个10.如图,△ABC 中,AB =24,BC =26,CA =14.顺次连接△ABC 各边中点,得到△A 1B 1C 1;再顺次连接△A 1B 1C 1各边中点,得到△A 2B 2C 2…如此进行下去,得到n n n A B C ,则△A 8B 8C 8的周长为( )A .1B .12C .14D .18二、填空题11.如图,∠MAN=90°,点C 在边AM 上,AC=4,点B 为边AN 上一动点,连接BC ,△A′BC 与△ABC 关于BC 所在直线对称,点D ,E 分别为AC ,BC 的中点,连接DE 并延长交A′B 所在直线于点F ,连接A′E .当△A′EF 为直角三角形时,AB 的长为_____.12.如图,以Rt ABC 的斜边AB 为一边,在AB 的右侧作正方形ABED ,正方形对角线交于点O ,连接CO ,如果AC=4,CO=62,那么BC=______.13.如图,ABC ∆是边长为1的等边三角形,取BC 边中点E ,作//ED AB ,//EF AC ,得到四边形EDAF ,它的周长记作1C ;取BE 中点1E ,作11//E D FB ,11//E F EF ,得到四边形111E D FF ,它的周长记作2C .照此规律作下去,则2020C =______.14.如图,在正方形ABCD 中,点,E F 将对角线AC 三等分,且6AC =.点P 在正方形的边上,则满足5PE PF +=的点P 的个数是________个.15.如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,AB =OB ,点E ,F 分别是OA ,OD 的中点,连接EF ,EM ⊥BC 于点M ,EM 交BD 于点N ,若∠CEF =45°,FN =5,则线段BC 的长为_____.16.如图,在Rt △ABC 中,∠BAC=90°,AB=5,AC=12,P 为边BC 上一动点(P 不与B 、C 重合),PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的取值范围是__.17.如图,在平行四边形ABCD 中,AB =6,BC =4,∠A =120°,E 是AB 的中点,点F 在平行四边形ABCD 的边上,若△AEF 为等腰三角形,则EF 的长为_____.18.如图正方形 ABCD 中,E 是 BC 边的中点,将△ABE 沿 AE 对折至△AFE ,延长 EF 交 CD 于 G ,接 CF ,AG .下列结论:① AE ∥FC ; ②∠EAG = 45°,且BE + DG = EG ;③ABCD 19CEF S S ∆=正方形;④ AD = 3DG ,正确是_______ (填序号).19.在ABCD 中,5AD =,BAD ∠的平分线交CD 于点E ,∠ABC 的平分线交CD 于点F ,若线段EF=2,则AB 的长为__________.20.李刚和常明两人在数学活动课上进行折纸创编活动.李刚拿起一张准备好的长方形纸片对常明说:“我现在折叠纸片(图①),使点D 落在AB 边的点F 处,得折痕AE ,再折叠,使点C 落在AE 边的点G 处,此时折痕恰好经过点B ,如果AD=a ,那么AB 长是多少?”常明说;“简单,我会. AB 应该是_____”.常明回答完,又对李刚说:“你看我的创编(图②),与你一样折叠,可是第二次折叠时,折痕不经过点B ,而是经过了AB 边上的M 点,如果AD=a ,测得EC=3BM ,那么AB 长是多少?”李刚思考了一会,有点为难,聪明的你,你能帮忙解答吗?AB=_____.三、解答题21.如图,在Rt ABC ∆中,090BAC ∠=,D 是BC 的中点,E 是AD 的中点,过点A 作//BC AF 交BE 的延长线于点F(1)求证:四边形ADCF 是菱形(2)若4,5AC AB ==,求菱形ADCF 的面积22.如图,ABC ∆是等腰直角三角形,AB AC =,D 是斜边BC 的中点,,E F 分别是,AB AC 边上的点,且DE DF ⊥,若12BE =,5CF =,求线段EF 的长.23.正方形ABCD 中,对角线AC 与BD 交于点O ,点P 是正方形ABCD 对角线BD 上的一个动点(点P 不与点B ,O ,D 重合),连接CP 并延长,分别过点D ,B 向射线作垂线,垂足分别为点M ,N .(1)补全图形,并求证:DM =CN ;(2)连接OM ,ON ,判断OMN 的形状并证明.24.已知正方形,ABCD 点F 是射线DC 上一动点(不与,C D 重合).连接AF 并延长交直线BC 于点E ,交BD 于,H 连接CH .在EF 上取一点,G 使ECG DAH ∠=∠. (1)若点F 在边CD 上,如图1,①求证:CH CG ⊥.②求证:GFC 是等腰三角形.(2)取DF 中点,M 连接MG .若3MG =,正方形边长为4,则BE = .25.已知在平行四边形ABCD 中,AB BC ≠,将ABC 沿直线AC 翻折,点B 落在点尽处,AD 与CE 相交于点O ,联结DE .(1)如图1,求证://AC DE ;(2)如图2,如果90B ∠=︒,3AB =,6=BC ,求OAC 的面积;(3)如果30B ∠=︒,23AB =,当AED 是直角三角形时,求BC 的长.26.如图1,在矩形纸片ABCD 中,AB =3cm ,AD =5cm ,折叠纸片使B 点落在边AD 上的E 处,折痕为PQ ,过点E 作EF ∥AB 交PQ 于F ,连接BF .(1)求证:四边形BFEP 为菱形;(2)当E 在AD 边上移动时,折痕的端点P 、Q 也随着移动.①当点Q 与点C 重合时, (如图2),求菱形BFEP 的边长;②如果限定P 、Q 分别在线段BA 、BC 上移动,直接写出菱形BFEP 面积的变化范围.27.如图1,在正方形ABCD (正方形四边相等,四个角均为直角)中,AB =8,P 为线段BC 上一点,连接AP ,过点B 作BQ ⊥AP ,交CD 于点Q ,将△BQC 沿BQ 所在的直线对折得到△BQC ′,延长QC ′交AD 于点N .(1)求证:BP =CQ ;(2)若BP =13PC ,求AN 的长; (3)如图2,延长QN 交BA 的延长线于点M ,若BP =x (0<x <8),△BMC '的面积为S ,求S 与x 之间的函数关系式.28.定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径。
人教版八年级数学下册第二次月考试题

人教版八年级数学第二学期第二次月考试题一、选择题(每小题3分,共30分) 2、若a 为正数,则211+++a a a a 与的大小关系是( )A 、211++〈+a a a a B 、211++≤+a a a a C 、211++〉+a a a a D 、211++≥+a a a a 2、已知0≠-b a ,且032=-b a ,那么ba ba -+2的值是( )A 、12B 、0C 、8D 、8或-123、在反比例函数xmy 21-=的图象上有两点),(),,(2211y x B y x A ,当210x x 〈〈时,有21y y 〈,则m 的取值范围是( ) A 、0〈mB 、0〉mC 、21〈mD 、21〉m 4、如图,在△ABC 中,点E 、D 、F 分别在边AB 、BC 、CA 上,且DE ∥CA ,DF ∥BA ,下列四个判断中,不正确的是( ) A 、四边形AEDF 是平行四边形B 、如果∠BAC=900,那么四边形AEDF 是矩形C 、如果AD 平分∠BAC ,那么四边形AEDF 是矩形D 、如果AD ⊥BC 且AB=AC ,那么四边形AEDF 是菱形5、如图,有两个正方形和一个等边三角形,则图中度数为300的角有( )个。
A 、1个B 、2个C 、3个D 、4个6、如图,在菱形ABCD 中,对角线AC 、BD 的长分别为6、210,则菱形的边长为( )A 、19B 、419C 、109D 、767、如图,将一边长为12的正方形纸ABCD 的顶点A 折叠至CD 边上的点E ,使DE=5,折痕为PQ ,则PQ 长为( )A 、12B 、13C 、14D 、158、已知矩形ABCD ,当点P 在图中的位置时,则有结论( ) A 、S △PBC=S △PAC+S △PCD B 、S △PBC=S △PAC-S △PCDC 、S △PAB+S △PCD >21S 矩形ABCDD 、S △PAB+S △PCD <21S 矩形ABCD9、如图,在菱形ABCD 中,∠BAD=800,AB 的垂直平分线交对角线AC 于点F ,E 为垂足,连接DF ,则∠CDF 等于( )A 、800B 、700C 、650D 、600 10、如图,在矩形ABCD 中,AD=2AB ,AE 平分∠BAD ,DF ⊥AE 于F ,BF 交DE 、CD 于O 、H ,下列结论:①∠DEA=∠DEC ;②BF=FH ;③OE=OD ;④BC-CH=2EF 。
最新人教版八年级数学下册第二次月考试题

人教版八年级数学下册第二次月考试题一、选择题(每小题3分,共30分)1.的平方根是()A.4 B.±4 C.2 D.±22.下列计算正确的是()A .=﹣2B .÷=C. +=D .=×3.以下列各组数为边长,能构成直角三角形的是()A .B.、、C.、、D.、、4.如图,以正方形ABCD的对角线AC为一边作菱形AEFC,则∠FAB=()A.30°B.45°C.22.5°D.135°5.如图,▱ABCD中,DE⊥AB,DF⊥BC,垂足分别为E、F,∠EDF=60°,AE=2cm,则AD=()A.4cm B.5cm C.6cm D.7cm6.如图:长方形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合.折痕为EF,则DE长为()A.4.8 cm B.5 cm C.5.8 cm D.6 cm7.正方形具有的性质中,菱形不一定具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分一组对角8.如图,E是矩形ABCD的边DC上一点,AB=AE=4,BC=2,则∠BEC等于()A.60°B.70°C.75°D.80°9.如图,在四边形ABCD中,已知AB=CD,M、N、P分别是AD、BC、BD的中点∠ABD=20°,∠BDC=70°,则∠NMP的度数为()A.50°B.25°C.15°D.2010.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①BE=DF;②∠AEB =75°;③CE=2;④S正方形ABCD=2+,其中正确答案是()A .①②B .②③C .①②④D .①②③二、填空题(本大题共6小题,每小题3分,满分18分)11若代数式在实数范围内有意义,则x 的取值范围是 .12.在平行四边形ABCD 中,对角线的长分别是AC =8,BD =14,则边AB 的长的取值范围是 .13.如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,连接BE ,若AE =6,DE =5,∠BEC =90°,则△BEC 的周长是 .14.如图,在△ABC 中,∠C =90°,AD 平分∠CAB ,AC =6,AD =7,则点D 到直线AB 的距离是 .15.已知一个直角三角形的斜边与直角边相差8cm ,有一条直角边长为12cm ,斜边上的中线长为 .16.如图,矩形ABCD 面积为40,点P 在边CD 上,PE ⊥AC ,PF ⊥BD ,足分别为E ,F .若AC =10,则PE +PF = .三、解答题(本大是共9小题,满分72分)17.(12分)计算: (1); (2);(3); (4)a.18.(8分)已知x =,求下列各式的值: (1)x 2﹣xy +y 2;(2).19.(8分)如图,AD =8,CD =6,∠ADC =90°,AB =26,BC =24,求该图形的面积.20.(8分)如图,在△ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,已知DE ∥BC ,∠ADE =∠EFC .求证:四边形BDEF 是平行四边形.21.(8分)如图,菱形ABCD 中的对角线AC ,BD 相交于点O ,BE ∥AC ,CE ∥BD . 求证:四边形OBEC 是矩形.22.(8分)如图,在△ABC 中,BD ⊥AC 于D ,CE ⊥AB 于E ,M ,N 分别是BC ,DE 的中点. (1)求证:MN ⊥DE ;(2)若BC =20,DE =12,求△MDE 的面积.23.(10分)如图,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.(1)求证:AM=AD+MC;(2)若AD=4,求AM的长.24.(10分)如图,在平行四边形ABCD中,AB=6cm,AD=10cm,点P在AD边上以每秒1cm 的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB之间往返运动,两个动点同时出发,当点P到达点D时停止(同时点Q也停止运动),设运动时间为t秒.(1)、用含t的式子表示线段的长度(单位:cm):AP=,CQ=,PD=,BQ=(2)当运动多少秒时,以P、D、Q、B为顶点的四边形是平行四边形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年乌市第90中学八年级数学(下) 第二次月考测试题
姓名: 班级: 成绩:
一、选择题(每小题3分,共30分)
1、下列函数中,一次函数的个数是( )
① y=2πx ② y=2(x-1) ③ y=1x ④ y=-3x ⑤ y=12
-x
A 、 4个
B 、 3个
C 、 2个
D 、 1个 2、下面哪个点不在函数32+-=x y 的图像上( )
A 、(-5,13)
B 、(0.5,2)
C 、(3,0)
D 、(1,1) 3、若直线y=kx+b 中,k <0,b >0,则直线不经过( )
A 、 第一象限
B 、第二象限
C 、第三象限
D 、第四象限 4、关于直线y=-2x+1,下列结论正确的是
A 、图象必过点(-2,1)
B 、图象经过第一、二、三象限
C 、当x > 时,y <0
D 、y 随x 的增大而增大 5、如图,直线y=kx+b 与x 轴交于点(-4,0),则当y >0时, x 的取值范围是( )
A 、x >-4
B 、x >0
C 、x <-4
D 、x <0
6、某村办工厂,今年前五个月生产某种产品的总量C (件)与时间t (月)的函数图象如图所示,则该厂对这种产品来说( ) A 、1月至3月每月生产量逐月增加,4、5两月生产量逐月减小 B 、1月至3月每月生产量逐月增加,4、5两月生产量与3月持平C 、1月至3月每月生产量逐月增加,4、5两月均停止生产 D 、1月至3月每月生产量不变,4、5两月均停止生产
7、已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( )
A 、y=x-6
B 、y=-x-6
C 、y=x-10
D 、y=-x+10
8、若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( )
A .k>3
B .0<k ≤3
C .0≤k<3
D .0<k<3
的大小关系是和则上的两点,且)是直线)和(、已知(21212211,3,,9y y x x x y y x y x >-=
21A y y >、 21B y y <、 21C y y =、 、无法确定D
10、一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度n(厘米)与燃烧时间t(时)的函数关系的图象是( )
A B C D 二、填空题(每小题3分,共24分)
11、当m 时,一次函数y=(m+1)x+6的函数值随x 的增大而减小。
12、汽车由青岛驶往相距800千米的北京,其平均速度是120千米/时,请写出汽车距北京的距离s (千米)与行驶时间t (小时)之间函数的关系式 13、已知函数y=mx+2-m 是正比例函数,则m=________
14、若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”) 15、将直线y=-2x+1沿y 轴方向向上平移3个单位长,得到的直线解析式为 16、一次函数y=3x-2经过第 象限,与x 轴交点坐标为
17、已知y 与x-1成正比例,当x=2时,y=8,那么当x=1时,y= 18、已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,3),则a+b=________ 三、解答题(共6个小题,共46分)
19、(本题8分)已知一次函数的图象经过点(- 4,9)和(6,3)。
(1)求这个一次函数的关系式。
(2)试判断点(1,6)是否在这个函数的图象上。
题号 1 2 3 4 5 6 7 8 9 10 答案
x
y
-40
t(月)
C(件)
C3
53
C1C21
2
4
(-3,0)
O x
y C
A
D
B
20、(9分)平行四边形ABCD ,AD =6,AB =8,点A 的坐标为(-3,0),求经过B 、C 两点的直线的解析式。
21、(8分)已知A 、B 两地间的距离是80千米.甲骑自行车、乙骑摩托车分别沿相同路线
由A 地到B 地行驶过程如图所示,请你根据图像解决下面的问题: (1)请你分别求出表示甲乙两人行驶的路程y 与时间x 的函数解析式。
(2)甲出发后多少时间被乙追上,此时距离B 地多远?
22、(7分)某车间现有20名工人,生产甲乙两种工艺品,每名工人每天可生产6个甲种工艺品或8个乙种工艺品,一个甲种工艺品可获利10元,一个乙种工艺品可获利5元。
厂方规定乙种工艺品的数量不得少于甲种工艺品的三分之一。
(1)若安排x 人生产甲种工艺品,其余工人生产乙种工艺品,车间每天的利润为y 元,请写出y 与x 之间的函数关系式,并求自变量的取值范围。
(2)如何安排可使车间每天的利润最高,最高利润是多少?
23、(6分)某电信运营商有两种手机卡,A 类卡收费标准如下:无月租,每通话1分钟交费0.6元;B 类卡收费标准如下:月租费50元,每通话1分钟交费0.4元。
(1)分别写出A 、B 两类卡每月应缴费用y (元)与通话时间x (分)之间的关系式; (2)每月通话多长时间,A 、B 两类卡的费用相同? 什么情况下选择A 类卡较优惠,什么情况下选择B 类卡较优惠?并说明理由。
24、(本题8分)如图,长方形ABCD 中,AB=6,BC=8,点P 从A 出发沿A →B →C →D 的路线
移动,设点P 移动的路线为x ,△PAD 的面积为y 。
(1)写出y 与x 之间的函数关系式。
(2)求当x=4和x=18时的函数值。
(3)当x 取何值时,y=20,并说明此时点P 在长方形的哪条边上。