光学滤波器与频谱分析
什么是频谱分析仪,频谱分析仪的工作原理是什么,频谱分析仪怎样使用?

什么是频谱分析仪,频谱分析仪的工作原理是什么,频谱分析仪怎样使用?什么是频谱分析仪?频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。
它又可称为频域示波器、跟踪示波器、分析示波器、谐波分析器、频率特性分析仪或傅里叶分析仪等。
现代频谱分析仪能以模拟方式或数字方式显示分析结果,能分析1赫以下的甚低频到亚毫米波段的全部无线电频段的电信号。
仪器内部若采用数字电路和微处理器,具有存储和运算功能;配置标准接口,就容易构成自动测试系统。
频谱分析仪的工作原理以及应用方面推广:频谱分析仪的组成及工作原理图1所示为扫频调谐超外差频谱分析仪组成框图。
输入信号经衰减器以限制信号幅度,经低通输入滤波器滤除不需的频率,然后经混频器与本振(LO)信号混频将输入信号转换到中频(IF)。
LO 的频率由扫频发生器控制。
随着LO频率的改变,混频器的输出信号(它包括两个原始信号,它们的和、差及谐波,)由分辨力带宽滤波器滤出本振比输入信号高的中频,并以对数标度放大或压缩。
然后用检波器对通过IF滤波器的信号进行整流,从而得到驱动显示垂直部分的直流电压。
随着扫频发生器扫过某一频率范围,屏幕上就会画出一条迹线。
该迹线示出了输入信号在所显示频率范围内的频率成分。
频谱仪各部分作用及显示信号分析输入衰减器:保证频谱仪在宽频范围内保持良好匹配特性,以减小失配误差;保护混频器及其它中频处理电路,防止部件损坏和产生过大的非线性失真。
混频器:完成信号的频谱搬移,将不同频率输入信号变换到相应中频。
在低频段(《3GHz)利用高混频和低通滤波器抑制镜像干扰;在高频段(》3GHz)利用带通跟踪滤波器抑制镜像干扰。
本振(LO):它是一个压控振荡器,其频率是受扫频发生器控制的。
其频率稳定度锁相于参考源。
扫频发生器:除了控制本振频率外,它也能控制水平偏转显示,锯齿波扫描使频谱仪屏幕上从左到右显示信号,然后重复这个扫描不断更新迹线。
史上最好的频谱分析仪基础知识(收藏必备)

频谱分析是观察和测量信号幅度和信号失真的一种快速方法,其显示结果可以直观反映出输入信号的傅立叶变换的幅度。
信号频域分析的测量范围极其宽广,超过140dB,这使得频谱分析仪成为适合现代通信和微波领域的多用途仪器。
频谱分析实质上是考察给定信号源,天线,或信号分配系统的幅度与频率的关系,这种分析能给出有关信号的重要信息,如稳定度,失真,幅度以及调制的类型和质量。
利用这些信息,可以进行电路或系统的调试,以提高效率或验证在所需要的信息发射和不需要的信号发射方面是否符合不断涌现的各种规章条例。
现代频谱分析仪已经得到许多综合利用,从研究开发到生产制造,到现场维护。
新型频谱分析仪已经改名叫信号分析仪,已经成为具有重要价值的实验室仪器,能够快速观察大的频谱宽度,然后迅速移近放大来观察信号细节已受到工程师的高度重视。
在制造领域,测量速度结合通过计算机来存取数据的能力,可以快速,精确和重复地完成一些极其复杂的测量。
有两种技术方法可完成信号频域测量(统称为频谱分析)。
1.FFT分析仪用数值计算的方法处理一定时间周期的信号,可提供频率;幅度和相位信息。
这种仪器同样能分析周期和非周期信号。
FFT 的特点是速度快;精度高,但其分析频率带宽受ADC采样速率限制,适合分析窄带宽信号。
2.扫频式频谱分析仪可分析稳定和周期变化信号,可提供信号幅度和频率信息,适合于宽频带快速扫描测试。
v1.0 可编辑可修改图1 信号的频域分析技术快速傅立叶变换频谱分析仪快速傅立叶变换可用来确定时域信号的频谱。
信号必须在时域中被数字化,然后执行FFT算法来求出频谱。
一般FFT分析仪的结构是:输入信号首先通过一个可变衰减器,以提供不同的测量范围,然后信号经过低通滤波器,除去处于仪器频率范围之外的不希望的高频分量,再对波形进行取样即模拟到数字转换,转换为数字形式后,用微处理器(或其他数字电路如FPGA,DSP)接收取样波形,利用FFT计算波形的频谱,并将结果记录和显示在屏幕上。
语音信号的频谱分析和FIR滤波器的设计要点

目录一.绪论1.课题背景 (2)2.本次课程设计的目的 (2)二.设计原理及实验工具1.设计原理(1)采样频率、位数及采样定理 (3)(2)时域信号的FFT分析 (4)(3)基于窗函数的FIR数字滤波器设计法 (4)2.实验工具 (5)三.仿真程序及频谱分析1.语音信号的频谱分析 (5)2.FFT频谱分析 (7)3.FIR数字低通滤波器的设计 (8)4.FIR数字高通滤波器的设计 (10)5.FIR数字带通滤波器的设计 (13)6.保存滤波后的声音文件 (15)五.设计总结 (15)六.参考文献 (16)一.绪论1.课题背景随着信息时代和数字世界的到来,数字信号处理己成为当今一门极其重要的学科和技术领域,数字信号处理在通信、语音、图像、自动控制、医疗和家用电器等众多领域得到了广泛的应用。
任意一个信号都具有时域与频域特性,信号的频谱完全代表了信号,因而研究信号的频谱就等于研究信号本身。
通常从频域角度对信号进行分析与处理,容易对信号的特性获得深入的了解。
因此,信号的频谱分析是数字信号处理技术中的一种较为重要的工具。
在工程领域中,MATLAB 是一种倍受程序开发人员青睐的语言,对于一些需要做大量数据运算处理的复杂应用以及某些复杂的频谱分析算法MATLAB显得游刃有余。
2.本次课程设计的目的(1)掌握傅里叶变换的物理意义,深刻理解傅里叶变换的内涵(2)了解matlab对声音信号的处理指令(3)聊二级计算机存储信号的方式及语音信号的特点(4)加深对采样定理的理解(5)加深对信号分析工程应用的理解,拓展学生在信号分析领域的综合应用能力(6)掌握用窗函数法设计FIR数字滤波器的原理和方法(7)掌握FIR滤波器的快速卷积实现原理。
(8)学会调用MATLAB函数设计与实现FIR滤波器二.实验原理、工具1.实验原理(1)采样频率、位数及采样定理采样频率:定义了每秒从连续信号中提取并组成离散信号的采样个数,用赫兹(Hz)来表示。
光学滤波器详解

欲将1和2复用到输出端口2,则1L/2=及2L/2=/2 ,或
者: (12) L2 nef f 1 1 1 2 L
则干涉仪两臂长度差:L2neff111212necf f
利用3个22MZI元件构成四通道复用器:
1
3 +2
锗的光纤时,光纤的折射率将随光强而发生永久性 改变. • 人们利用这种效应可在几厘米之内写入折射率分 布光栅,称为光纤光栅. • 光纤光栅最显著的优点是插入损耗低,结构简单,便 于与光纤耦合,而且它具有高波长选择性.
光纤光栅的产生
1 干涉法 干涉法是利用双光束干涉原理,将一束紫外 光分成两束平行光,并在光纤外形成干涉场, 调节两干涉臂长,使得形成的干涉条纹周期 满足制作光纤光栅的要求.
2. 切趾型光栅: 两端折射率分布逐渐递减至零,消除了折射率突 变,从而使反射谱不存在旁瓣
高斯切趾
平均值为零 的升余弦切
趾
3. 啁啾光栅:
折射率调制幅度不变,而周期沿光栅轴向变化,反射 谱宽增加
长波长
短波长
4. 取样光栅Sampled gratings:梳状滤波器 5. 相移光栅Phase-shifted FBGs:
• 注意:相位差可以由不同的路径长度用L给出 或n1n2 时的折射率差产生.这里,考虑两臂具有相同的折射率,并
且n1=n2 =neff波导中的有效折射率,于是:
.
• 式 对中一给=定2的n相eff/位.差L,与之相对应的传输矩阵为:
exjp L/(2)
0
M
0
ex jp L (/2)
Ein,1
工作原理
0
0
/2
空间频谱与空间滤波实验报告.

空间频谱与空间滤波一、实验背景近三十年来,波动光学的一个重要发展,就是逐步形成了一个新的光学分支---傅立叶光学.把傅立叶光学变换引入光学,在形式上和内容上都已经成为现代光学发展的新起点.空间频谱与空间率波实验是信息光学中最典型的基础实验。
傅里叶光学是把通信理论,特别是傅里叶分析(频谱分析)方法引入到光学中来遂步形成的一个分支。
它是现代物理光学的重要组成部分。
光学系统和通信系统相似,不仅在于两者都是用来传递和交换信息,而且在于这两种系统都具有一些相同的基本性质,因而都可以用傅里叶分析(频谱分析)方法来加以描述。
通信理论中许多经典的概念和方法,如滤波、相关、卷积和深埋于噪声中的信号的提取等,被移植到光学中来,形成了光学传递函数、光学信息处理、全息术等现代光学发展的新领域。
阿贝成像理论是建立在傅里叶光学基础上的信息光学理论,阿贝——波特实验是阿贝成像理论的有力证明。
阿贝成像理论所揭示的物体成像过程中频谱的分解与综合,使得人们可以通过物理手段在谱面上改变物体频谱的组成和分布,从而达到处理和改造图像的目的,这就是空间滤波。
空间滤波的目的是通过有意识的改变像的频谱,使像产生所希望的变换。
光学信息处理是一个更为宽广的领域,它主要是用光学方法实现对输入信息的各种变换或处理。
空间滤波和光学信息处理可追溯到1873年阿贝(Abbe)提出二次成像理论,阿贝于1893年、波特(Porter)于1906年为验证这一理论所作的实验,科学的说明了成像质量与系统传递的空间频谱之间的关系。
20世纪六十年代由于激光的出现和全息术的重大发展,光学信息处理进入了蓬勃发展的新时期。
本实验验证阿贝成像原理,进一步理解光学信息处理的实质。
二、实验目的1通过实验有助于加深对傅立叶光学中的一些基本概念和基本理论的理解,如空间频率,空间频谱,空间滤波等等。
2通过实验验证阿贝成像理论,理解透镜成像的物理过程,进而掌握光学信息处理的实质;加深对傅立叶光学空间频谱和空间滤波(高通,低通和带通滤波器的物理意义)等概念的理解;初步了解简单的空间滤波技术在光信息处理中的应用。
滤波器的频谱分析和频率特征提取

滤波器的频谱分析和频率特征提取滤波器在信号处理中起到了至关重要的作用,它可以通过不同的频率响应滤除噪声、提取感兴趣的频率成分等。
频谱分析和频率特征提取是对滤波器性能进行评估的重要手段。
本文将介绍滤波器的频谱分析和频率特征提取的方法和应用。
一、频谱分析频谱分析是对信号在频域上的表示和观察,并可以进一步分析信号的频率分布、频率成分以及频谱特性。
滤波器的频谱分析可以通过多种方法实现,以下将介绍两种常用的方法。
1. 傅里叶变换傅里叶变换是一种将信号从时域转换到频域的方法。
通过对信号进行傅里叶变换,我们可以得到信号的频谱图,从而观察信号的频率成分。
对于一个线性、时不变的滤波器,其频率响应可以通过信号的傅里叶变换和滤波器的传递函数之间的乘积得到。
傅里叶变换是一种十分强大的工具,可以用来分析各种类型的滤波器。
2. 窗函数法窗函数法是一种常用的频谱分析方法,它可以通过对信号施加一个窗函数来提取信号的频率特征。
通过选取适当的窗函数,我们可以选择性地增强或抑制信号的某些频率成分,从而更好地观察信号的频谱。
常见的窗函数有矩形窗、汉宁窗、汉明窗等,它们各自具有不同的频率响应特性,可以根据需要选择合适的窗函数进行频谱分析。
二、频率特征提取频率特征提取是指从信号的频谱中提取出有用的频率成分或特征。
不同的滤波器可以通过提取不同的频率特征来满足不同的应用需求。
1. 峰值频率峰值频率是指信号频谱中出现最大振幅的频率成分。
通过提取峰值频率,我们可以获得信号的主频率成分,从而对信号进行分类、识别等。
通过滤波器对信号进行处理,可以有选择地提取出主频率成分,有助于准确地提取峰值频率。
2. 带宽带宽是指信号频谱中包含有用信号能量的频率范围。
在滤波器中,带宽通常与滤波器的截止频率相关。
通过选择合适的滤波器,可以有针对性地提取出特定频率范围的信号成分,从而实现对信号的频率特征提取。
3. 脉冲响应脉冲响应是指滤波器对单位脉冲信号的响应。
通过观察滤波器的脉冲响应,我们可以了解滤波器的时域特性。
光学低通滤波器(OLPF)的频率特性和光谱特性

光学低通滤波器(OLPF)的频率特性和光谱特性潘奕捷、商庆坤、林家明、杨隆荣、沙定国北京理工大学光电工程系,北京100081;敏通企业股分有限公司摘要:光学低通滤波器(Optical Low Pass Filter——OLPF)是利用石英晶体的双折射效应和红外截止滤光片对红外光截止作用设计而成的,它用在CCD 摄像机传感器前能够有效地降低或消除离散光电探测器对不同空间频率目标成像所产生的拍频效应或称条纹混淆现象, 而且能消除红外光对彩色还原的影响,从而提高了CCD 摄像机成像的视觉效果。
关键词:学低通滤波器;奈奎斯特频率;石英晶体双折射;红外光截止Frequency and Spectrum Characteristicof the Optical Low Pass FilterPAN Yi jie SHANG Qing kun LIN Jiaming YANG Long rong SHA Ding guo Department of Optical Engineering, BIT , Beijing 100081;Minton Enterprise Co Ltd, Abstract: An optical low pass filter(OLPF),lied in front of the sensor of a CCD camera, is designed according to the birefringent effect of crystal and infrared cut-of effect of in frareequency mixing phenol al filter, OLPF can reduce or eliminate effectively the fr menon whenthe object with a variety of the spatial frequencies is imaged on the discrete photoelectric detector ,and eliminate the color rendition effect of the infrared .The image quality of the CCD camera with OLPF can be improved. Especially, the distinctness can be enhanced when the objects such as fringes or grates are imaged on the sensor of the CCD camera, and the effects of the disturbing fringes of false color can be eliminatedKey words: optical low pas optics filter; Nyquist limit; aliasing; birefringent quartz crystal ; infrared cut-of light.1 CCD 摄像机信号频谱混叠现象最近几年来,随着电视技术的进展,作为图像传感器的CCD 摄像机被普遍的应用,但CCD 是一种离散像素的阵列光电探测器,按照奈奎斯特定理,一个图像传感器能够分辨的最高空间分辨率等于它的二分之一空间采样频率0 f ,即奈奎斯特频率2 / 0 f f N = 。
《现代光学》课件第5章

第5章 光学信息处理
如果滤波器中心的遮挡部分很小,只阻断频谱中的零 频分量,则有R→0,R sinc(Rxi)→1,rect(xi/l)*comb(xi/p)* [R sinc(Rxi)]为一常数C′。所以,像面的复振幅分布为
(5.1-10) 即为光栅像减去一个常数。最后得到对比度翻转的像面光 强分布,其过程如图5.1-3 所示。
16
第5章 光学信息处理
图 5.1-4 二元振幅滤波器示意图 (a) 低通滤波器; (b) 高通滤波器; (c) 带通滤波器; (d) 方向滤波器
17
第5章 光学信息处理
5.1.2 泽尼克相衬显微镜和相位滤波器
为了说明相衬显微镜和相位滤波器空间滤波的原理,
我们把相位物体的振幅透射系数写成
其中j(x0,y0)为该相位物体的相位分布。假定j (x0,y0)很小,
(5.2-5)
27
第5章 光学信息处理
1) 单透镜滤波系统 单透镜滤波系统的光路如图5.2-3所示。
28
第5章 光学信息处理
图 5.2-3 单透镜滤波系统
29
第5章 光学信息处理
根据有关透镜的傅里叶变换作用的讨论可知,当用 轴上点光源照明,输入面位于透镜前d0(d0>f)处时,可以在 光源的共轭面得到输入物体的准傅里叶变换,而输出面P3 必须和输入面P1成像共轭。这时物像的横向放大率可由几 何光学方法得到: M=-d/d0。
第5章Байду номын сангаас光学信息处理
2. 光学滤波系统 典型的光学滤波系统如图5.2-2所示。
24
第5章 光学信息处理
图 5.2-2 典型光学滤波系统
25
第5章 光学信息处理
若输入面P1所放置的透明片的振幅透射系数为f(x0,y0), 并由单位振幅的轴向平行光照明,透镜L2对其进行傅里叶 变换,则得到频谱面P2上的复振幅分布
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光学滤波器与频谱分析
摘要:空间滤波的目的是通过有意识的改变像的频谱,使像产生所希望的变换。
光学信息处理是一个更宽广的领域,它主要是用光学方法实现对输入信息的各种变换和处理。
关键词:阿贝成像理论,二元振幅滤波器,振幅滤波器,相位滤波器,复数滤波器,泽尼克相称显微器,补偿滤波器。
一引言:
所谓空间滤波器,是指在光学系统的傅里叶频谱面上放置适当的滤波器,以改变光波的频谱结构,使其像按照人们的要求得到预期的改善。
在此基础上,发展了光学信息处理技术。
后者是一个更为宽广的领域,它主要是指用光学的方法实现对输入信息实施某种运算或变换,已达到对感兴趣的信息提取、编码、存储、增强、识别和恢复等目的。
这种处理方法具有二维、并行和实时处理的优越性,从而激起了人们对光学信息处理的浓厚兴趣。
1873年的阿贝提出的二次成像理论及其相应的实验,是空间滤波与光学信息处理的先导。
1935年,荷兰物理学泽尼克发明相称显微术[1],将物光的位相分布转化为强度分布,成功地直接观察到微小的位相物体——细菌,并用光学方法实现了图像处理,解决了在系统的显微观察中由于采用染色技术而导致细菌死亡的问题。
由于泽尼克为光学信息处理的发展做出了突出的贡献,荣获了1953年度的诺贝尔物理学奖。
1946年,法国科学家杜费把光学成像系统堪称线性滤波器,采用傅里叶方法成功的分析了成像过程,发表了他的著作《傅里叶变换及其在光学中的应用》[2] .稍后,艾丽斯等人的经典论文《光学与通信理论》[3]、《光学过程的处理方法》[4]以及奥尼尔的论文《光学中的空间滤波》[4]相继发表,俄日光学信息处理提供个有力的数学工具,并未光学与通信科学的结合奠定基础。
1963年,范德. 拉个特提出了复数空间滤波的概念,使光学信息处理进入了一个广泛应用的新阶段。
此后,随着激光器、光学技术和全息照相技术的迅速发展,促使其理论系统和实用技术日渐成熟,称为十分活跃的一门新兴学科,并已渗透到各种应用领域。
到二十世纪初期,随着高新技术的迅速发展,人类进入信息时代,要求对超大容量信息进行快速处理。
光以其长波速度快、抗干扰能力强、可大量并行处理等特点,显示
其独特的优越性,光计算及其相关技术应运而生,又为光信息技术的发展开辟了新的方向。
激光的出现赫尔全息术的重大发展,光学信息的处理进入了蓬勃发展的新时期。
二空间滤波器的基本原理
1873年阿贝首次提出了与几何光学的传播成像理论完全不同的观点,他认为在相干光照明下,透镜的成像过程可分为两步:第一步,物光波经透镜后,在其后焦面上产生夫琅禾费衍射,形成频谱,该频谱称为第一次衍射像(这一步起分频作用);第二步,这些频率成为新的次波源,由他们发出的次波在像平面上干涉而形成物的像,该像称为第二次衍射像(这一步干涉起“合成”作用)。
上述成像过程因为也称为阿贝二次衍射成像。
图1.1是上述成像过程的示意图。
图1.1 阿贝二次衍射成像
阿贝二次衍射成像理论的真正价值在于它提供了一种新的频谱语言来描述信息,启发人们用改变频谱的手段来改造信息。
为了验证阿贝的二次成像理论,阿贝本人于1873年、波特与1906年分别成功地做了实验,这就是著名的阿贝-波特实验。
三空间频率滤波系统
空间频率滤波系统是相干光学信息处理中一种最简单的处理方式,它利用了透镜的傅里叶变换特性,把透镜作为一个频谱分析仪,并在频谱面上通过插入适当的滤波器,借以改变物的频谱,从而使物象得到改善。
空间频率滤波系统有多种光路结构,其中最典型的系统是4f系统,这种系统中:从频域来看,改变滤波器的透过率函数(滤波函数),该系统就能改变物图像的空间频率结
构,这就是空间滤波或频域综合的含义;从空域来看,系统实现了输入信息与滤波器脉冲响应的卷积或相关,完成了所期望的一种变换。
一般的说,可以在频谱面上插入具有下列形式滤波函数的空间频率滤波器:H(fx,fy)=A(fx,fy)eia(fx,fy),依据滤波函数的性质及其对空间频谱的作用不同,空间滤波器具有多种类型,常用的有下列几种。
三二元滤波器
这种滤波器的滤波函数取0或1。
根据其作用的频率区间,又可细分为低通滤波器、高通滤波器、带通滤波器、方向滤波器。
它实际是一个带针孔的不透明模板。
选择适当的针孔直径便可使图像中的高频噪声和周期性结构被阻挡,而只允许位于频谱中心及其邻近的低频分量通过。
这种滤波器由针孔和显微镜组合成。
针孔安放在显微镜的焦点处,经过显微镜所射出的光被聚焦在针孔上,若选择针孔的直径等于显微镜衍射光的主瓣宽度,则针孔只能通过平行于光轴入射的光,从而消除了不平行于光轴的光,从而获得没有衍射环的纯球面波。
它实际是一个中心带不透明小圆屏的透明模片,其功能在于滤去频谱中的低频成分,以增强像的边缘,提高对模糊图像的识别能力,或实现对比度反转。
其功能在于只允许特定区间的频谱成分通过(信号能量集中在这一频带内),以提高输出的信噪比。
这特别适用于抑制周期性信号中的噪声。
例如,蛋白质结晶的高倍率电子显微镜照片中的噪声是随机分布的,其频谱也是随机分布的;而晶体本身却有严格的周期性,其频谱是有规律的点阵列。
采用适当的针孔阵列作为滤波器,允许信号的频谱全部通过,而噪声的频谱被挡住,从而有效地改善照片的信噪比。
四方向滤波器
它实际上是在一定方向上允许通过或阻挡频谱分量的光阑,用以突出图像中的方向性特征。
方向滤波器已用于检查集成电路板的疵病。
由于集成电路图形都是由一些规则、正交的矩形线段组成,其频谱分布在轴线附近,而疵点的形状往往是不规则的,线度也较小,故其频谱必定较宽,在离轴有一定距离处都有分布。
采用十字形阻挡光屏就可将轴线附近的信息全部阻挡,提取出疵点的信息,从而提出噪声的谱,显示疵点所在的位置。
这种滤波器仅改变各频谱成分的相对振幅分布,而不改变其位相分布。
通常是使
感光胶片的透过率变化正比于A(fx,fy),从而使透射光场的振幅得到改变。
为此,应按照一定的函数分布来控制底片的曝光量分布。
这种滤波器只改变各空间频谱的相位,而不改变其振幅分布。
通常是采用真空镀膜的方法来制作。
由于对入射光能量不产生衰减作用,故具有很高的光学效应。
但由于工艺上的限制,要得到复杂的相位变换是很困难的。
五复数滤波器
这种滤波器可同时改变各频谱成分的相位和振幅,滤波函数是复函数。
它应用广泛,但制作困难。
1963年范德·拉格特提出用全息照相方法制作复数滤波器,有利的推动了光学信息处理的发展。
1966年罗曼和布朗恩用计算全息方法也制作成复数滤波器,从而克服了制作空间滤波器的重大障碍。
六泽尼克相称显微术
在显微术中观察的许多物体(例如,未染色的细菌、生物切片、透明介质等),其透明度很高,几乎不可见。
它们通常用折射率的变化来表征。
当光通过这样的物体时,即使其各部分存在着厚度的差别,也只能改变入射光的相位,从而产生一个随空间变化的相移,而不改变入射光的振幅。
我们把这类物体称为相物体。
用通常的显微镜和只对光的强度有影响的感受器是无法直接观察这类物体的。
为了观察位相物体,须将其上面的位相变化转换为振幅的变化,这种变换称为相幅变换。
观察位相物体的方法很多,如暗场法、纹影法等。
而相称法是一种将空间位相转换成空间强度调制的方法。
相称显微术可用于任何一类位相变化很小的位相物体。
当位相变大时这一技术仍将使位相物体变成可见的,但强度变化不再正比于其位相的变化。
目前,相位显微镜已有定性产品。
当然,相称法不限于显微系统,它适用于任何相干成像系统。
六补偿滤波器
提光学系统的成像质量始终是光学工作者所追求的目标。
20世纪50年代初期,在巴黎大学工作的法国科学家马尔查认为,照片中的缺陷是又产生照片的非相干成像系统的光学传递函数中存在的相应缺陷引起的。
他进而推论如果把照相底片放在一个相干成像系统内,并在其频谱面上放置适当的补偿滤波器,使用该滤波器的传递函数来补偿原
系统传递函数的缺陷,则两者的乘积便能产生一个较为满意的频率响应,从而使照片的质量得到部分改善。
七抑制或提取周期信息
由于制版和印版的需要,报纸上的照片是由大量周期排列的黑点组成的。
照片的黑白层次由黑点的大小控制。
类似的,电视图像由一系列水平排列的线条组成。
我们把这些不属于图像本身的周期结构叫做“周期性噪声”,应用空间滤波方法很容易把这些噪声去掉。
由于这些噪声的周期比较小,对应的空间频频率较高,而在频谱面上图像本身的频谱集中在以零频为中心的低频范围,于是,在滤波系统的频谱面上插入一低通滤波器,选择合适的圆孔直径使噪声的频率分量不能通过,便可在像面上得到一幅没有周期性噪声的图像。
八结束语
空间滤波器的目的是通过有意识的改变想的频谱,使像产生所希望的变换。
光学信息处理是一个更为宽广的领域,它主要是用光学方法实现对输入信息的各种变换或处理。
60年代由于激光的出现和全息术的重大发展,光学处理进入了蓬勃法杖的新时期。
[参考文献]
[1]吴瑞贤、杜定旭等:热学教程[M]. 四川.四川大学出版社.1986
[2]王仕璠.信息光学理论与应用(第二版)[M]. 北京邮电大学出版社,2004:196-204.
[3]张应强.文化视野中的高等教育[M]. 南京;南京师范大学出版社,1999.
[4]金国藩.近代光学信息处理[M]. 北京.北京师范大学出版社.1998。