变频器制动控制目的
变频器制动单元原理

变频器制动单元原理
变频器制动单元是变频器系统中的一个重要组成部分,其主要作用是控制电机的制动过程。
变频器制动单元的工作原理如下:
1. 电机制动控制器:制动过程开始时,变频器通过电机制动控制器向电机施加电压,使电机产生反电动势。
2. 制动电阻:变频器制动单元通常配备有制动电阻,在制动过程中,电机将过多的能量传递到制动电阻中,将能量转化为热量散发出去。
3. 制动电压控制:变频器通过对制动电压的控制,可以调整电机制动的程度。
当制动电压达到设定值时,可以实现电机的快速制动。
4. 制动时间控制:变频器制动单元还可以控制制动的时间,可以调整制动的时间长短,以满足不同的制动要求。
5. 制动开关:变频器制动单元还配备有制动开关,用来将电机切换到制动状态。
制动开关通常分为手动和自动两种模式,可以根据需要选择使用。
通过以上工作原理,变频器制动单元可以实现对电机的平稳制动,提高了系统的安全性和稳定性。
同时,通过调整制动电压和制动时间,可以满足不同工况下的制动需求。
变频器制动原理

变频器制动原理
变频器制动原理是通过控制电机的供电电压和频率来实现。
变频器中的电源模块将交流电源转换为直流电源,然后通过逆变器模块将直流电源转换为可调频率的交流电源。
控制器模块通过调节逆变器的输出频率来调节电机的转速。
当需要制动电机时,控制器会将逆变器的输出频率逐渐减小,从而降低电机的转速。
同时,控制器还会通过调节逆变器的输出电压来控制电机的转矩。
变频器制动的基本原理是通过减小电机的供电频率和电压,使电机变为发电机运行,并将发电的能量消耗掉,从而实现制动的效果。
在变频器制动过程中,通过控制逆变器的输出频率和电压,可以灵活调节制动力度和速度的变化。
这种制动方式具有调节范围宽、制动平稳可靠等特点。
需要注意的是,变频器制动时会产生大量的能量,会导致电机的发热,因此需要在设计变频器制动系统时考虑散热和保护措施,以防止电机过热和其他安全问题的发生。
关于变频器的制动技术分析

( 、 a)我们考虑到工况 的特殊性 , 假设 系统 出现某种故障 , 导致 动力制动状态 ; )使之回馈 到电网 , (、 2 则称之为回馈制动状 态( 又称 电机所载的位能负载 自由加速下落 , 这时 电机处于 一种发 电运行状 再生制动状态 ) 。还有一种制动方式 , 即直流制动 , 以用于 要求准 可 , d升 确停车的情况或起动前制动电机 由于外界 因素引起的不规则旋转 。 态 , 再生能量通过六个续流 二极管回送至直流 回路 ,致使 t 高 , 快使变频器处于充 电状态 , 很 这时 的电流会很大。所以所选取电 在 书 籍 、 物 上 有 许 多专 家 谈 论 过 有 关 变频 器 制 动 方面 的设 计 与应 刊
一
电压值( 3 o A 一 5 0 D 高到一定值时 , P 如 8 V C 3 V C) C U关断 V 3 通过 T,
、
电能不断通过逆变部分回送到直流 回路 中时 , 安全 回路发挥 在 通 用 变频 器 、 异步 电动 机 和 机 械 负载 所 组 成 的变 频调 速传 统 状态 , 作用 , 实现 能耗 制动 ( 阻制 动 )控 制 、r 电 , 厂3的关 断 与 开通 , 而 实 现 从 系统 中, 当电动机所传动 的位 能负载下放时 , 电动机将可能 处于再 电阻 R消耗多余 的能量 , 一般这种情况是不会 出现的。 生发电制动状态 ; 或当电动机从高速 到低速( 含停 车 ) 减速 时 , 率 频 () 电动 机 电动 运 行 状 态 2 可 以突 减 , 因 电机 的机 械 惯 性 , 但 电机 可 能 处 于 再 生 发 电状 态 , 动 传 当 C U 发 现 系统 不再 充 电时 , 对 V 3进 行 脉 冲 导通 , P 则 T 使得 在 系统 中所储存的机械能经 电动机转换成 电能 , 通过逆变器的六个续 电抗器 L上行成 了一个瞬时左正右负的电压( 图标识 】再加上电 如 , 流 二极管 回送到变频器 的直流 回路中。此时的逆变器处于整流状 态。 这时 , 如果变频器中没采取消耗能量的措施 , 这部分能量将导致 解 电容 C上 的电压 就能 实现从 电容到直流 回路的能量 反馈过 程。 C U通过对电解电容 C上的电压和直流回路的 电压的检测 ,控制 P 中间回路的储能 电容器的 电压 上升。如果当制动过快或机械负载为 T 从而控制反馈电流 , 确保直流回路 电压 提升机类时 , 这部分能量就 可能对变频器带来损坏 , 以这部 分能 V 3的开关频率以及 占空比, 所 vd不 出现过 高。 量我们就 应该考虑考虑 了。 2 系统难 点 、 在通 用变频器 中, 对再 生能量最常用的处理 方式有两种 : )耗 {、 1 () 器 的选 取 1电抗 散到直流 回路 中人为设置的与电容器并联的“ 制动 电阻” 称 之为 中,
变频器在电机控制中的作用

变频器在电机控制中的作用变频器在电机控制中起着至关重要的作用,它能够有效地调节电机的转速和旋转方向,实现电机的精确控制。
本文将详细介绍变频器在电机控制中的作用及其应用。
一、变频器的基本原理变频器是一种通过改变电源频率来控制电机转速的装置。
其基本原理是将电源输入的交流电通过整流电路转换为直流电,然后再通过逆变电路将直流电转换为调制波频率可调的交流电。
通过调节变频器的输出频率,可以控制电机的转速。
二、变频器在电机控制中的作用1. 调速功能:变频器能够根据需求调整电机的转速。
通过调节变频器输出的频率,可以使电机的转速精确地满足工作需求。
这在很多领域中都非常重要,如工业生产线、机械加工等。
传统的电阻或齿轮传动方式往往无法满足精密控制的要求,而变频器可以提供更加精确和可靠的控制。
2. 节能效果:变频器可以根据负载的大小和工作需求智能地调整电机的运行频率,从而实现节能的效果。
相比传统的工作方式,变频器可以有效避免无谓的能量浪费,提高电机的运行效率,降低能源消耗。
这对于长时间运行的电机来说,能够带来显著的经济效益。
3. 启动与制动控制:变频器还可以实现电机的软启动和制动控制,避免了传统方式下电机启动时的冲击和传动设备的损坏。
通过逐步增加启动频率,变频器能够缓解电机和负载的压力,延长设备的使用寿命。
同样地,变频器还可以实现电机的快速制动,提高了设备操作的稳定性和安全性。
4. 转矩控制:变频器还具有转矩控制的功能,可以根据负载的需求来调整电机的输出转矩。
这对于一些需要精确控制转矩的应用来说尤为重要,如起重机、卷板机等。
通过变频器的控制,可以使电机输出的转矩稳定可靠,提高设备运行的准确性和安全性。
三、变频器在实际应用中的案例1. 工业生产线:在工业生产线中,需要对电机进行精确控制,以满足产品的生产要求。
变频器可通过调节输出频率,控制电机的转速和运行状态,实现自动化生产线的调速控制。
2. HVAC系统:变频器在暖通空调系统中也有广泛应用。
变频器电路中的制动控制电路

变频器电路中的制动控制电路一、为嘛要采用制动电路?因惯性或某种原因,导致负载电机的转速大于变频器的输出转速时,此时电机由“电动”状态进入“动电”状态,使电动机暂时变成了发电机。
一些特殊机械,如矿用提升机、卷扬机、高速电梯等,风机等,当电动机减速、制动或者下放负载重物时,因机械系统的位能和势能作用,会使电动机的实际转速有可能超过变频器的给定转速,电机转子绕组中的感生电流的相位超前于感生电压,并由互感作用,使定子绕组中出现感生电流——容性电流,而变频器逆变回路IGBT两端并联的二极管和直流回路的储能电容器,恰恰提供了这一容性电流的通路。
电动机因有了容性励磁电流,进而产生励磁磁动势,电动机自励发电,向供电电源回馈能量。
这是一个电动机将机械势能转变为电能回馈回电网的过程。
此再生能量由变频器的逆变电路所并联的二极管整流,馈入变频器的直流回路,使直流回路的电压由530V左右上升到六、七百伏,甚至更高。
尤其在大惯性负载需减速停车的过程中,更是频繁发生。
这种急剧上升的电压,有可能对变频器主电路的储能电容和逆变模块,造成较大的电压和电流冲击甚至损坏。
因而制动单元与制动电阻(又称刹车单元和刹车电阻)常成为变频器的必备件或首选辅助件。
在小功率变频器中,制动单元往往集成于功率模块内,制动电阻也安装于机体内。
但较大功率的变频器,直接从直流回路引出P、N端子,由用户则根据负载运行情况选配制动单元和制动电阻。
一例维修实例:一台东元7300PA 75kW变频器,因IGBT模块炸裂送修。
检查U、V相模块俱已损坏,驱动电路受强电冲击也有损坏元件。
将模块和驱动电路修复后,带7.5kW 电机试机,运行正常。
即交付用户安装使用了。
运行约一个月时间,用户又因模块炸裂。
检查又为两相模块损坏。
这下不敢大意了,询问用户又说不大清楚。
到用户生产现场,算是弄明白了损坏的原因。
原来变频器的负载为负机,因工艺要求,运行三分钟,又需在30秒内停机。
采用自由停车方式,现场做了个试验,因风机为大惯性负荷,电机完全停住需接近20分钟。
变频器 刹车 原理

变频器刹车原理变频器刹车原理解析1. 引言变频器刹车是现代工业领域中常见的一种控制方式,通过变频器来实现刹车控制,具有调速、刹车平稳、精确控制等优势。
本文将为您介绍变频器刹车的原理及其相关知识。
2. 变频器介绍定义变频器是一种可以改变电机运行频率和电压的电力传动装置,通过改变电机的输入电压和频率,控制电机的转速。
它通常由整流器、PWM逆变器以及控制电路等部件组成。
作用变频器广泛应用于工业生产中的电动机控制中,可以实现电机的调速、刹车控制等功能。
3. 变频器刹车原理刹车类型变频器刹车可以分为电阻刹车、再生刹车和电流回馈刹车三种类型。
电阻刹车原理电阻刹车是通过将电流通过外接的电阻,使电机产生高阻力,从而达到刹车效果。
当发生刹车时,变频器会控制电机的输出频率逐渐降低,同时提高外接电阻的电阻值,使电流通过电阻消耗能量,从而实现刹车。
再生刹车原理再生刹车是利用电机的自感性质,在刹车时通过变频器改变电机的输入电压和频率,使电机产生反向电动势,将能量反馈到供电系统中,实现刹车效果。
再生刹车可以将电能转化为可再利用的能源,提高能源利用效率。
电流回馈刹车原理电流回馈刹车是通过变频器将制动时产生的电能反馈到电网中,实现刹车效果。
当电机刹车时,变频器会将产生的电能通过逆变器转化为直流电能,并反馈到电网中,使电网系统中的电能得到再利用。
4. 变频器刹车的优势刹车平稳性变频器刹车采用电子控制方式,可以实现刹车过程的平稳控制,避免了传统机械刹车的冲击和损坏。
刹车精确性变频器刹车可以通过控制电机的输出频率、电压和电流等参数,实现对刹车过程的精确控制,满足不同工况下的刹车需求。
节能效果再生刹车和电流回馈刹车可以将产生的能量反馈到电网中,提高能源利用效率,实现节能的目的。
5. 结论通过对变频器刹车原理的介绍,我们了解到变频器刹车可以通过不同的方式实现刹车控制,具有刹车平稳、精确控制、节能等优势。
在实际应用中,根据具体情况选择合适的刹车方式,可以提高工业生产的效率和质量。
变频器制动单元工作原理

变频器制动单元工作原理变频器制动单元是变频器中的一个重要组成部分,它用于实现变频器的制动功能。
在工业领域,变频器广泛应用于电机控制系统中,可以实现电机的调速、反向运行以及制动等功能。
下面我们来详细了解一下变频器制动单元的工作原理。
1.刹车电阻:刹车电阻是变频器制动单元中的核心部件之一,其主要作用是将电机的动能转化为热能,并将其散发到周围环境中。
刹车电阻一般由耐高温的金属材料制成,可以经受较高功率的放热。
2.刹车电路:刹车电路主要由继电器、触发电路和刹车电阻组成。
当需要制动电机时,变频器会通过触发电路将继电器闭合,并将刹车电阻连接到电机回路中。
此时,电机运行时产生的反电动势会通过刹车电阻进行耗散,从而实现制动功能。
3.相关控制电路:相关控制电路用于对刹车过程进行调节和控制,以满足不同工况下的制动要求。
其中包括刹车时间、刹车力度、刹车方式等参数的设定和调整,以及对刹车电路的监测和保护功能。
当需要进行制动操作时,变频器将通过控制电路发送刹车信号。
控制电路会关闭电机的供电开关,并同时触发刹车电路。
刹车电路将刹车电阻连接到电机回路中,此时,电机的运行过程中产生的反电动势将通过刹车电阻进行耗散。
电机转动的动能将转化为热能,并散发到周围环境中,从而实现制动。
在整个刹车过程中,控制电路将监测电机的转速和电流,以及刹车电路的工作状态。
一旦发现异常情况,如刹车电路开路、刹车电阻过热等,控制电路会立即停止刹车操作,并进行相应的保护措施,从而确保变频器和电机的安全运行。
总之,变频器制动单元通过使用刹车电阻进行动能转化,实现对电机的制动功能。
其工作原理是通过控制电路发出刹车信号,触发刹车电路,使刹车电阻连接到电机回路中,实现电机转速的减速和停止。
同时,控制电路会监测刹车过程中的相关参数,确保操作的安全性和可靠性。
变频器制动方法与原理

变频器制动方法与原理变频器是一种能够改变输电频率的电子装置,常用于调节交流电机的运行速度。
在交流电机中,为了能够实现运行速度的控制,通常需要使用变频器进行制动。
变频器制动方法主要包括电阻制动、逆变制动和反接制动。
1.电阻制动:电阻制动是通过在电机电源回路中增加一个电阻来增加电路的电阻值,从而实现制动的方法。
当制动时,电阻的阻值会逐渐增加,使电路中的电流减小,进而减小了电机的转速。
电阻制动主要用于快速制动和刹车等需要快速停车的应用场景,例如电梯等。
2.逆变制动:逆变制动是通过变频器反向变频输出来实现制动的方法。
在逆变制动过程中,变频器逆向输出变频信号,以降低电机的转速。
逆变制动相对于电阻制动具有更好的性能和控制效果,可以实现精确的控制和制动。
逆变制动适用于对转速要求较高的应用场景,例如卷筒、测试架等。
3.反接制动:反接制动是在变频器输出电路中反接一个较低的电源电压,通过减小电机的输入电压来实现制动的方法。
反接制动的原理是改变电机供给电源的电路连接方式,在短时间内将电机的输入电压降到一个较低的值,从而实现制动。
反接制动适用于一些特殊的应用场景,例如连续运动的装置,可在不需要停机的情况下实现制动。
变频器制动的原理是通过控制变频器输出电源的频率和电压来改变电机的转速。
变频器通过调节输出电源的频率和电压,可以实现对电机的精准控制,从而实现加速、减速和制动等操作。
在制动过程中,变频器会根据设定的制动参数,控制输出电源的频率和电压变化,通过改变电机的输入电压和频率,来实现制动。
-输出频率和电压的控制:通过调整变频器的输出频率和电压,可以改变电机的转速。
在制动过程中,频率和电压会逐渐降低,从而减小了电机的输入功率,实现制动效果。
-制动参数的设定:变频器可以通过参数设定实现对制动过程的控制。
可以根据实际需要设定制动的时间、制动的过程曲线等参数,从而实现不同形式和效果的制动。
-制动模式的选择:变频器通常具有多种制动模式可供选择,可以根据实际需要选择合适的制动模式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电动机知识变频器制动控制目的对于位能型负载来说,由于重物具有重力的缘由,如没有特地的制动安装,重物在空中是停不住的。
为此,电动机轴上必需加装机械制动器,常用的有电磁铁制动器和液压电磁制动器等。
多数制动器都采用常闭式的,即:线圈断电时制动器依托弹簧的力气将轴抱住;线圈通电时松开。
在重物开端升降或停住时,请求制动器和电动机的动作之间,必需严密配合。
由于制动器从抱紧到松开,以及从松开到抱紧的动作过程需求时间(约0.6s,因电动机的容量大小而异),而电动机转矩的产生或消逝,是在通电或断电霎时就立即反映的。
因而,两者在动作的配合上极易呈现问题。
如电动机曾经通电,而制动器尚未松开,将招致电动机的严重过载;反之,如电动机曾经断电,而制动器尚未抱紧,则重物必将下滑,呈现溜钩现象。
匿名随着起重机的不断发展,传统控制技术难以满足起重机越来越高的调速和控制要求。
在电子技术飞速发展的今天,起重机与电子技术的结合越来越紧密,如采用PLC取代继电器进行逻辑控制,交流变频调速装置取代传统的电动机转子串电阻的调速方式等。
在选型对比基础上,本项目电动机调速装置采用了先进的变频调速方案,变频器最终选型为ABB变频器ACS800,电动机选用专用鼠笼变频电动机。
在众多交流变频调速装置中,ABB变频器以其性能的稳定性,选件扩展功能的丰富性,编程环境的灵活性,力矩特性的优良性和在不同场合使用的适应性,使其在变频器高端市场中占有相当重要的地位。
ACC800变频器是ACS800系列中具有提升机应用程序的重要一员,它在全功率范围内统一使用了相同的控制技术,例如起动向导,自定义编程,DTC控制等,非常适合作为起重机主起升变频器使用。
本文结合南京梅山冶金发展有限公司设备分公司所负责维修管理的宝钢集团梅钢冷轧厂27台桥式起重机变频调速控制系统,详细介绍ACC800变频器在起重机主起升中的应用。
1DTC控制技术DTC(直接转矩控制,DirectTorqueControl)技术是ACS800变频器的核心技术,是交流传动系统的高性能控制方法之一,它具有控制算法简单,易于数字化实现和鲁棒性强的特点。
其实质是利用空间矢量坐标的概念,在定子坐标系下建立异步电动机空间矢量数学模型,通过测量三相定子电压和电流(或中间直流电压)直接计算电动机转矩和磁链的实际值,并与给定转矩和磁链进行比较,开关逻辑单元根据磁链比较器和转矩比较器的输出选择合适的逆变器电压矢量(开关状态)。
定子给定磁链和对应的电磁转矩的实际值,可以用定子电压和电流测量值直接计算得到。
在计算中,只需要一个电动机参数―――定子电阻,这一点和几乎需要全部电动机参数的直接转子磁链定向控制(矢量控制)形成了鲜明对比,极大地减轻了微处理器的计算负担,提高了运算速度。
直接转矩控制结构较为简单,可以实现快速的转矩响应(不大于5ms)。
2防止溜钩控制作为起重用变频系统,其控制重点之一是在电动机处于回馈制动状态下系统的可靠性("回馈"是指电动机处于发电状态时通过逆变桥向变频器中间直流回路注入电能),尤其需要引起注意的是主起升机构的防止溜钩控制。
溜钩是指在电磁制动器抱住之前和松开之后的瞬间,极易发生重物由停止状态出现下滑的现象。
电磁制动器从通电到断电(或从断电到通电)需要的时间大约为016s(视起重机型号和起重量大小而定),变频器如过早停止输出,将容易出现溜钩,因此变频器必须避免在电磁制动器抱闸的情况下输出较高频率,以免发生"过流"而跳闸的误动作。
防止溜钩现象的方法是利用变频器零速全转矩功能和直流制动励磁功能。
零速全转矩功能,即变频器可以在速度为零的状态下,保持电动机有足够大的转矩,从而保证起重设备在速度为零时,电动机能够使重物在空中停止,直到电磁制动器将轴抱住为止,以防止溜钩的发生。
直流制动励磁功能,即变频器在起动之前自动进行直流强励磁,使电动机有足够大的起动转矩,维持重物在空中的停止状态,以保证电磁制动器在释放过程中不会发生溜钩。
3系统硬件配置梅钢冷轧桥式起重机上应用的ACS800变频器调速系统由电控柜,大小车变频控制柜,起升变频控制柜,联动控制台等组成。
主起升采用1台ACC800变频器驱动1台起升专用电动机,并在电动机轴尾安装1台速度编码器,做速度反馈用。
该速度编码器用来提高低速状态下电动机模型的速度和转矩计算精度,保证转矩验证,开闭闸等功能。
主起升采用斩波器加制动电阻实现制动功能,斩波器与制动电阻串联后接入变频器整桥与逆变桥之间的直流回路中,并由变频器根据中间直流回路电压高低控制斩波器接通与否(即控制制动电阻的投切)。
变频器配有RPBA201接口卡件,提供标准的Profibus2DP 现场总线接口,用于与PLC通信控制,并接收PLC发来的开,停车命令和速度设定值等控制参数。
4起升变频器功能参数设置ABB变频器在出厂时,所有功能码都已设置。
但是,起重机变频调速系统的要求与工厂设定值不尽相同,所以,ACC800中一些重要的功能参数需要重新设定。
(1)起动数据(参数组99)参数99102(用于提升类传动,但不包括主/从总线通信功能):CRANE;参数99104(电动机控制模式):DTC(直接转矩控制);参数99105~99109(电动机常规铭牌参数):按照电动机的铭牌参数输入。
(2)数字输入(参数组10)Domain: dnf辅助More:d2gs2f 参数10101~10113(数字输入接口预置参数):按照变频器外围接口定义进行设置,限于篇幅,不再赘述。
(3)限幅(参数组20)参数20101(运行范围的最小速度):-1000 r/min(根据实际电动机参数进行设定);参数20102(运行范围的最大速度):1000r/min(根据实际电动机参数进行设定);参数20103(最大输出电流):120%;参数20104(最大正输出转矩):150%;参数20104(最大负输出转矩):-150%;参数20106(直流过压控制器参数):OFF(本例中ACC800变频器使用了动力制动方式,此参数设为OFF后,制动斩波器才能投入运行)。
(4)脉冲编码器(参数组50)参数50101(脉冲编码器每转脉冲数):1024;参数50103(编码器故障):FAULT(如果监测到编码器故障或编码器通信失败时,ACC800变频器显示故障并停机)。
(5)提升机(参数组64)参数64101(独立运行选择):FALSE;64103(高速值1):98%;64106(给定曲线形状):0(直线);参数64110(控制类型选择):FBJOYSTICK.(6)逻辑处理器(参数组65)参数65101(电动机停止后是否保持电动机磁场选择):TRUE(在电动机停止后保持电动机磁场为"ON");参数65102(ON脉冲延时时间):5s.(7)转矩验证(参数组66)参数66101(转矩验证选择):TRUE(转矩验证有效,要求有脉冲编码器)。
(8)机械制动控制(参数组67)参数67106(相对零速值):3%;参数67109(起动转矩选择器):AUTOTQMEM(自动转矩记忆)。
(9)给定处理器(参数组69)参数69101(对应100%给定设置电动机速度):980r/min (根据实际电动机参数进行设定);参数69102(正向加速时间):3s;参数69103(反向加速时间):3s;参数69104(正向减速时间):3s;参数69105(反向减速时间):3s.(10)可选模块(参数组98)参数98101(脉冲编码器模块选择):RTAC2 SLOT2(脉冲编码器模块类型为RTAC,连接接口为传动控制单元的选件插槽2);参数98102(通信模块选择):FIELDBUS(激活外部串行通信并选择外部串行通信接口)。
5试运行变频调速系统的功能参数设定完后,就可进行系统试运行。
应先在变频器操作盘上进行速度给定,手动起动变频器,让起升电动机空载运转一段时间,并且这种试运行可以在5,10,15,20,25,35,50Hz等几个频率点进行,注意观察电动机的运转方向是否正确,转速是否平稳,显示数据是否正确,温升是否正常,加减速是否平滑等。
单台变频器试运行正确后,再接入脉冲编码器模块进行速度闭环调试,试运行起升机构变频调速系统。
起升变频器手动运行无误后,就可接入PLC控制系统,进行整机联调。
整机联调中,关键要注意观察变频器起动与停止时,主起升机械制动器的开闭反应是否快速,钩头是否存在溜钩现象等。
其次还要注意观察钩头在下降过程中,制动单元和制动电阻投运后,其温升是否正常。
在重物下放过程中,重物的势能会释放出来,此时电动机将工作在反向发电状态。
在钩头下降过程中,电动机通过逆变桥向变频器中间直流回路充电,当直流回路的电压高于变频器系统设定值时,变频器控制斩波器接通,进而使制动电阻投入工作,以消耗变频器中间直流回路多余的电能,确保变频器中间直流回路电压稳定在一个特定电压范围内。
随着起重机的不断发展,传统控制技术难以满足起重机越来越高的调速和控制要求。
在电子技术飞速发展的今天,起重机与电子技术的结合越来越紧密,如采用PLC取代继电器进行逻辑控制,交流变频调速装置取代传统的电动机转子串电阻的调速方式等。
在选型对比基础上,本项目电动机调速装置采用了先进的变频调速方案,变频器最终选型为ABB变频器ACS800,电动机选用专用鼠笼变频电动机。
在众多交流变频调速装置中,ABB变频器以其性能的稳定性,选件扩展功能的丰富性,编程环境的灵活性,力矩特性的优良性和在不同场合使用的适应性,使其在变频器高端市场中占有相当重要的地位。
ACC800变频器是ACS800系列中具有提升机应用程序的重要一员,它在全功率范围内统一使用了相同的控制技术,例如起动向导,自定义编程,DTC控制等,非常适合作为起重机主起升变频器使用。
本文结合南京梅山冶金发展有限公司设备分公司所负责维修管理的宝钢集团梅钢冷轧厂27台桥式起重机变频调速控制系统,详细介绍ACC800变频器在起重机主起升中的应用。
1DTC控制技术DTC(直接转矩控制,DirectTorqueControl)技术是ACS800变频器的核心技术,是交流传动系统的高性能控制方法之一,它具有控制算法简单,易于数字化实现和鲁棒性强的特点。
其实质是利用空间矢量坐标的概念,在定子坐标系下建立异步电动机空间矢量数学模型,通过测量三相定子电压和电流(或中间直流电压)直接计算电动机转矩和磁链的实际值,并与给定转矩和磁链进行比较,开关逻辑单元根据磁链比较器和转矩比较器的输出选择合适的逆变器电压矢量(开关状态)。
定子给定磁链和对应的电磁转矩的实际值,可以用定子电压和电流测量值直接计算得到。
在计算中,只需要一个电动机参数―――定子电阻,这一点和几乎需要全部电动机参数的直接转子磁链定向控制(矢量控制)形成了鲜明对比,极大地减轻了微处理器的计算负担,提高了运算速度。