二次根式案例分析
《二次根式》课例分析

湘西自治州中小学教师教育技术能力建设应用成果—案例分析报告教学活动标题:二次根式所属学科或领域:人教版八年级数学下册二次根式适于的学段/年级:八年级下册设计者:龚思思教学实施者:龚思思一、实践活动简介在本次教学活动中,学生通过回顾所学的实数(平方根和算术平方根)的基础上,进一步探究二次根式的概念,二次根式有意义的判定以及二次根式的双重非负性应用,然后让学生在由浅入深的练习中认识、理解、并掌握本节知识。
二、学习者分析初二学生已经熟悉自己的学习环境,课堂上注意力能保持稳定,集中注意力的能力较好,有自主学习的能力。
本节课是在学生已经学习了平方根和算术平方根的基础上,进一步研究二次根式的概念,性质,和运算。
本章内容与“实数”“整式”“勾股定理”联系紧密,同时也是学习二次根式的化简和运算的依据,因此本节课是本章的关键。
三、教学/学习目标及其对应的课程标准(1)、知识目标:①经历二次根式概念的发生过程,掌握二次根式的概念;②理解二次根式何时有意义,会在简单情况下求被开方数中所含字母的取值范围;③灵活运用二次根式的双重非负性质。
(2)、能力目标:经历探索二次根式是否有意义,发展学生观察、分析、发现问题的能力。
(3)、情感态度:培养学生准确归纳的科学精神。
四、教学理念和教学方式教学理念:本节课是后面学习二次根式的性质,运算的基础,是本章的关键,因此在备课时我就按照目标让学生明白、过程让学生经历、结论让学生讨论、规律让学生总结的指导原则进行认真备课,尤其对例题与练习题也进行了精心的挑选,按照由易到难由简入繁的顺序安排,并且认真制作了课件,便于学生对重点内容的理解和难点的解决.教学方式:本节课中,主要采用自主学习,合作探究,引领提升的方式,启发式、讲练结合的方法展开教学。
先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念;再对概念的内涵进行分析,深刻理解二次根式,并灵活运用这些知识。
五、应用信息技术的依据或思路本节课的重点是对二次根式的定义和二次根式有意义的判定,教师通过多媒体引导学生观察交流和思考。
二次根式例题讲解

典例剖析
例 2 完成下列各个问题: (1)已知 ( x y 3)2 2 y 0, 1 则 x y ;
考点解析: 1.三种非负数:二次根式,绝对值,完全平方式; 2.几个非负数之和为 0,则每个非负数都为 0.
典例剖析
例 2 完成下列各个问题: (2)当 x 取何值时, 9 x 1 3 的值最小?
典例剖析
例 1 完成下列各个问题: (1)使二次根式 4x 1 有意义的 x 的取值范围 是 x≥0.25 ; (2)函数 y
是
x 3 的自变量 x 的取值范围 x 1
.
x≥-3 且 x≠1
考点解析: 1.二次根式有意义的条件:被开方数为非负数; 2.分式有意义的条件:分母不等于 0.
解:∵ 9x 1 ≥0 ∴当 9 x 1 0 时, 9 x 1 3 的值最小
1 解得 x 9 1 即当 x 时, 9 x 1 3 的值最小 9
考点解析: 二次根式的值为非负数.
典例剖析
例 2 完成下列各个问题: (3)若 a<1,化简式子 ( a 1) 2 1 的结果是( D ) A. a 2 B. 2 a C. a
x y (3 2 2 ) (3 2 2 )
3 2 2 3 2 2 4 2 ∴ x 2 y xy2 xy( x y) 4 2
王牌例题
例 2 二次根式的化简求值问题 已知 x 3 2 2,y 3 2 2 , 2 2 求式子 x y xy 的值. 考点解析: 化简求值步骤 先化简
二次根式的运算
知识梳理
知识点 1 与二次根式有关的概念: (1)二次根式的定义:一般地,我们把形如 a (a≥0) 的式子叫做二次根式,“ ”称为二次根号. (2)最简二次根式:满足下列两个条件的二次根式, 叫做最简二次根式. ①被开方数不含分母; ②被开方数不含能开得尽方的因数或因式. (3)同类二次根式:几个二次根式化简成最简二次根 式后,如果被开方数相同,这几个二次根式就叫 做同类二次根式.
二次根式经典例题

二次根式经典例题例1 x 是怎样的实数时,下列式子在实数范围内有意义?(1)1+x ;(2)22+x ;(3)2x -;(4)x 231-.(1)解:由二次根式的意义知:x +1≥0,∴x ≥-1, ∴当x ≥-1时, 式子1+x 在实数范围内有意义.(2)解:∵在实数范围内,不论x 取什么值,恒有x 2+2≥0. ∴x 取任何实数时,式子22+x 在实数范围内都有意义.(3)解:∵在实数范围内,不论x 取什么值,恒有-x 2≤0, 又∵二次根式的被开方数大于等于零;∴-x 2≥0,∴x 2=0,即x =0 ,∴当x =0时, 式子2x -在实数范围内有意义.(4)解:由题意知:320320≥≠x x ⎧⎨⎩--. ∴3-2x >0,∴x <23, ∴当x <23时,x231-在实数范围内有意义. 例2 计算:(1)(12)2;(2)(32)2; (3)(b a +)2(a +b ≥0).例3 计算:(1)(12+x )2-(2x )2;(2)(36)2;(3)(-221)2.解:(1)(12)2 = 12;(2)(32)2 =32;(3)当a +b ≥0时,(b a +)2=a +b .3.解:(1)(12+x )2-(2x )2 = x 2+1-x 2=1;(2)(36)2=32×(6)2=9×6=54;(3)(-221)2=(-2)2×(21)2=4×21=2.例4计算:(1)8×2; (2)21×8; (3)a 2·a 8(a ≥0).解:(1)8×2=2×8=16=4;(2)21×8=821⨯=4=2; (3)当a ≥0时,a 2·a 8=a a 82⋅=216a =4a .例5 化简:(1 (2)3a (a ≥0);(3)324b a (a ≥0,b ≥0).解:(143⨯=3×4=3×2=32;(2)当a ≥0时,3a =a a ⋅2=2a a a ;(3)当a ≥0,b ≥0时,324b a =b b a ⋅224=()22ab =b ab 2.例6 计算:(1(2;(3)3a·ab(a≥0,b≥0);(4)解:1(22=(3)当a≥0,b≥0时,3a2;a·ab b(4)=3×26×例7计算:(1)(-×(-;(2(1)(-×(-=(-3)×(-2=(2例8 如图,在△ABC中,∠B=90°,AB=10cm,BC=20cm,求AC.解:在△ABC 中,∠B =90°,AB 2+BC 2=AC 2,AC ,当AB =10 cm ,BC =20 cm 时,AC =.例9化简:(1 (2 ;(3 (4a ≥0,b >0)解:(154; (2=774;(343 ;(4a ≥0,b >0)=a b 32. 例10 化去根号内的分母:(1)32 ; (2)312 ; (3)xy 32(x >0,y ≥0).解:(1)32(2)312=3; (3)当x >0,y ≥0时,x y 32=例11化简下列各式,使分母中不含根号.(1)32;(2(x >0);(3x >0,y ≥0).(1)32 3(2)当x >05x ; (3)当x >0,y ≥0时,. 例12 计算:(1)32+43-22+3;(2)12+18-8-32;(3)40-5101+10 例13 计算:(1))32125(+×15; (2))52)(103(-+.例14 计算:(1))23)(23(-+;(2)2)53(+.2。
二次根式性质的应用

二次根式性质的应用
1 二次根式性质
二次根式性质是数学中的一个概念,它指的是当二次多项式的根相等时,其系数的关系。
例如,当ax^2+bx+c=0( a非零)成立时,有b^2-4ac=0,这就是二次根式性质的应用。
2 应用案例
二次根式性质的应用不仅仅只在数学领域,它也可以用于一些社会经济活动中。
例如,在宣传活动中,如果假设考虑到消费者三个行为(购买、放弃购买、口碑宣传),那么可以用收益相等方程来表示它们之间的关系。
于是,当用二次根式性质去解决这个方程时,就可以得出该活动的最大收益以及不同参数组合对应的收益。
3 日常生活中的应用
在日常生活中,比如无线通信这一领域,二次根式性质的应用也可以体现出来,利用二次根式性质,可以预知不同的参数组合,不同的参数组合有着不同的信号传输距离,从而可以合理的设计系统的安装距离,提高系统的可靠性。
4 总结
可以看出,二次根式性质的应用十分广泛,既可以应用在数学领域,也可以应用于社会经济活动中以及实际生活方面。
它通过分析二
次多项式的根的相等关系,从而可以发现潜在的问题,并有效的解决
问题,同时也可以解决收益最大化的问题,极大的提高了社会生产力。
二次根式示例数学教案

二次根式示例数学教案标题:二次根式的教学案例设计一、教学目标:1. 知识与技能:学生能够理解并掌握二次根式的概念,了解其性质和运算规则,并能灵活运用解决实际问题。
2. 过程与方法:通过观察、思考、讨论和实践,培养学生分析问题和解决问题的能力,以及自主学习和合作学习的能力。
3. 情感态度与价值观:培养学生对数学的兴趣和热爱,养成严谨的逻辑思维习惯,形成良好的学习态度和科学精神。
二、教学内容:1. 二次根式的概念:一个数的平方根如果是一个正数或0,那么这个数叫做二次根式。
例如√9=3,√4=2,√0=0。
2. 二次根式的性质:(a) √a² = |a| (b) √ab = √a * √b (c) √a/b = √a / √b (d) (√a)^2 = a (e) √(a^n) = a^(n/2)3. 二次根式的运算:包括加法、减法、乘法、除法和开方运算。
三、教学过程:1. 引入新课:通过一些实际生活中的例子,如测量物体的长度、面积等,引出二次根式的基本概念。
2. 讲解新知:讲解二次根式的定义和性质,引导学生理解和记忆。
3. 实践操作:让学生进行二次根式的计算练习,包括基本的加减乘除和开方运算。
4. 解决问题:给出一些涉及二次根式的问题,让学生尝试解决,然后进行讨论和分享。
5. 小结巩固:总结本节课的主要内容和重点难点,让学生回顾和复习。
6. 布置作业:布置一些相关的习题,让学生在课后进行自我检测和巩固。
四、教学反思:在教学过程中,教师要注意观察学生的反应和理解程度,及时调整教学策略。
同时,也要鼓励学生提问和发表自己的观点,培养他们的主动性和创新性。
此外,教师还可以通过各种形式的评价和反馈,帮助学生发现自己的优点和不足,提高他们的学习效果。
五、教学评估:通过课堂观察、作业检查和测试成绩等方式,对学生的学习情况进行评估。
主要考察他们对二次根式概念的理解程度,对二次根式性质和运算规则的掌握程度,以及应用二次根式解决实际问题的能力。
《16.1 二次根式》教学设计案例(第2课时)

《16.1 二次根式》教学设计案例(第2课时)一、内容和内容解析1.内容二次根式的性质。
2.内容解析本节教材是在学生学习二次根式概念的基础上,结合二次根式的概念和算术平方根的概念,通过观察、归纳和思考得到二次根式的两个基本性质.对于二次根式的性质,教材没有直接从算术平方根的意义得到,而是考虑学生的年龄特征,先通过“探究”栏目中给出四个具体问题,让学生学生根据算术平方根的意义,就具体数字进行分析得出结果,再分析这些结果的共同特征,由特殊到一般地归纳出结论.基于以上分析,确定本节课的教学重点为:理解二次根式的性质.二、目标和目标解析1.教学目标(1)经历探索二次根式的性质的过程,并理解其意义;(2)会运用二次根式的性质进行二次根式的化简;(3)了解代数式的概念.2.目标解析(1)学生能根据具体数字分析和算术平方根的意义,由特殊到一般地归纳出二次根式的性质,会用符号表述这一性质;(2)学生能灵活运用二次根式的性质进行二次根式的化简;(3)学生能从已学过的各种式子中,体会其共同特点,得出代数式的概念.三、教学问题诊断分析二次根式的性质是二次根式化简和运算的重要基础.学生根据二次根式的概念和算术平方根的意义,由特殊到一般地得出二次根式的性质后,重在能灵活运用二次根式的性质进行二次根式的化简和解决一些综合性较强的问题.由于学生初次学习二次根式的性质,对二次根式性质的灵活运用存在一定的困难,突破这一难点需要教师精心设计好每一道习题,让学生在练习中进一步掌握二次根式的性质,培养其灵活运用的能力.本节课的教学难点为:二次根式性质的灵活运用.四、教学过程设计1.探究性质1问题1你能解释下列式子的含义吗?,,,.师生活动:教师引导学生说出每一个式子的含义.【设计意图】让学生初步感知,这些式子都表示一个非负数的算术平方根的平方.问题2根据算术平方根的意义填空,并说出得到结论的依据.;;;.师生活动学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质1作铺垫.问题3从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?师生活动:引导学生归纳得出二次根式的性质:(≥0).【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的能力.例2 计算(1);(2).师生活动:学生独立完成,集体订正.【设计意图】巩固二次根式的性质1,学会灵活运用.2.探究性质2问题4你能解释下列式子的含义吗?,,,.师生活动:教师引导学生说出每一个式子的含义.【设计意图】让学生初步感知,这些式子都表示一个数的平方的算术平方根.问题5根据算术平方根的意义填空,并说出得到结论的依据.= ,= ,= ,= .师生活动学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质2作铺垫.问题6从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?师生活动:引导学生归纳得出二次根式的性质:(≥0)【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的能力.例3 计算(1);(2).师生活动:学生独立完成,集体订正.【设计意图】巩固二次根式的性质2,学会灵活运用.3.归纳代数式的概念问题7 回顾我们学过的式子,如,,,,,,,(≥0),这些式子有哪些共同特征?师生活动:学生概括式子的共同特征,得出代数式的概念.【设计意图】学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括能力. 4.综合运用(1)算一算:;;;.【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,第(2)、(3)、(4)小题要特别注意结果的符号.(2)想一想:中,的取值范围是什么?当≥0时,等于多少?当时,又等于多少?【设计意图】通过此问题的设计,加深学生对的理解,开阔学生的视野,训练学生的思维. (3)谈一谈你对与的认识.【设计意图】加深学生对二次根式性质的理解.5.总结反思(1)你知道了二次根式的哪些性质?(2)运用二次根式性质进行化简需要注意什么?(3)请谈谈发现二次根式性质的思考过程?(4)想一想,到现在为止,你学习了哪几类字母表示数得到的式子?说说你对代数式的认识.6.布置作业:教科书习题16.1第2,4题.五、目标检测设计1.;;.【设计意图】考查对二次根式性质的理解.2.下列运算正确的是()A. B.C.D. 【设计意图】考查学生运用二次根式的性质进行化简的能力.3.若,则的取值范围是.【设计意图】考查学生对一个数非负数的算术平方根的理解.4.计算:.【设计意图】考查二次根式性质的灵活运用.。
沪科版数学八年级下册16.1二次根式优秀教学案例

(三)情感态度与价值观
1.培养学生对数学的兴趣和自信心,让他们体验到数学学习的乐趣,激发学生持续学习的动力。
2.通过对二次根式的学习,培养学生勇于探究、独立思考的精神,提高他们的自主学习能力。
在教学过程中,我将采用引导式教学法,通过问题驱动,引导学生自主探究、合作交流,培养他们的数学思维能力和解决问题的能力。同时,注重数学与现实生活的联系,让学生感受到数学的实用性和魅力。
二、教学目标
(一)知识与技能
1.理解二次根式的定义,掌握二次根式的性质,如:二次根式具有非负性、同类二次根式的概念等。
1.请你用自己的话解释二次根式的定义和性质。
2.思考如何将二次根式应用于实际问题中?
3.总结二次根式的运算方法,并尝试给出例子。
(四)总结归纳
在学生小组讨论后,我将邀请各小组的代表分享他们的讨论成果。在此基础上,我将对学生的回答进行总结和归纳,强调二次根式的关键概念和运算方法。
(五)作业小结
最后,我将布置相关的作业,让学生巩固本节课所学的知识。作业包括填空题、选择题和解答题,难度适中。在作业中,我将强调实际问题的解决,让学生感受数学的应用价ห้องสมุดไป่ตู้。
(四)反思与评价
在课堂教学的最后阶段,我将组织学生进行反思和评价。首先,让学生回顾本节课所学的知识,总结二次根式的定义、性质和运算方法。其次,让学生谈谈自己在学习过程中的收获和不足,分享自己的学习心得。最后,我对学生的表现进行评价,既要肯定他们的进步,也要指出需要改进的地方,为下一节课的教学做好准备。
四、教学内容与过程
(一)导入新课
二次根式典型例题(较好)

二次根式典型例题讲解【知识要点】10)a ≥的式子叫做二次根式。
注意:这里被开方数a 可以是数,也可以是单项式,多项式,分式等代数式,其中0a ≥式的前提条件。
2、二次根式的性质:(10(0)a ≥ (2)2(0)a a =≥ (3a =(4))0b ,0a (b a ab ≥≥⋅= (50,0)a b ≥> 3、二次根式的乘法法则:两个二次根式相乘,被开方数相乘,根指数不变。
即)0b ,0a (ab b a ≥≥=⋅。
4、二次根式的除法法则:两个二次根式相除,被开方数相除,根指数不变。
0,0)a b =≥>。
5、最简二次根式:满足下列两个条件的二次根式,叫做最简二次根式:(1)被开方数中不含能开得尽方的因数或因式;(2)根号下不含分母,分母中不含根号。
6、分母有理化:把分母中的根号化去的方法叫做分母有理化。
分母有理化的依据是分式的基本性质和二次根式的性质公式2(0)a a =≥。
有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就称这两个代数式互为有理化因式。
一般常见的互为有理化因式有如下几种类型:①;③a +a④7、同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式。
8、二次根式的加减法二次根式的加减,就是合并同类二次根式。
二次根式加减法运算的一般步骤:(1)将每一个二次根式化为最简二次根式; (2)找出其中的同类二次根式;(3)合并同类二次根式。
【典型例题】例1、下列各式哪些是二次根式?哪些不是?为什么? (1(2(3(4(5(6例2、x 是怎样的实数时,下列各式有意义。
(1(2(3(4例3、(12;(2(3)设,,a b c 为ABC ∆的三边,化简例4、化简:(1(2(30,0,0)x y z >>>(4))56(1031-⋅例5、把下列各式中根号外的因式适当改变后移到根号内。
(1)(2)-(3)(x -(4)(1x -例6、计算:(1))484(456-⋅-(2))1021(32531-⋅⋅ (3)648(4)545)321(÷- (5)12531110845-++【模拟试题】一、填空题:1、计算:0)15(-=________;13-=________;32=________;2)3(-=________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式
教学目标:
1.根据了解二次根式的概念:
2.知道被开方数必须是非负数的理由;
3.能运用二次根式的性质解决实际问题
新设计:我们知道,用字母表示数,可以将字母和数一起运算。
前面已经学习了单项式、多项式和分式等概念和运算,可以发现,式的运算本质上就是对符号运用运算律所进行的形式运算。
本节课主要讨论如何对数和字母开平方而得到的特殊式子——二次根式的加、减、乘、除运算。
前面我们学习的平方根和算术平方根的概念和性质是学习二次根式的基础,我们先来回忆一下平方根和算术平方根的有关知识。
新设计:问题平方根的概念,算术平方根的概念,平方根的性质。
学情分析:本班40名学生,成绩参差不齐,程度差距很大,鉴于此,对于学生要分层教学。
重点难点:1.重点:形如(a≥0)的式子叫做二次根式的概念;2.
难点:运用二次根式的性质解决实际问题。
教学过程第一学时教学活动活动1【讲授】二次根式
教学过程设计
创设情境,提出问题
引言
我们知道,用字母表示数,可以将字母和数一起运算。
前面已经学习了单项式、多项式和分式等概念和运算,可以发现,式的运算本质上
就是对符号运用运算律所进行的形式运算。
本节课主要讨论如何对数和字母开平方而得到的特殊式子——二次根式的加、减、乘、除运算。
前面我们学习的平方根和算术平方根的概念和性质是学习二次根式
的基础,我们先来回忆一下平方根和算术平方根的有关知识。
问题1 平方根的概念,算术平方根的概念,平方根的性质。
师生活动:给学生充分思考和讨论时间,让他们回忆有关平方根和算术平方根的有关知识,才能在此基础上再进一步研究二次根式概念。
设计意图:回顾已学的数和式的运算,丛数和式运算的完整性角度提出要研究的问题,让学生了解本章将要学习的主要内容,起到先行组织者的作用。
问题请思考下列问题
面积为3的正方形的边长为,面积为S的正方形边长为。
一个长方形围栏,长是宽的2倍,面积为130㎡,则它的宽为 m。
一个物体从高处自由落下,落在地面所用的时间t(单位:s)与开始落下的高度h(单位:m)满足关系h=5t2。
如果用含有h的式子表示t,则t为。
师生活动:学生思考并完成上述问题,用算术平方根表示结果,教师进行适当引导和评价。
关键是帮助学生实现从数的算术平方根到用含有字母的式子表示算术平方根的抽象。
设计意图:为概括二次根式的概念提供具体例子,同时发展符号意识。
抽象概括,形成概念
问题:上面得到的式子有什么共同特征?
师生活动:教师引导学生概括得出共同特征,并给出二次根式的定义。
追问1 中a的取值有要求吗?为什么?
师生活动:教师引导学生讨论,分析共同特点,归纳得到二次根式的概念,并强调“被开方数非负”。
追问2 二次根式有什么样的特点?
师生活动:给学生充分的思考和讨论时间,让学生总结二次根式的特点,教师归纳总结。
设计意图:采用从具体到抽象的方式,通过归纳的出二次根式的概念。
辨析概念,应用巩固
例1 下列各式是二次根式吗?
师生活动:教师引导学生从二次根式的特征出发思考问题。
例2 求下列二次根式中字母的取值范围:
师生活动:教师可以通过问题“观察各式被开方数是什么?你能根据二次根式的概念的带答案吗?”引导学生从概念出发思考问题。
追问:求二次根式中字母的取值范围的基本依据:
师生活动:给学生充分的思考和讨论时间,让学生总结回答,教师归纳总结。
问题: x取何值时,下列二次根式有意义?
师生活动:学生抢答加分,调动学大亨的积极性。
设计意图:让学生独立思考,再追问。
问题:计算
师生活动:通过简单计算让学生总结规律。
例3 计算
师生活动:学生直接回答。
设计意图:通过加分制调动学生的积极性,提高学生的注意力,通过练习巩固知识点。
问题: 计算
师生活动:通过简单计算让学生总结规律。
追问:
师生活动:学生讨论回答,教师归纳总结。
设计意图:通过简单计算学生自己归纳总结二次根式的性质,加深学生的印象。
综合应用,深化提高
练习1学生完成教科书第3页的练习。
练习2 若1<x<4,则化简
设计意图:辨别二次根式的概念,确定二次根式有意的条件。
利用二次根式的性质解题。
小结
教师与学生一起回顾本节课所学主要内容,并请学生回答下列问题:什么叫二次根式?二次根式有意义的条件是什么?二次根式的值的范围是什么?
二次根式与算术平方根有什么联系与区别?
我们以前学过整式、分式都能像数一样进行运算,你认为对于二次根式应该进一步研究哪些问题?
设计意图:共同回顾本节课学习的概念,再次练习算术平方根理解二次根式的概念,提出二次根式应该研究的问题。
布置作业
教科书习题16.1第1、2题。
教学反思:
1.在实际授课中,通过以下步骤让学生认识、理解、并掌握本节知识:(1)让学生回顾了算术平方根与平方根的概念,并且通过一个思考栏目的两道题,得出二次根式的定义后又复习了算术平方根具有双重非负性;(2)通过练习掌握如何判断一个式子是否是二次根式的条件,并经过例1掌握二次根式在实数范围内有意义的条件;(3)通过练习让学生得出二次根式的两个性质,体会从特殊到一般的思维过程,进而掌握公式的一般推导方法;……,本节课大部分时间都是引导学生边学边做,让学生经历了整个学习过程。
2.在学习过程中,突出了引导学生自己得出结论,特别是二次根式的两个性质,在做完思考题之后,学生自己就初步得出了结论,而且通过其他学生的补充越来越完善。
3. 让学生自己找出性质1和性质2的区别与联系,虽然不够系统和完整,但通过这样的训练,培养了学生总结规律的能力。
4.在实际教学中,仍然存在着对课堂时间把握不精确的问题,出现了前松后紧的现象,以致有深度的练习没时间完成,结束的也比较仓促。
在今后教学中,应注意时间的掌控。
5.在引导学生探索求知和互动学习方面还有欠缺。
新的教学理念要
求教师在课堂教学中注意引导学生探究学习,在我的课堂教学中,对学生探索求知进行了引导,并且鼓励大家自己得出结论,但在互动方面做的还不够,大部分学生都是独立思考,很少与同学合作交流,今后的教学中应多培养学生合作交流的意识,这样有助于他们今后的生活和学习。