根轨迹法-自动控制

合集下载

自动控制原理第5章根轨迹分析法

自动控制原理第5章根轨迹分析法

04
CATALOGUE
根轨迹分析法的限制与挑战
参数变化对根轨迹的影响
参数变化可能导致根轨迹的形状和位置发生变化 ,从而影响系统的稳定性和性能。
对于具有多个参数的系统,根轨迹分析可能变得 复杂且难以预测。
需要对参数变化进行细致的监测和控制,以确保 系统的稳定性和性能。
复杂系统的根轨迹分析
对于复杂系统,根轨 迹分析可能变得复杂 且难以实现。
02
CATALOGUE
根轨迹的基本概念
极点与零点
极点
系统传递函数的极点是系统动态 特性的决定因素,决定了系统的 稳定性、响应速度和超调量等。
零点
系统传函数的零点对系统的动 态特性也有影响,主要影响系统 的幅值和相位特性。
根轨迹方程
根轨迹方程是描述系统极点随参数变 化的关系式,通过求解根轨迹方程可 以得到系统在不同参数下的极点分布 。
05
CATALOGUE
根轨迹分析法的改进与拓展
引入现代控制理论的方法
状态空间法
将根轨迹分析法与状态空间法相结合,利用状态空间法描述系统的动态行为,从而更全 面地分析系统的稳定性。
最优控制理论
将根轨迹分析法与最优控制理论相结合,通过优化系统的性能指标,提高系统的稳定性 和动态响应。
结合其他分析方法
根轨迹方程的求解方法包括解析法和 图解法,其中图解法是最常用的方法 。
根轨迹的绘制方法
手工绘制
通过选取不同的参数值,计算对应的极点,然后绘制极点分布图。这种方法比较繁琐,但可以直观地了解根轨迹 的形状和变化规律。
软件绘制
利用自动控制系统仿真软件,如MATLAB/Simulink等,可以方便地绘制根轨迹图,并分析系统的动态特性。

自动控制原理 根轨迹法

自动控制原理 根轨迹法

n
i
|
注意
• 相角方程是决定系统闭环根轨迹的充分 必要条件 • 用相角方程绘制根轨迹; • 模值方程主要用来确定已知根轨迹上某 一点的K*值 • 例4-1,4-2
4.2 根轨迹绘制的基本法则
• 法则1: 根轨迹的分支数:根轨迹在[s]平面上的分支数 等于闭环 特征方程的阶数n,也就是分支数与闭环极点的 数目相同。
q
h
f
l
结论:1 零点、 2 极点、3 根轨迹增益
b0 ( s z1 )(s z 2 ) ( s zm ) G( s) H ( s ) K* a0 ( s p1 )(s p2 ) ( s pn )
• 根轨迹增益:
(s z ) (s p )
• 法则6: 根轨迹的起始角(从极点pk)和终止角(到零点zk) :
起始角:
例2 证2
m n
pk ( 2k 1) ( pk z j ) ( pk pi )
j 1 i 1 i k
终止角:
zk ( 2k 1) ( z k p i ) ( z k z j )
i
nm

0 ( 1) ( 2) 1 30
a
(2k 1)π π π , , π nm 3 3
d1 0.42, d 2 1.58(舍去)
s j
1 1 1 0 d d 1 d 2
1 G(s)H(s) 0即(s 3 3s 2 2s K * ) j 3 3 2 2 j K * 0
s2

0
常规根轨迹的绘制法则(P138) 终止于开环零点或。 1 根轨迹起始于开环极点或, 根轨迹对称实轴 2 根轨迹的条数为特征根的个数, 3 ∣n-m∣条渐近线对称于实轴,均起于实轴上的σa 点,

自动控制第五章根轨迹法资料

自动控制第五章根轨迹法资料

8
绘制根轨迹的基本条件
根轨迹的幅值条件:
n
s pj
j 1
负反馈根轨迹的相角条件:
m
n
(s z j ) (s pi ) (2q 1)
j 1
i 1
满足此式的根轨迹,称为1800根轨迹;
正反馈根轨迹的相角条件:
m
n
(s z j ) (s pi ) (2q)
j 1
i 1
满足此式的根轨迹,称为00根轨迹;
9
绘制根轨迹的基本条件
n
s pi
i 1 m
K1
s zj
j 1
m
n
(s z j ) (s pi ) (2q 1)
j 1
i 1
➢ 根轨迹的幅值条件不仅取决于系统开环零极点的分 布,同时还取决于开环根轨迹的增益K1。
➢ 根轨迹的相角条件仅仅取决于系统开环零极点的分 布,与开环根轨迹的增益K1无关。
2
第一章根轨迹的基本概念
根轨迹的概念的提出 反馈控制系统的性质取决于闭环传函。只要求解
出闭环系统的根,系统的响应就迎刃而解。但是对于 3阶以上的系统求根比较困难。如果系统中有一个可 变参数时,求根更困难了。
1948年,伊凡思提出了一种确定系统闭环特征根 的图解法——根轨迹法。在已知开环零极点分布的基 础上,当某些参数变化时确定闭环极点的一种简单的 图解方法。
12
第二节 绘制根轨迹的基本规则
当K1 时,① s z j ( j 1 ~ m) ,上式成立。 z j 是开环传递
函数有限值的零点,有m个。故n阶系统有m支根轨迹的终点在
利用这一方法可以分析系统的性能,确定系统应 有的结构和参数。
3
第一节 根轨迹的基本概念

自动控制原理第第四章 线性系统的根轨迹法

自动控制原理第第四章 线性系统的根轨迹法

2
自动控制原理
§4.1 根轨迹的基本概念
例:开环传递函数
Gs
k1
ss
a
开环系统两个极点为:P1 0, P2 a R(s)
闭环传递函数为:
GB s
s2
k1 as
k1
-
k1
C(s)
ss a
闭环特征方程: s2 as k1 0
闭环特征根:s1,2
a 2
a 2
2
k1
(闭环极点)
3
自动控制原理
在p5附近取一实验点sd, 则∠sd-p5可以认为是p5点的出射角 Sd Z Sd P1 Sd P2 Sd P3 Sd P4 Sd P5 1800
近似为 P5 Z P5 P1 P5 P2 P5 P3 P5 P4 p 1800
p Sd P5 1800
法则4 实轴上存在根轨迹的条件——
这些段右边开环零极点个数之和为奇
数。
m
n
证明:根据相角条件 S Z j S Pi 18002q 1
j 1
i 1
p4
j s平面
例:sd为实验点
p3
z2 sd
p2 z1 p1
p5
① 实验点sd右侧实 轴上零极点提供 1800相角
③ 共轭复零点,复极点提供的相角和为 3600。
2
s1=-1.172,s2=-6.828
33
自动控制原理
法则6 开环复数极点处根轨迹出射角为
p 1800
开环复数零点处根轨迹入射角为:
Z 1800
其中 z p(不包括本点)
34
自动控制原理
j p5
p5
p3 p3
p2

自动控制原理 第四章 根轨迹法

自动控制原理 第四章 根轨迹法

第4章 根 轨 迹 法根轨迹法是分析和设计线性控制系统的图解方法,使用简便,在控制工程上得到了广泛应用。

本章首先介绍根轨迹的基本概念,然后重点介绍根轨迹绘制的基本法则,在此基础上,进一步讨论广义根轨迹的问题,最后介绍控制系统的根轨迹分析方法。

4.1 根轨迹的基本概念4.1.1 根轨迹概念所谓根轨迹,就是系统开环传递函数的某一参数从零变化到无穷时,闭环特征根在s 平面上变化的轨迹。

例如某控制系统的结构图如图4.1所示。

图4.1 控制系统其开环传递函数为()K (0.51)KG s s s =+其闭环传递函数为22()22Ks s s KΦ=++式中:K 为系统开环增益。

于是闭环特征方程可写为2220s s k ++=对上式求解得闭环特征根为1,21s =−令开环增益K 从零变化到无穷,利用上式求出闭环特征根的全部数值,将这些值标注在s 平面上,并连成光滑的粗实线,如图4.2所示,该粗实线就称为系统的根轨迹。

箭头表示随K 值增加根轨迹的变化趋势。

这种通过求解特征方程来绘制根轨迹的方法,称之为解析法。

画出根轨迹的目的是利用根轨迹分析系统的各种性能。

通过第3章的学习知道,系统第4章 根轨迹法·101··101·特征根的分布与系统的稳定性、暂态性能密切相关,而根轨迹正是直观反应了特征根在复平面的位置以及变化情况,所以利用根轨迹很容易了解系统的稳定性和暂态性能。

又因为根轨迹上的任何一点都有与之对应的开环增益值,而开环增益与稳态误差成反比,因而通过根轨迹也可以确定出系统的稳态精度。

可以看出,根轨迹与系统性能之间有着比较密切的联系。

图4.2 控制系统根轨迹4.1.2 根轨迹方程对于高阶系统,求解特征方程是很困难的,因此采用解析法绘制根轨迹只适用于较简单的低阶系统。

而高阶系统根轨迹的绘制是根据已知的开环零、极点位置,采用图解的方法来实现的。

下面给出图解法绘制根轨迹的根轨迹方程。

自动控制原理第四章-根轨迹分析法

自动控制原理第四章-根轨迹分析法

×
p4 z 2
×
p3
×
×
p 2 z1 p1
σ
规则4:根轨迹的分会点(分离点和会合点)d。 (1)定义:分会点是指根轨迹离开实轴进入复平面的点(分 离点)或由复平面进入实轴的点(汇合点),位于相邻两极点 或两零点之间。
(2)位置:大部分的分会点在实轴上,若出现在复平面内时,则 成对出现。
(3)特点:分会点对应于闭环特征方程有重根的点;根轨迹离开
(4)与虚轴的交点:
方法1:闭环特征方程为s3 + 6s2 + 8s + K*= 0 令s = jω得:-jω3 -6ω2 + j8ω + K* = 0
-6ω2 + K* = 0 即
-ω3 + 8ω= 0
K* = 48 ω= 2.8 s-1
方法2:闭环特征方程为 s3 + 6s2 + 8s + K*= 0 列劳斯表如下:
规则1:根轨迹的起点和终点。 根轨迹起始于开环极点,终止开环零点或无穷远。
m
i 1
s
zi
n
s
l 1
pl
1 K
K
K
0 s pl
s s
zi , m条 (, n
m)条
规则2: 根轨迹的条数和对称性。 n阶系统有n条根轨迹。根轨迹关于实轴对称。
规则3: 实轴上的根轨迹分布。
由实数开环零、极点将实轴分为若干段,如某段右边 开环零、极点(包括该段的端点)数之和为奇数,则该段就 是根轨迹,否则不是。如下图所示。
又因为开环传函的零极点表达式为:
m
GK (s)
G(s)H(s)
K
n
(s

自动控制原理第四章根轨迹法

自动控制原理第四章根轨迹法

i 1
j 1
开环极点到此被测零点 (终点)的矢量相角
8. 根轨迹的平衡性(根之和) ( n-m 2)
特征方程 Qs KPs 0
sn an1sn1 a1s a0 K sm bm1sm1 b1s b0 0
n
Qs KPs s p j sn cn1sn1 c1s c0 0 j 1
i 1
j1
k 0,1,2,
s zoi i 开环有限零点到s的矢量的相角
s poj j 开环极点到s的矢量的相角
矢量的相角以逆时针方向为正。
幅值条件:
s
m
m
s zoi
li
A s
i 1 n
i 1 n
s poj
Lj
j 1
j1
li αi
-zoi
Lj βj
×
-poj
开 环 有 限 零 点 到s的 矢 量 长 度 之 积 开环极点到s的矢量长度之积
, 2 2
c 2k 11800 2
由此可推理得到出射角:
其余开环极点到被测极 点(起点)的矢量相角
n1
m
c 2k 1180o j i
j 1
i 1
有限零点到被测极点
(起点)的矢量相角
同理入射角:
其余开环有限零点到被测 零点(终点)的矢量相角
m1
n
r 2k 1180o i j
1 GsHs 0
m
GsHs
KPs Qs
K
i 1
n
s
s
zoi
poj
j 1
P s sm bm1sm1 b1s b0
Q s sn an1sn1 a1s a0
于是,特征方程

自动控制第五章根轨迹法

自动控制第五章根轨迹法

15
绘制根轨迹的规则
【例5-2】已知负反馈系统的开环传递函数为:
解:(1)根轨迹的分支数和对称性 开环极点分别为: 系统的根轨迹有三条分支 (2)根轨迹的起点与终点 起始于系统的三个开环极点,并趋向于无穷远处
K1 Kb
j Kc
K1

(3)根轨迹的渐近线
Kc K1
16
绘制根轨迹的规则
闭环特征根s1,s2 随着K1值得 改变而变化。
(1) K1= 0:s1 = 0,s2 = 2,是根轨迹的起点,用“”表示。 j K1 (2) 0 < K1<1 :s1 ,s2 均是负实数。 K1 s1 ,s2 。 s1从坐标原点开 始沿负实轴向左移动; s2从(2, K1= 0 K1= 0 K1=1 j0)点开始沿负实轴向右移动。 1 0 2 (3) K1= 1: s1 = s2 = 1,重根。
+

K s(0.5s+1)
C(s)
式中,K为系统的开环比例系数。 K1 = 2K 称为系统的开环 根轨迹增益。
系统的闭环传递函数为:
K1 ( s) 2 s 2s K1
系统的闭环特征方程为: s2 + 2s + 2K1 = 0
4
一、根轨迹
用解析法求得系统的两个闭环特征根为:
s1,2 1 1 K1
K1
分离角为:
Kb

Kc K1
17
绘制根轨迹的规则
一般情况下,如果根轨迹位于实轴上相邻的开环极点之间, 则在这两个极点之间至少存在一个分离点;同样,如果根 轨迹位于实轴上两个相邻的开环零点之间(其中一个可在 无穷远处),则这两个零点之间至少存在一个汇合点。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二·线性系统的根轨迹
一、实验目的
1. 熟悉MA TLAB 用于控制系统中的一些基本编程语句和格式。

2. 利用MA TLAB 语句绘制系统的根轨迹。

3. 掌握用根轨迹分析系统性能的图解方法。

4. 掌握系统参数变化对特征根位置的影响。

二、实验内容
1.请绘制下面系统的根轨迹曲线
22()(22)(613)
K
G s s s s s s =++++ (1)
2
(12)
()(1)(12100)(10)
K s G s s s s s +=++++ (2)
2(0.051)
()(0.07141)(0.0120.11)
K G s s s s s +=
+++ (3)
同时得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围。

2. 在系统设计工具rltool 界面中,通过添加零点和极点方法,试凑出上述系统,并观察增加极、零点对系统的影响。

三、实验内容及分析
对于系统1:
1)求解在单位阶跃负反馈下使得闭环系统稳定的K 值的范围。

Matlab 文本如下: figure(1) num=[1];
den=[1 8 27 38 26 0]; %K=1:0.5:30; G=tf(num,den); rlocus(G); grid
xlabel('Real Axis'),ylabel('Imaginary Axis') title('Root Locus') [K,r]=rlocfind(G);
G_c=feedback(G,30);%k=30时的阶跃响应曲线 figure(2) step(G_c)
title('k=30时的阶跃响应曲线')
得到的图形如下:
-12
-10
-8-6-4
-2
2
4
6
-10-50
510
0.840.92
0.980.16
0.30.46
0.6
0.720.840.92
0.982
4
6
8
10120.16
0.30.46
0.6
0.72Root Locus
Real Axis
I m a g i n a r y A x i s
在根轨迹和虚轴的交接处得到K 值为:30.5666,由于闭环系统稳定的条件是极点全位于左半平面,所以在单位阶跃负反馈下使得闭环系统稳定的K 值的范围为:(0,30.5666),从下图可以看出,当K=30时,系统处于临界阻尼状态。

0510152025303540
0.010.020.030.040.05
0.060.07k=30时的阶跃响应曲线
Time (sec)
A m p l i t u d e
2)用系统设计工具rltool 界面中,通过添加零点和极点方法,试凑出上述系统,并观察增加极、零点对系统的影响。

den=[1 8 27 38 26 0]; num=[1];
G=tf(num,den); rltool(G)
上图是添加了一个零点之后的根轨迹图,其中零点值为:-2.56。

可以测出,系统临界稳定时K的值增大到41.7。

添加合适的零点有助于改善系统动态和稳态性能。

对于系统2:
1)求解在单位阶跃负反馈下使得闭环系统稳定的K值的范围。

Matlab文本如下:
figure(1)
num=[1 12];
den=[conv([1,1],conv([1,12,100],[1,10]))];
%K=1:0.5:10;
G=tf(num,den);
zet=[0.1:0.1:1];
wn=[1:10];
sgrid(zet,wn);
hold on;
rlocus(G);
xlabel('Real Axis'),ylabel('Imaginary Axis')
title('Root Locus')
[K,r]=rlocfind(G);
G_c=feedback(G,1082.3); %k=1082.3时的阶跃响应曲线
figure(2)
step(G_c)
title('k=1082.3时的阶跃响应曲线')
得到图形如下:
-60
-50
-40
-30
-20
-10
10
20
30
-50-40
-30-20
-1001020
30
40500.84
0.920.98
0.160.3
0.46
0.6
0.72
0.84
0.920.98
10
20
30
40
50
600.16
0.3
0.46
0.6
0.72
Root Locus
Real Axis
I m a g i n a r y A x i s
20406080100120
00.2
0.4
0.6
0.8
1
1.2
1.4
1.6
x 10
-3
k=1082.3时的阶跃响应曲线
Time (sec)
A m p l i t u d e
在根轨迹和虚轴的交接处得到K 值为:1082.3,由于闭环系统稳定的条件是极点全位于左半平面,所以在单位阶跃负反馈下使得闭环系统稳定的K 值的范围为:(0,1082.3),从下图可以看出,当K=30时,系统处于临界阻尼状态。

2) 用系统设计工具rltool 界面中,通过添加零点和极点方法,试凑出上述系统,并观
察增加极、零点对系统的影响。

num=[1 12];
den=[conv([1,1],conv([1,12,100],[1,10]))];
G=tf(num,den);
rltool(G)
添加了一个值为-11.5的零点,使得该系统在添加零点在(-11.5,0)的区间内时,该系统都为稳定系统。

对于系统3:
1)求解在单位阶跃负反馈下使得闭环系统稳定的K值的范围。

Matlab文本如下:
figure(1)
num=[0.05 1];
den=[conv([0.0714],[0.012,0.1,1])];
%K=1:0.5:10;
G=tf(num,den);
zet=[0.1:0.1:1];
wn=[1:10];
sgrid(zet,wn);
hold on;
rlocus(G);
xlabel('Real Axis'),ylabel('Imaginary Axis')
title('Root Locus')
[K,r]=rlocfind(G);
G_c=feedback(G,1); %k=1时的阶跃响应曲线
figure(2)
step(G_c)
得到图像如下:
-70
-60
-50
-40
-30-20
-10
10
-20-15
-10
-5
5
10
15
20
0.9840.996
0.35
0.58
0.760.860.92
0.960.9840.996
10
2030405060
700.35
0.58
0.76
0.86
0.92
0.96
Root Locus
Real Axis
I m a g i n a r y A x i s
该系统为稳定系统,K=(0,无穷)。

2) 用系统设计工具rltool 界面中,通过添加零点和极点方法,试凑出上述系统,并观察增加极、零点对系统的影响。

num=[0.05 1];
den=[conv([0.0714],[0.012,0.1,1])]; G=tf(num,den); rltool(G)
四、实验结果与心得
通过根轨迹图,可以得到以下结论:
1.可以利用根轨迹图,确定使得系统稳定的K值范围。

2.可以利用根轨迹图,在给定K值的情况下,求解系统的动态性能和稳态误差。

3.附加零点相对开环极点的位置选配得当,才能使得系统的稳态性能的动态性能得到显著的改善。

相关文档
最新文档