光学低通滤波器的应用
滤波系统与滤波器及其应用

若 << 1,则可得到一级近似:
f x1 , y1 1 j x1 , y1
直透光
二者位相相差p/2, 互不干涉
#
位相起伏造成的弱衍射光
(2)典型三透镜滤波系统:
1、空间滤波系统
(3)其他典型滤波系统:
L1是准直透镜,L2是 傅里叶变换透镜,又 是成像透镜,它同时 起着傅里叶变换和成 像双重作用。P1为输 入平面。频谱平面P2 是L2的后焦面。输出 平面P3是P1的共轭像 平面。
双透镜组合1
1、空间滤波系统
(3)其他典型滤波系统:
2、空间滤波器种类及应用
(8) LCD 投影显示的消像素技术
小孔滤波消除像素结构
2、空间滤波器种类及应用
(8) LCD 投影显示的消像素技术
选取任意一个谱项通过小孔,产生的图像均位 于同一位置.如果两个谱项通过两个小孔,产 生的图像上就可以看到杨氏条纹.如果所有的 谱项一起通过滤波,产生的干涉条纹就综合形 成了像素的结构.
强度变化反映了位相变化,并且变化的幅度相对背景而言加倍, 但仍为线性变化.
+ 号代表正位相反衬和负位相反衬,前者表示位相越大, 像强度越大,后者则相反 如果在中心镀层中不但有位相变化而且有吸收,则可进一步提 高像的对比度.
2、空间滤波器种类及应用
(7)泽尼克相衬显微镜
位相滤波器主要用于将位相型物转换成强度型像 的显示。例如用相衬显微镜观察透明生物切片; 利用位相滤波系统检查透明光学元件内部折射率 是否均匀,或检查抛光表面的质量等等
CCD上的滤光片

监控摄像机中的CCD上的滤光片,正确名称叫”光学低通滤波器”滤光片有两大功用:1.滤除红外线.2.修整进来的光线滤除红外线:彩色监控摄像机CCD也可感应红外线,就是因为会感应红外线,会导致D.S.P无法算出正确颜色,,因此须加一片滤光片,把光线中红外线部份隔开,所以只有彩色CCD需要装滤光片,黑白就不用了.修整进光:因为CCD上是一颗颗的感光体(CELL)构成,最好光线是直射进来,但为了怕干扰到邻近感光体,就需要对光线加以修整,因此那片滤光片不是玻璃,而是石英片,利用石英的物理偏光特性,把进来的光线,保留直射部份,反射掉斜射部份,避免去影响旁边的感光点.那么滤光片是怎么做到这些的呢?我们不防来看看1滤除红外线:可用镀膜方式及蓝玻璃,镀膜分真空镀膜及化学镀膜方式,化学镀膜是将石英片浸入溶剂中加以电镀,成本低但镀膜厚度不平均且容易脱落,真空镀膜是用真空蒸镀法,镀膜均匀且不易脱落,但成本高.以上我们称IR Coating , 目地在滤除红外线, 另外还要加上所谓的AR-Coating 的镀膜,目地是增加透光率,因为光线在透过不同介质时(比如从空气进入石英片),会产生部分的折射及反射,加上AR-Coating 后,滤光片可达到98-99%的穿透率,否则只有90-95的穿透率,这对CCD的感光度当然有影响.另外是用蓝玻璃,蓝玻璃是用”吸收”的方式过滤红外线,而IR-Coating是用反射的方式滤掉红外线,但反射光容易造成干扰,如果只考虑滤除红外线,蓝玻璃是比较好的选择. 但上文说玻璃无法修整光线,因此就有一片蓝玻璃加一片石英片的所谓”两片式”滤光片.其中蓝玻璃用来滤红外线,而石英片修整光线用,因此石英片上只需做AR-Coatin就行了.2.修整光线:上文说到, 利用石英的物理偏光特性,把进来的光线,保留直射部份,反射掉斜射部份,但只能对一个方向修整,通常摄像机只考虑到水平分辨率,因此只对光线做水平修整,因此在贴滤光片时方向要对,不可弄反了.那如果垂直光线也要修整的话怎办?很简单,就黏两片,把其中一片转90度就行了,因此就有这种也叫”两片式”的滤光片,一片用在水平修整,一片用在垂直修整,其中一片再做IR-Coating 来滤红外线.那更高级的呢?就是两片石英中间夹片蓝玻璃,那就各项优点就有了,这种”三片式常见于日本进口机.l 石英片整光效果是物理方式的,要配合CCD上感光点而变,因此理论上不同CCD厂牌及不同画素还有N制P制,石英片厚度都不同,黏贴方式:1.直接就夹在遮光片上,再锁在CCD上,好处是方便,须注意防尘2.用UV胶黏,再照紫外线灯,优点是稳固,但须在无尘室或无尘箱中弄,如果不管那么多就硬干了。
光学低通滤波器olpf 光学低通滤波器—optical low pass filter (olpf

光学低通滤波器—Optical Low Pass Filter (OLPF)应用:数码相机可视电话电脑摄像头照相手机监控用摄像机数码录像机简介:晶体光学滤波器由一组低通滤波器及红外线滤光器组成。
材质:1.光学低通滤波器由高品质人造光学水晶制成。
2.红外线滤光器由高品质人造光学水晶经特殊镀膜处理制成。
光学特性:1. 平整度:光学低通滤波器单面平整度需≤5个牛顿环。
3. 平行度:光学低通滤波器之双面平行度误差须≤0.01mm。
4. 结晶轴切割精度:分离方向角与所定角误差为0.1。
5. 光穿透度:400nm :T>75% 700nm :T<5% 450nm~600nm :T>85% 750~1000nm :T<3% 645±10nm:T=50% 1100nm :T<10% 或依客户规格制作耐用性:1. 在90%相对湿度,65℃温度下500小时无缺陷发生。
2. 在70℃~-40℃ 温度下测试10个温度循环无缺陷发生。
CCD摄像机中的光学低通滤波器(OLPF)摘要本文简要叙述了在CCD摄像机中使用的光学低通滤波器的作用、工作原理及其应注意的问题。
最后指出,还须加装红外截止滤光片,可以进一步提高图象质量。
关键词:光学低通滤波器(OLPF)纹波效应频谱混叠双折射奈奎斯特极限频率一、为何需用光学低通滤波器由于CCD或CMOS固体图象传感器是一种离散像素的光电成象器件,根据奈奎斯特定理,一个图象传感器能够分辨的最高空间频率等于它的空间采样频率的一半,这个频率就称为奈奎斯特极限频率。
在用CCD 摄像机获取目标图象信息时,当抽样图象超过系统的奈奎斯特极限频率时,在图象传感器上,高频成分将被反射到基本频带中,造成所谓纹波效应或莫尔效应,使图象产生周期频谱交迭混淆或称为拍频现象。
假设CCD的抽样频率为15MHZ,在图象信号为10MHZ时,混叠频率分量为15MHZ-10MHZ=5MHZ,在图象信号为9MHZ处,混叠频率分量为15MHZ-9MHZ=6MHZ,这两项混叠频率分量经电路低通滤波后都是无法滤掉的,并与有用图像信号一样被输出,如在所观测的波形中在9MHZ和10MHZ频带处叠加的5MHZ 和6MHZ信号成分。
OLPF原理

光学低通滤波器—Optical Low Pass Filter (OLPF)应用:简介:晶体光学滤波器由一组低通滤波器及红外线滤光器组成。
材质:1.光学低通滤波器由高品质人造光学水晶制成。
2.红外线滤光器由高品质人造光学水晶经特殊镀膜处理制成。
光学特性:1. 平整度:光学低通滤波器单面平整度需≤5个牛顿环。
3. 平行度:光学低通滤波器之双面平行度误差须≤0.01mm。
4. 结晶轴切割精度:分离方向角与所定角误差为0.1。
5. 光穿透度:耐用性:1. 在90%相对湿度,65℃温度下500小时无缺陷发生。
2. 在70℃~-40℃ 温度下测试10个温度循环无缺陷发生。
CCD摄像机中的光学低通滤波器(OLPF)摘要本文简要叙述了在CCD摄像机中使用的光学低通滤波器的作用、工作原理及其应注意的问题。
最后指出,还须加装红外截止滤光片,可以进一步提高图象质量。
关键词:光学低通滤波器(OLPF)纹波效应频谱混叠双折射奈奎斯特极限频率一、为何需用光学低通滤波器由于CCD或CMOS固体图象传感器是一种离散像素的光电成象器件,根据奈奎斯特定理,一个图象传感器能够分辨的最高空间频率等于它的空间采样频率的一半,这个频率就称为奈奎斯特极限频率。
在用CCD 摄像机获取目标图象信息时,当抽样图象超过系统的奈奎斯特极限频率时,在图象传感器上,高频成分将被反射到基本频带中,造成所谓纹波效应或莫尔效应,使图象产生周期频谱交迭混淆或称为拍频现象。
假设CCD的抽样频率为15MHZ,在图象信号为10MHZ时,混叠频率分量为15MHZ-10MHZ=5MHZ,在图象信号为9MHZ处,混叠频率分量为15MHZ-9MHZ=6MHZ,这两项混叠频率分量经电路低通滤波后都是无法滤掉的,并与有用图像信号一样被输出,如在所观测的波形中在9MHZ和10MHZ频带处叠加的5MHZ 和6MHZ信号成分。
在7MHZ信号上有明显的低频差拍存在,差拍频率约1MHZ。
低通滤波原理

低通滤波原理随着科技的不断发展和进步,各种信号的处理和传输已经成为了我们日常生活中不可或缺的一部分。
而滤波器作为一种重要的信号处理器件,其应用范围也越来越广泛。
其中,低通滤波器是一种常见的滤波器类型,被广泛应用于音频、视频、通信、雷达等领域。
本文将从低通滤波的概念、原理、分类、应用等方面进行详细介绍。
一、低通滤波的概念低通滤波器是一种能够削弱高频信号而保留低频信号的滤波器。
其作用是将信号中高于某一截止频率的部分滤掉,只留下低于该截止频率的部分,从而实现信号的滤波。
低通滤波器的截止频率越低,滤掉的高频信号就越多,留下的低频信号就越少。
二、低通滤波的原理低通滤波器的原理基于信号的频域特性,其主要思想是将信号分解为不同频率的分量,然后通过控制各个分量的幅度和相位来实现信号的滤波。
低通滤波器的实现方式主要有两种:基于时域的滤波和基于频域的滤波。
1. 基于时域的滤波基于时域的滤波是指对信号进行时域上的加工,通过改变信号的幅度、相位和延迟等参数来实现滤波的目的。
其中,最常见的低通滤波器是RC滤波器。
RC滤波器是一种简单的电路,其由一个电阻和一个电容组成,具有低通滤波的功能。
当输入信号的频率较低时,电容器能够在电路中起到积累电荷的作用,从而使电路中的电压变化较小;而当输入信号的频率较高时,电容器无法跟随信号的变化而充放电,从而使电路中的电压变化较大。
因此,RC滤波器可以将高频信号滤掉,只留下低频信号。
2. 基于频域的滤波基于频域的滤波是指对信号进行频域上的加工,通过改变信号的频域特性来实现滤波的目的。
其中,最常见的低通滤波器是巴特沃斯滤波器。
巴特沃斯滤波器是一种理想滤波器,其特点是在截止频率之前完全传递所有频率的信号,而在截止频率之后完全滤掉所有频率的信号。
然而,在实际应用中,巴特沃斯滤波器往往难以实现,因为其需要具有无限长的冲激响应,而这在实际应用中是不可行的。
因此,人们往往采用一些近似于巴特沃斯滤波器的滤波器,如Butterworth滤波器、Chebyshev滤波器、Elliptic滤波器等。
低通滤波的作用

低通滤波的作用在信号处理领域,低通滤波是一种常见的数字滤波器类型,它可以通过滤除高频成分来实现对信号的平滑处理,从而提高信号的质量和可靠性。
在本文中,我们将介绍低通滤波的原理、应用和优缺点,以及如何选择合适的低通滤波器。
一、低通滤波的原理低通滤波的基本原理是滤除高频成分,只留下低频成分。
在数字信号处理中,低通滤波器通常是一个差分方程或传递函数,可以对输入信号进行卷积运算,滤除高频成分。
低通滤波器的传递函数通常是一个复杂的函数,例如巴特沃斯滤波器、切比雪夫滤波器和椭圆滤波器等。
低通滤波器的频率响应是一个低通滤波曲线,它表示了滤波器对不同频率的信号的响应。
低通滤波器的截止频率是指滤波曲线的截止点,表示滤波器可以通过的最高频率。
低通滤波器的截止频率通常是一个重要的参数,它决定了滤波器的性能和适用范围。
二、低通滤波的应用低通滤波器在信号处理中有着广泛的应用,包括音频处理、图像处理、通信系统、控制系统等领域。
1、音频处理在音频处理中,低通滤波器可以用来消除高频噪声和杂音,提高音频信号的清晰度和质量。
例如,当我们听到一首歌曲时,可能会听到一些嘶嘶声或噪音,这些噪声通常是由高频成分引起的。
通过应用低通滤波器,可以滤除这些高频成分,从而提高音频信号的质量。
2、图像处理在图像处理中,低通滤波器可以用来平滑图像,去除图像中的噪声和细节。
例如,在数字摄影中,当我们拍摄一张照片时,可能会遇到一些噪声或模糊的细节。
通过应用低通滤波器,可以平滑图像并去除这些噪声和细节,从而提高图像的质量。
3、通信系统在通信系统中,低通滤波器可以用来滤除高频成分,从而提高信号的可靠性和抗干扰能力。
例如,在无线通信中,信号可能会遭受到干扰和衰减,导致信号失真或丢失。
通过应用低通滤波器,可以滤除这些高频成分,从而提高信号的质量和可靠性。
4、控制系统在控制系统中,低通滤波器可以用来平滑控制信号或传感器信号,从而减少噪声和抖动。
例如,在机器人控制中,机器人的传感器信号可能会受到机械振动或电磁干扰的影响,导致信号抖动或失真。
低通滤波原理

低通滤波原理低通滤波是信号处理中常用的一种滤波方式,它可以滤除信号中高频成分,保留低频成分,从而实现信号的平滑处理和去噪。
低通滤波的原理和应用十分广泛,下面将对其原理进行详细介绍。
首先,我们需要了解什么是频率。
在信号处理中,频率是指信号中包含的周期性变化,高频信号表示变化快的信号,低频信号表示变化慢的信号。
在时域中,信号的频率可以通过傅里叶变换转换到频域中,变成频率的表示。
因此,低通滤波就是通过滤除高频成分,保留低频成分的一种信号处理方式。
低通滤波的原理是基于信号的频率特性进行的。
在频域中,信号的频率可以通过频谱图表示,其中横轴表示频率,纵轴表示信号的幅度。
低通滤波器通过设定一个截止频率,高于这个频率的信号成分将被滤除,低于这个频率的信号成分将被保留。
这样就可以实现对信号的平滑处理和去除噪声的效果。
低通滤波器有多种实现方式,包括巴特沃斯滤波器、切比雪夫滤波器、椭圆滤波器等。
它们各自有不同的特点和适用范围,可以根据实际需求选择合适的滤波器类型。
在实际应用中,低通滤波器常常被用于音频处理、图像处理、通信系统等领域,以实现信号的平滑处理和去噪。
除了滤波器的选择外,设计滤波器的截止频率也是十分重要的。
截止频率的选择需要根据信号的特性和应用需求来确定,一般情况下,截止频率越低,保留的低频成分就越多,信号的平滑效果就越明显。
但是如果截止频率选择过低,可能会导致信号失真,因此需要在平滑效果和信号保真度之间进行权衡。
总的来说,低通滤波器通过滤除高频成分,保留低频成分,实现对信号的平滑处理和去噪。
它的原理基于信号的频率特性,在实际应用中有着广泛的应用。
通过合理选择滤波器类型和截止频率,可以实现对不同信号的处理需求,是信号处理中十分重要的一部分。
光学基础实验思考题及答案

1 图片细节模糊如何用空间滤波加以改善光点离谱面中心的距离是标志面上该频率成分的高低离中心远的点代表物面上的高频成分反映物的细节成分。
靠近中心的点代表物面的低频成分反映物的粗轮廓中心亮点是零级衍射即零频它不包含任何物的信息所以反映在像面上呈现均匀光斑而不能成像。
如果使离谱面中心的距离远的光点即代表物面上的高频成分的光点透过狭缝则可使细节比较模糊的照片变的较清晰。
2 物理实验全息照相中的参考光和物光的光程差为什么要相等?为什么不能用白光拍摄?全息照相记录的是参考光和物光的干涉条纹,显然只有两者的光程相近时,才会发生干涉。
全息照相一般用激光,单色光,饱和度好,也有用白光拍摄的,那样拍出来的照片在日光下就能看出立体的影像,但是那种拍摄有比较高的要求。
激光拍摄在原光路中就能看出立体影像。
椭圆偏振仪测量薄膜厚度和折射率1.什么是用椭圆偏振仪测量薄膜厚度的基本思路?一束自然光经起偏器变成线偏振光,再经1/4波片,使它变成椭圆偏振光入射在待测的膜面上。
反射时,光的偏振状态将发生变化。
根据偏振光在反射前后的偏振状态变化,包括振幅和相位的变化,便可以确定样品表面的许多光学特性,可以推算出待测膜面的某些光学参数(如膜厚和折射率)。
2.什么是线偏振光?什么是椭圆偏振光?什么是圆偏振光?什么是四分之一波片?什么是二分之一波片?什么是布儒斯特角?⑴线偏振光,在光的传播过程中,只包含一种振动,其振动方向始终保持在同一平面内,这种光称为线偏振光(或平面偏振光)。
⑵椭圆偏振光,在光的传播过程中,空间每个点的电矢量均以光线为轴作旋转运动,且电矢量端点描出一个椭圆轨迹,这种光称为椭圆偏振光。
迎着光线方向看,凡电矢量顺时针旋转的称右旋椭圆偏振光,凡逆时针旋转的称左旋椭圆偏振光。
椭圆偏振光中的旋转电矢量是由两个频率相同、振动方向互相垂直、有固定相位差的电矢量振动合成的结果(见波片)。
⑶圆偏振光,旋转电矢量端点描出圆轨迹的光称圆偏振光,是椭圆偏振光的特殊情形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光学低通滤波器—Optical Low Pass Filter (OLPF)应用:
简介:
晶体光学滤波器由一组低通滤波器及红外线滤光器组成。
材质:
1.光学低通滤波器由高品质人造光学水晶制成。
2.红外线滤光器由高品质人造光学水晶经特殊镀膜处理制成。
光学特性:
1. 平整度:光学低通滤波器单面平整度需≤5个牛顿环。
3. 平行度:光学低通滤波器之双面平行度误差须≤0.01mm。
4. 结晶轴切割精度:分离方向角与所定角误差为0.1。
5. 光穿透度:
耐用性:
1. 在90%相对湿度,65℃温度下500小时无缺陷发生。
2. 在70℃~-40℃ 温度下测试10个温度循环无缺陷发生。
CCD摄像机中的光学低通滤波器(OLPF)
摘要
本文简要叙述了在CCD摄像机中使用的光学低通滤波器的作用、工作原理及其应注意的问题。
最后指出,还须加装红外截止滤光片,可以进一步提高图象质量。
关键词:光学低通滤波器(OLPF)纹波效应频谱混叠双折射奈奎斯特极限频率
一、为何需用光学低通滤波器
由于CCD或CMOS固体图象传感器是一种离散像素的光电成象器件,根据奈奎斯特定理,一个图象传感器能够分辨的最高空间频率等于它的空间采样频率的一半,这个频率就称为奈奎斯特极限频率。
在用CCD 摄像机获取目标图象信息时,当抽样图象超过系统的奈奎斯特极限频率时,在图象传感器上,高频成分将被反射到基本频带中,造成所谓纹波效应或莫尔效应,使图象产生周期频谱交迭混淆或称为拍频现象。
假设CCD的抽样频率为15MHZ,在图象信号为10MHZ时,混叠频率分量为15MHZ-10MHZ=5MHZ,在图象信号为9MHZ处,混叠频率分量为15MHZ-9MHZ=6MHZ,这两项混叠频率分量经电路低通滤波后都是无法滤掉的,并与有用图像信号一样被输出,如在所观测的波形中在9MHZ和10MHZ频带处叠加的5MHZ 和6MHZ信号成分。
在7MHZ信号上有明显的低频差拍存在,差拍频率约1MHZ。
这些混叠的信号将影响图象清晰度,甚至出现彩色条纹干扰。
由于CCD离散像素受到采样频率的限制以及由于芯片总的感光面积较小而受到二维孔径光阑的影响,所以又产生了一些新的频谱问题,直接影响CCD摄像机的成像清晰度和分辨能力。
CCD图像传感器在垂直和水平方向传输光学信息都是离散的取样方式,这是因为它的光敏单元在水平方向也是离散的。
根据取样定理可知,取样后的信号频谱分布和幅度变化为:
式中,τs为取样脉冲宽度,即一个感光单元的宽度;Ts为取样周期,即一个像素的宽度(含两侧的不感光部分)。
当n= Ts/τs时,谱线包络达到第一个零点,这是孔径光阑效应的表现。
若高频信号幅度下降,可适当选择τs,使在fs /2处的频谱幅度下降得小一些,使频谱混叠部分减小。
τs越小,频谱幅度下降越缓慢,混叠部分增大。
τs增大,频谱幅度下降加快,频谱混叠部分减小。
由此可见,在CCD中感光单元的宽度和像素宽度有个最佳比例,即像素的尺寸和像素的密度以及像素的数量都是决定CCD分辨率的主要因素。
在图象上反映出来的频谱混叠会引起低频干扰条纹,它对CCD摄像机所拍摄的图象水平方向的清晰度有很大影响。
因此,必须采用予处理前置滤波技术,降低CCD光敏面上光学图象的频带宽度,以减少频谱混淆,即采用光学低通滤波器。
光学低通滤波器(Optical Low Pass Filter,简称OLPF)实际是一低通滤波的石英作的晶片。
1988年日本富士公司与东芝公司合作推出第一台数位静态相机(Digital Still Camera,简称DSC)起,才将OLPF带入这发展迅速的数位世界中。
数位影象技术如火箭般飞快地进步,应用的领域也日益宽广,从数码相机(DSC)、数位摄像机(DVC)到影象电话(Video Phone)以及未来的第三代行动电话(G3)等,所有和影象有关的产品都要使用OLPF来消除上述的杂讯干扰。
由于CCD等固体图象传感器读取影像均采用这种非连续性取象方式,所以在拍摄细条纹(高频)时肯定会产生不必要的杂讯。
由于细条纹的方向不同,需用相对应角度的光学低通滤波晶片加以消除,又因为不同型号的CCD与CMOS图象传感器在规格上有些差异,为针对不同的型号及同时兼顾不同方向所产生的杂讯,需用不同厚度、片数、角度组合的OLPF的设计,以提高取象品质。
二、光学低通滤波器的工作原理
光学低通滤波器大都是由两块或多块石英晶体薄板构成的,放在CCD传感器的前面。
目标图象信息的光束经过OLPF后产生双折射(分为寻常光o光束和异常光e光束)。
根据CCD像素尺寸的大小和总感光面积计算出抽样截止频率,同时也可计算出o光和e光分开的距离。
改变入射光束将会形成差频的目标频率,达到减弱或消除低频干扰条纹的目的,特别是彩色CCD出现的伪彩色干扰条纹的目的。
图1所示为OLPF 在光路中的工作原理图。
低通滤波器的工作原理,如图2所示。
入射光和光轴所形成的角度为θ,寻常光线的折射率为no,异常光线的折射率为ne,寻常光线和异常光线分开的距离为d,d与石英晶体薄板厚度T有关,其关系式为
当tgθ = ne / no时,就可求出最大的分开距离。
当ne≈no,tg45°= 1时,公式可简化为
因此,利用石英晶体的双折射效果,使成像光束经过不同厚度的石英晶体薄板,光轴成45?角,就可使带有同一目标图象的信息被分成o1光束和e1光束,形成相对错开的像,分开的距离满足消除一维拍频干扰条纹分开的距离。
经过第二片石英晶体薄板后,又将o1光束、e1光束分为oo2、oe2光束和eo2、ee2光束。
通过晶体滤波片后,原来目标包含的空间频率的光束(该频率下的目标像有可能与CCD阵列水平方向或垂直方向的空间频率叠加产生差拍的频率,这个频率刚好是在图像低频范围内,使所成的像产生干扰条纹的频率)会产生分离,使频率发生小量变化。
分离的寻常光和异常光光强会减少一半。
当分开距离d与条纹宽度相等时,光强为零;当条纹宽度比分开距离大时,已经变成几乎不受其影响的低通滤波器。
由此知,首先只要计算出CCD摄像机的总的频宽和奈奎斯特极限频率,然后计算出拍频现象的频宽并换算成空间距离,就可求得石英晶体薄板满足上述频率微小频移的厚度T。
加入这样一组晶片,虽然不会增加高频成分,分辨率极限值不会提高,甚至于CCD光敏面的光照度还会减弱,但可达到消除干扰条纹的目的。
当用彩色CCD摄像机拍摄彩色条纹或网格状目标景物时,不仅可达到消除伪彩色干扰条纹的影响,而且还能提高CCD视频图像视觉清晰度。
三、使用光学低通滤波器应注意的问题
提请注意的是,OLPF使用不当时会发生下列问题:
(1)当镜头的解析度高于CCD图象传感器的解析度时,在看到较高频(超过CCD解析度的部分)的影象时,画面上将会产生杂讯,使用适当的OLPF就能将高频所产生的杂讯消除;若使用不适当的OLPF,则会造成解析度降低或是杂讯太多。
(2)当镜头的解析度不够,则CCD图象传感器的解象力就完全无法发挥,此时OLPF的功能将会大减,解析度有可能会降低。
一般,客户重视解析度,则采用较薄的OLPF晶片;若客户重视消除杂讯的效果,则采用较厚的OLPF晶片。
对高阶影像产品,可采用四片式;中阶产品则可采用二片(或三片)式;低阶产品则为单片式。
四、红外截止滤光片的作用
在使用CCD或CMOS图象传感器拍摄彩色景物时,由于它们对颜色的反应与人眼不同,所以必须将它们能检测到而人眼无法检测的红外线部分除去,同时调整可见光范围内对颜色的反应,使影像呈现的色彩符合人眼的感觉。
因此,一般在OLPF晶片中间加上一片只通过可见光的红外截止滤光片,如磷酸玻璃(吸收式)能获得极佳的效果(日本厂商广泛使用)。
在电视监控技术(上)中有未使用与使用磷酸玻璃的应用对比实例,而使用的图像效果好。
因此,使用红外截止滤光片可大大提高图像质量。
由于石英的折射率与空气不同,在界面上会产生反射而减低入射光的强度,为降低反射所造成的损失,一般要在OLPF晶片上镀上抗反射膜(AR Coating)以提高光的穿透率,从而提高取像品质。
参考文献
1、林家明、杨隆荣,光学低通滤波器技术及其在CCD摄像机中的应用,敏通科技(12期),1999
2、雷玉堂,电视监控技术(上),中国计量出版社,2002。