变频器的控制方式有哪些
变频调速的基本控制方式ppt课件

28
机械特性曲线
n
可见,当频率ω1提高 时,同步转速n1随之提 n1c 高,最大转矩减小,机 n1b
械特性上移;转速降落 n1a
1c 1b 1a
随频率的提高而增大, n1N 1N
1N <1a <1b <1c 恒功率调速
特性斜率稍变大,其它
形状基本相似。如右图
所示。
2024/7/16
O Te
图6-5 基频以上恒压变频调速的机械特性29
2024/7/16
22
结论
➢在恒压频比的条件下改变频率 1 时,机械特性基本上是
平行下移 ➢当转矩增大到最大值以后,转速再降低,特性就折回来 了。而且频率越低时最大转矩值越小
➢最大转矩 Temax 是随着的 1 降低而减小的。频率很
低时,Temax太小将限制电机的带载能力,采用定子压 降补偿,适当地提高电压Us,可以增强带载能力
(U漏—漏磁阻抗压降;Us—每相电压),
当Us很大时,U漏很小;可以认为Us≈Eg 。
m
US f1
C
要改变f1实现调速,则同时应改变Us来保持Φm不变。
—恒压频比控制方式
2024/7/16
12
带定子压降补偿的恒压频比控制特性
但当f1太小时,忽略U漏则误差较大,这时可以人为增 大Us进行补偿,以减小误差。
2024/7/16
30
小结
电压Us与频率1是变频器—异步电动机调速系统的两个独立
的控制变量,在变频调速时需要对这两个控制变量进行协调 控制。 在基频以下,有两种协调控制方式。采用不同的协调控制方 式,得到的系统稳态性能不同。 在基频以上,采用保持电压不变的恒功率弱磁调速方法。
2024/7/16
变频器的控制方式

变频器的控制方式1 引言我们通常意义上讲的低压变频器,其输出电压一般为220~650v、输出功率为0.2~400kw、工作频率为0~800hz左右,变频器的主电路采用交-直-交电路。
根据不同的变频控制理论,其模式主要有以下三种:(1)v/f=c的正弦脉宽调制模式(2)矢量控制(vc)模式(3)直接转矩控制(dtc)模式针对以上三种控制模式理论,可以发展为几种不同的变频器控制方式,即v/f控制方式(包括开环v/f控制和闭环v/f控制)、无速度传感器矢量控制方式(矢量控制vc的一种)、闭环矢量控制方式(即有速度传感器矢量控制vc 的一种)、转矩控制方式(矢量控制vc或直接转矩控制dtc)等。
这些控制方式在变频器通电运行前必须首先设置。
2 v/f控制方式2.1 基本概念我们知道,变频器v/f控制的基本思想是u/f=c,因此定义在频率为fx时,ux的表达式为ux/fx=c,其中c为常数,就是“压频比系数”。
图1中所示就是变频器的基本运行v/f曲线。
由图1可以看出,当电动机的运行频率高于一定值时,变频器的输出电压不再能随频率的上升而上升,我们就将该特定值称之为基本运行频率,用fb 表示。
也就是说,基本运行频率是指变频器输出最高电压时对应的最小频率。
在通常情况下,基本运行频率是电动机的额定频率,如电动机铭牌上标识的50hz或 60hz。
同时与基本运行频率对应的变频器输出电压称之为最大输出电压,用vmax表示。
当电动机的运行频率超过基本运行频率fb后,u/f不再是一个常数,而是随着输出频率的上升而减少,电动机磁通也因此减少,变成“弱磁调速”状态。
基本运行频率是决定变频器的逆变波形占空比的一个设置参数,当设定该值后,变频器cpu将基本运行频率值和运行频率进行运算后,调整变频器输出波形的占空比来达到调整输出电压的目的。
因此,在一般情况下,不要随意改变基本运行频率的参数设置,如确有必要,一定要根据电动机的参数特性来适当设值,否则,容易造成变频器过热、过流等现象。
变频器的控制方法

变频器的控制方法变频器是一种能够控制交流电动机转速的设备,通常用于工业生产中的电机调速和节能控制。
它通过改变电机输入的电压和频率,使电机达到所需的转速。
变频器的控制方法有多种,下面将详细介绍几种常见的控制方法。
1. 简单开关控制方法简单开关控制方法是变频器最基本的控制方式,通过控制电机的开/关状态来实现转速控制。
这种方法的控制精度较低,转速调节范围也较有限,适用于一些对转速要求不高的应用。
2. 转矩控制方法转矩控制方法是通过调节变频器输出的电压和频率来实现对电机输出转矩的控制。
通过改变电压和频率的比例关系,可以实现电机的恒转矩调速。
这种控制方法适用于一些需要保持恒定转矩的场合,如起重机械、卷取机等。
3. PI控制方法PI控制方法是一种闭环控制方法,它通过测量电机的输出转速与期望转速之间的差异,并根据差异调整变频器的输出电压和频率来控制转速。
这种控制方法具有较高的控制精度和适应性,可以根据实际情况进行参数调整,实现稳定的转速控制。
4. 矢量控制方法矢量控制方法是一种高级的闭环控制方法,它可以实现更精确的转速控制和较高的转矩响应。
矢量控制方法通过对电机的电流、电压和转速进行测量和计算,并根据计算结果调整变频器的输出,使电机能够精确地跟随给定的转速和转矩变化。
5. 力矩控制方法力矩控制方法是一种特殊的转矩控制方法,它可以根据负载的力矩需求来调整电机输出的转矩。
通过测量负载的力矩大小,并根据力矩与转速的关系进行计算和控制,可以实现对电机输出的力矩进行精确的控制。
综上所述,变频器的控制方法有简单开关控制、转矩控制、PI控制、矢量控制和力矩控制等多种方式。
不同的控制方法适用于不同的应用场合,可以根据实际需求选择最合适的控制方式。
随着技术的不断进步和应用领域的扩大,变频器的控制方法也在不断发展和创新,为工业生产提供更加高效和可靠的电机控制解决方案。
变频器操作方法有几种

变频器操作方法有几种
变频器是一种调节电力频率的设备,可用于控制交流电动机的转速、提供稳定的电源频率等。
根据操作方法的不同,变频器的操作可以分为以下几种方式:
1. 手动操作:通过手动控制开关、旋钮、按钮等来调节变频器的输出频率和其他参数。
这种操作方式主要适用于较简单的应用场景,对变频器的参数进行简单的调整。
2. 自动操作:通过自动化控制系统,实时监测相关参数,自动调节变频器的输出频率和相关参数,以实现对电机或设备的精确控制。
这种操作方式主要适用于需要精确控制和自动化管理的场景。
3. 远程操作:通过远程控制设备,通过网络或无线信号等方式,远程操作调节变频器的输出频率和相关参数。
这种操作方式主要适用于需要从远程地点对设备进行控制和管理的场景。
总的来说,变频器的操作方法可以根据具体应用场景的要求选择合适的方式,手动操作适用于简单的场景,自动操作适用于需要精确控制和自动化管理的场景,远程操作适用于需要远程控制和管理的场景。
变频器控制方式有哪些_变频器有几种控制方式_变频器的控制方式详解

变频器控制方式有哪些_变频器有几种控制方式_变频器的控制方式详解变频调速技术是现代电力传动技术的重要发展方向,而作为变频调速系统的核心变频器的性能也越来越成为调速性能优劣的决定因素,除了变频器本身制造工艺的先天条件外,对变频器采用什么样的控制方式也是非常重要的。
本文从工业实际出发,综述了近年来各种变频器控制方式的特点,并展望了今后的发展方向。
变频器简介1)变频器的基本结构变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。
对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。
2)变频器的分类变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM 控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。
变频器控制方式选择依据对于控制方式,要根据生产机械的具体要求来进行选择。
1、二次方律负载对于离心式风机、水泵和空气压缩机一类的二次方律负载,一般采用V/F控制方式为宜。
因为V/F控制方式有低励磁U/f线,在低频运行时可以更好地节能。
矢量控制方式实质上是使电动机始终保持额定磁通的控制方式,不可能实现低励磁。
2.恒转矩负载(1)对于负载率经常变动、调速范围又不很大的负载,一般以选择无反馈矢量控制为好,因为V/F控制方式的转矩提升量不易预置得恰到好处,但采用无馈矢量控制方式时,须注。
变频器控制电机转速方法是

变频器控制电机转速方法是在工业应用领域,电机是最为常见的设备之一,而电机的转速是电机性能的一个关键指标。
为了满足不同的工业生产需求,实现电机转速的控制和调节,通常采用变频器控制电机转速。
本文就介绍变频器控制电机转速的方法。
变频器的基本原理变频器是一种实现电机转速控制的设备,它通过改变电机的供电频率和电压,实现电机转速的调节。
变频器的工作原理是将电网中的高频交流电先变成直流电,再加工成不同频率、不同电压的交流电来供给电机,从而实现对电机的转速控制。
变频器的控制方法下面介绍几种常见的变频器控制方法。
1. 固定模式控制固定模式控制是一种比较简单的控制方法,它通过调整变频器的固定参数来实现对电机转速的控制。
这种方法可以比较方便地实现对电机的开启、关闭、正反转、变频等基本控制功能。
2. 调速控制调速控制是变频器最常用的控制方法之一。
它通过调整变频器输出频率和电压,实现对电机转速的调节。
调速控制有许多不同的方式,其中比较常见的是向电机提供一个恒定的电压,通过调整输出频率来实现电机转速的变化。
3. 矢量控制矢量控制是一种比较高级的变频器控制方法,它通过对电机的电流和电压进行精准控制,实现对电机转速的控制。
矢量控制的优点是能够实现非常精准的转速控制,缺点是控制算法需要较高的计算能力。
变频器控制电机转速的优点使用变频器控制电机转速具有以下优点:1. 提高电机效率在电机正常工作范围内,变频器控制可以使电机的效率达到最大值,实现能源的节约。
2. 实现精确控制变频器控制下,电机转速可以实现精确控制,避免传统控制方式存在的由于电网频率波动造成的转速高低波动。
3. 增加电机寿命变频器控制下,电机启动电流减小,对电机寿命的延长有一定的作用。
变频器控制电机转速的应用领域由于变频器控制电机转速有以下优点,它在许多领域得到了广泛应用:1. 工业生产在各个工业领域,如冶金、化工、纺织、造纸、机械制造等,都广泛使用变频器控制电机转速。
变频器的控制方式及合理选用

变频器的控制方式及合理选用1.变频器的控制方式低压通用变频器输出电压在380~650V,输出功率在0.75~400KW,工作频率在0~400HZ,它的主电路都采用交-直-交电路。
其控制方式经历以下四代。
(1)第一代以U/f=C,正弦脉宽调制(SPWM)控制方式。
其特点是:控制电路结构简单、成本较低,但系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。
(2)第二代以电压空间矢量(磁通轨迹法),又称SPWM控制方式。
他是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形。
以内切多边形逼近圆的方式而进行控制的。
经实践使用后又有所改进:引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流成闭环,以提高动态的精度和稳定度。
但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善。
(3)第三代以矢量控制(磁场定向法)又称VC控制。
其实质是将交流电动机等效直流电动机,分别对速度、磁场两个分量进行独立控制。
通过控制转子磁链,以转子磁通定向,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。
然而转子磁链难以准确观测,以及矢量变换的复杂性,实际效果不如理想的好。
(4)第四代以直接转矩控制,又称DTC控制。
其实质不是间接的控制电流、磁链等量,而是把转矩直接作为被控制量来实现的。
具体方法是:a.控制定子磁链——引入定子磁链观测器,实现无速度传感器方式;b.自动识别(ID)——依靠精确的电机数学模型,对电机参数自动识别;c.算出实际值——对定子阻抗、互感、磁饱和因素、惯量等算出实际的转矩、定子磁链、转子速度进行实时控制;d.实现Band-Band 控制——按磁链和转矩的Band-Band 控制产生PWM信号,对逆变器开关状态进行控制;e.具有快速的转矩响应(〈2ms),很高的速度精度(±2%,无PG反馈),高转矩精度(〈±3%);f.具有较高的起动转矩及高转矩精度,尤其在低速时(包括0速度时),可输出150% ~200%转矩。
变频器常用的10种控制方式

变频器常用的10种控制方式
变频调速技术是现代电力传动技术的重要发展方向,而作为变频调速系统的核心—变频器的性能也越来越成为调速性能优劣的决定因素。
除了变频器本身制造工艺的“先天”条件外,对变频器采用什么样的控制方式也是非常重要的。
本文从工业实际出发,综述了近年来各种变频器控制方式的特点,并展望了今后的发展方向。
一、变频器的分类
变频器的分类方法有多种。
按照主电路工作滤波方式分类,可以分为电压型变频器和电流型变频器。
按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM控制变频器。
按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等。
按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。
二、变频器中常用的控制方式
1、非智能控制方式
在交流变频器中使用的非智能控制方式有V/f控制、转差频率控制、矢量控制、直接转矩控制等。
(1) V/f控制
V/f就是加在电机定子上的电压和电源频率的比值。
如下图,V/F符合直线AB,则是直线型;符合折线段ABC,则是多点型;符合曲线AB,则是平方型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变频器的控制方式有哪些
变频器(Variable-frequency Drive,VFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。
变频器靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的,另外,变频器还有很多的保护功能,如过流、过压、过载保护等等。
随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。
那么,常见的变频器有哪些种类,它们的控制方法又是什么?
变频器的种类从控制方式来讲,现在市场上常见的有V/F控制变频器、矢量控制变频器两种。
从电压角度来讲,有低压变频器、高压变频器两种。
从电源角度来讲,有单相变频器、三相变频器的区分。
从适用场合来分,有通用变频器、风机水泵专用型变频器、注塑机专用型变频器、拉丝机专用变频器、电梯专用变频器、球磨机专用变频器等等。
变频器常用的控制方式1、非智能控制方式在交流变频器中使用的非智能控制方式有V/f 协调控制、转差频率控制、矢量控制、直接转矩控制等。
(1)V/f正弦脉宽调制(SPWM)控制方式
V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。
V/f控制变频器结构非常简单,但是这种变频器采用开环控制方式,不能达到较高的控制性能,而且,在低频时,必须进行转矩补偿,以改变低频转矩特性。
(2)转差频率控制
转差频率控制是一种直接控制转矩的控制方式,它是在V/f控制的基础上,按照知道异步电动机的实际转速对应的电源频率,并根据希望得到的转矩来调节变频器的输出频率,就可以使电动机具有
对应的输出转矩。
这种控制方式,在控制系统中需要安装速度传感器,有时还加有电流反馈,对频率和电流进行控制,因此,这是一种闭环控制方式,可以使变频器具有良好的稳。