[nsfc]功能导向大面积有序纳米结构可控制备和应用基本科学问题研究
化学研究的前沿领域

化学研究的前沿领域随着科技的进步和人类对于世界的探求,化学作为一门重要的自然科学,不断迎来新的前沿领域。
本文将介绍几个当前化学研究的前沿领域,并探讨其对人类社会和生活的重要性。
一、纳米技术纳米技术是指在纳米尺度上进行研究和应用的技术,纳米级材料具有与大尺度材料不同的性质和特点。
纳米技术已经广泛应用于制药、材料科学和电子产业等领域,在药物传递、能源储存和信息存储等方面具有重要的应用潜力。
例如,纳米材料可以用于制造更高效的太阳能电池,从而解决能源危机问题;纳米级药物可以精确治疗癌症,减少对健康细胞的损害。
纳米技术的发展将为人类社会和生活带来革命性的改变。
二、功能性配位聚合物功能性配位聚合物是由金属离子或金属离子簇引发的化学反应制得的高分子化合物。
这种材料具有多样的结构和性能,可以应用于催化剂、传感器和储能等领域。
例如,一些功能性配位聚合物可以作为高效的催化剂用于环境修复和能源转换过程;某些配位聚合物可以作为优秀的传感器用于检测环境中的污染物和生物分子。
功能性配位聚合物的研究使得化学合成变得更加可控和高效,为解决环境问题和能源危机提供了新思路。
三、生物催化生物催化是指利用酶和其他生物体内产生的活性分子对化学反应进行加速或选择性催化的过程。
与传统的化学催化方法相比,生物催化具有更高的选择性和效率。
生物催化已经应用于生产化学品、制药和绿色化学等领域。
例如,酶催化可以减少化学反应使用的溶剂量、能耗和废弃物产生,从而减少对环境的污染;生物催化还可以合成一些传统化学方法难以合成的高经济和高附加值化合物。
生物催化的研究将促进化学工业的绿色化和可持续发展。
四、可持续化学可持续化学是指开发和推广对环境友好、资源节约和经济可行的化学过程和化学产品。
随着人类对环境保护和可持续发展的要求不断增加,可持续化学成为当前化学研究的重要方向。
在可持续化学领域,研究人员致力于开发具有低碳排放、高效能使用和可循环利用的新型材料和化学工艺。
2023年度国家自然科学基金委员会化学工程与工业化学领域科学基金项目申请与评审工作综述

化工进展Chemical Industry and Engineering Progress2024 年第 43 卷第 1 期2023年度国家自然科学基金委员会化学工程与工业化学领域科学基金项目申请与评审工作综述王天富1,2,周晨1,张国俊1(1 国家自然科学基金委员会化学科学部,北京 100085;2 上海交通大学环境科学与工程学院,上海 200240)摘要:总结了2023年度国家自然科学基金委员会化学工程与工业化学(B08)领域科学基金各类项目的申请、受理和资助概况,对B08下属16个二级代码的各类项目申请与资助情况进行了分析,为下一年度国家的项目申报提出了建议。
关键词:国家自然科学基金;化学工程与工业化学;申请;受理;资助中图分类号:TQ0 文献标志码:A 文章编号:1000-6613(2024)01-0560-05National Natural Science Foundation of China ’s fund applications andgrants in 2023: A review based on Chemical Engineering &Industrial ChemistryWANG Tianfu 1,2,ZHOU Chen 1,ZHANG Guojun 1(1 Department of Chemical Sciences, National Natural Science Foundation of China, Beijing 100085, China;2School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)Abstract: A summary of National Natural Science Foundation of China (NSFC)’s fund applications, grants and funding in 2023 was provided about the discipline of Chemical Engineering & Industrial Chemistry (B08), where the fund applications and grants for the 16 secondary application codes of B08 were provided, and the statistics for a series of funded programs were detailed, giving suggestions for proposal applications in the next year.Keywords: National Natural Science Foundation of China; Chemical Engineering & Industrial Chemistry; applications; grants; funding2023年是全面贯彻落实党的二十大精神的开局之年,是党领导人民全面建成社会主义现代化强国、向第二个百年奋斗目标进军新征程的重要一年。
2024年 硕士点 纳米科学与技术

2024年硕士点纳米科学与技术纳米科学与技术是一门研究和应用物质的微小尺度特性和现象的学科。
随着科技的不断发展,纳米科学和纳米技术已经成为当今世界的一个热门领域。
在2024年,纳米科学与技术的研究和应用将更加突出,给我们带来更多的机遇和挑战。
首先,随着纳米科学和纳米技术的快速发展,我们将迎来更多的创新和发现。
纳米尺度的特性使得物质表现出与宏观世界完全不同的性质和行为。
通过探索纳米尺度下的物质行为,我们可以设计和制造出具有高强度、高导电性、高磁性等优异性能的新材料。
这将在许多领域带来突破性的应用,如电子、光电子、生物医学、能源存储等领域。
其次,纳米科学与技术将有助于解决一些重大的全球性问题。
例如,纳米技术可以用于提高能源利用效率,减少能源消耗和污染。
通过纳米材料的设计和制备,我们可以制造出高效的太阳能电池、高容量的锂离子电池等,从而推动清洁能源的发展。
此外,纳米技术还可以应用于水处理、环境修复等方面,帮助改善环境质量,保护生态平衡。
除此之外,纳米科学和技术也将推动医学和生物科学的进步。
纳米技术在生物医学领域的应用已经取得了一些重要的突破,如纳米药物载体、纳米影像技术等。
这些技术的应用使得药物的输送更加精确、高效,同时减少了对健康组织的损害。
纳米技术还可以用于细胞工程、组织工程等方面,为医学研究和治疗提供新的手段和思路。
然而,纳米科学与技术的发展也带来了一些新的挑战和风险。
首先,纳米材料的制备和应用需要高超的技术和设备,这对研究人员提出了更高的要求。
其次,纳米材料的安全性和生态风险也需要引起关注。
纳米材料因其特殊的性质,可能对环境和生物体产生潜在的影响。
因此,我们需要在推动纳米科学和技术的发展的同时,加强相关的安全评估和监管。
总之,纳米科学与技术将在2024年迎来更加繁荣的发展。
通过纳米尺度下的探索和创新,我们将能够设计和制造出更多具有突出性能的新材料,推动清洁能源、医学和生物科学的进步。
然而,我们也需要认识到纳米科学与技术所带来的挑战和风险,并采取有效的措施来解决这些问题。
催化 化学 前沿领域

催化化学前沿领域催化化学前沿领域创作:在催化化学的前沿领域,科学家们不断探索着新的方法和技术,以改善能源转换效率、减少环境污染和提高化学反应的选择性。
催化剂作为催化反应中的关键角色,发挥着至关重要的作用。
催化化学的研究一直以来都是一个复杂而又具有挑战性的领域。
科学家们致力于寻找新的催化剂,以提高反应速率和选择性。
其中一种研究方向是基于金属有机骨架材料的催化剂。
这种材料以金属离子为中心,通过有机配体与其连接形成稳定的结构。
这种结构不仅具有高度可控性,还具有可调控的孔径和表面活性位点,从而能够实现高效催化反应。
另一个前沿领域是基于纳米催化剂的研究。
纳米催化剂具有高比表面积和丰富的表面活性位点,可以提高反应速率和选择性。
科学家们通过调控纳米催化剂的形貌、组成和结构,实现了对反应活性的精确控制。
此外,利用纳米催化剂还可以实现对反应的原位监测和调控,从而提高催化反应的效率和可控性。
近年来,人工智能在催化化学中的应用也成为研究的热点之一。
通过机器学习和深度学习等技术,科学家们可以快速筛选大量的催化剂,并预测其催化性能。
这种基于人工智能的方法不仅能够加快新催化剂的发现速度,还可以降低实验成本和提高催化反应的效率。
除了上述的研究方向,催化化学的前沿领域还涉及到催化剂的可持续性和环境友好性。
科学家们致力于开发更加环境友好的催化剂,以减少对稀有金属的依赖,并实现催化反应的可持续发展。
催化化学的前沿领域充满了无限的可能性和挑战。
科学家们通过不懈努力和创新思维,不断推动着催化化学的发展,为人类社会的可持续发展做出了重要贡献。
相信随着科技的进步和研究的深入,催化化学的前沿将会呈现出更加精彩的景象。
国家自然科学基金面上和青年项目

国家自然科学基金面上和青年项目
国家自然科学基金面上项目和青年项目是国家自然科学基金委(NSFC)对支持基础性、前瞻性、应用性研究计划的定向资助。
项目由“面上项目”和“青年项目”组成,为国家
自然科学基金的两大重要分类。
面上项目是指NSFC支持重大、前瞻性和创新性研究,以及进行创新活动的项目,它
重视学术发展的长远性,容许在研究初期申请者需要较多的时间来建立原理、技术架构和
培养项目团队,但它要求较高水平的研究成果,并在研究期限内取得成果。
青年项目支持新兴学科及重要前沿问题的研究,支持年轻学者和青年教师进行高水平
研究与创新活动,支持具有重要学术特色和社会意义的问题调查,支持新兴领域科技探索
性研究,以及偏专业化研究和技术研发等,旨在培育新一代自然科学家和技术人才。
国家自然科学基金面上项目和青年项目的设置有助于推动我国科研创新,推动国家及
社会经济走上可持续发展之路。
NSFC实施自然科学基金面上项目和青年项目,就是为了发挥科研活动的引领作用,支持我国科学家的创新研究,以建立国际科学创新成果和技术大
国的实力。
973项目申报书:纳米结构材料的程序化组装

项目名称:纳米结构材料的程序化组装首席科学家:宋卫国中国科学院化学研究所起止年限:2009.1至2013.8依托部门:中国科学院一、研究内容(1)赋予纳米结构空间各向异性。
各向异性的纳米结构单元间的相互作用力是控制它们空间组装的前提,也是程序化组装的基础。
为此我们将系统地研究通过纳米结构单元的尺寸,形貌和表面化学功能调控,选区修饰,不对称粒子等手段引入空间各项异性的方法,可控地赋予纳米结构在不同空间区域的各向异性。
发展制备和表征单分散各向异性纳米结构单元的技术。
(2)纳米结构单元组装的空间调控:利用作用于纳米结构单元的空间各向异性,研究如何可控地将不同的纳米结构单元组装为初级结构;调控组装体中的组分序列和空间构型;设计和构建异质界面,在纳米结构单元之间引入对外界环境刺激敏感的生物或合成大分子;控制纳米结构组装体作为一个整体的性能。
(3)纳米结构单元的动态组装与过程调控:通过精细地调控在纳米结构单元之间的排斥力和吸引力的平衡,在纳米结构单元间始终保持一个可控且较强的排斥力,实现纳米结构单元的组装的动态化。
此外,利用各种界面作模板诱导纳米结构的组装,界面的动态特征也将用于强化实现纳米结构的动态组装。
利用外加场(光,电,磁),对纳米微粒的组装在过程乃至时间上实施调控。
将通过空间受控组装制得的初级纳米结构,程序化组装为多维度多层次的纳米结构组装体。
在特定区域引入特定组装功能,将其可控集成在器件单元上;将不同纳米结构组装体集成在一起,搭建多级多层次,功能可调,宏观可用的功能材料。
(4)研究组装过程与组装体的能量传递和物质传输:发展实时监控纳米组装单元和各级组装体的原理和方法。
通过对纳米结构的组装过程的动力学和热力学的研究,从纳米结构单元层面上认识组装过程中物质能量转化与界面行为,获得其中物质能量转化与界面行为的基本规律。
通过组装体的结构,调控在组装体中物质传输和能量传递,以适应不同应用过程的需要。
借鉴超分子合成和组装以及生物大分子程序化组装过程中的能量传递和物质传输规律,发展纳米层次的组装物理化学。
“稀土纳米功能材料的可控合成、组装及构效关系研究”获2011年度国家自然科学奖评审通过

构 效 关 系研 究 ”获 2 1 年 度 国家 自然科 0 1 学 奖评 审通 过
2 1 年度 国家 科学技术 奖评 审工作 已经 结束 ,教 育部 01
张亚文 、 聆东 、 孙 高松 完成 的 “ 稀 功, 将进入 中试 阶段 。 项 目是 由阿拉善 盟科 技局根 据企业 推荐 的 由北 京大 学严 纯华 、 该 组 获2 l 01 需 求 , 线 中科 院过程 工程 研究所 , 牵 与晨 宏力 化工有 限责任 土纳 米功 能材料 的可控 合成 、 装及构 效关系研 究 ” 公司 合作 开 发的产 学研 项 目。 纳米 碳酸 钙是 工业 上 应用 非常 广泛 的一 种填 充 剂和 功 年 度 国家 自然科 学奖 二等 奖 。 “ 土 纳 米功 能 材料 的可 控合 成 、组 装及 构 效 关系 研 稀
中 ,研 究 人员 首先 生产 出高 4 0 米 、宽 1 0微 2纳米 的碳 纳 米 定 的发展 。在 新能 源领域 ,国家纳 米公 司计划 投入 超过 2 管 细 微结 构 “ 0 森林 ” ,然 后 将 其纺 成 类似 绳 索 结 构 的螺 旋 亿 卢 布用 于 实施 一批 突破 性 项 目,其 中包括 新 型锂 离子 蓄 纱 。在 纺 纱时 ,可 将碳 纳 米管 纱 制成左 手 螺旋 和右 手螺 旋 两 种 类型 。研 究 人员 表示 ,这 种 碳纳 米管 纱 可 以开辟 许 多 建厂 的项 目。并且预 计 明年将为 莫斯 科市订 购 l 0 0 辆安 装有 新 用途 。它可 以用 于 制造 微型 电机 、微型压 缩机 和微 型 涡 这 种锂 离 子蓄 电池的 电动大客 车;在 新材料 领域 , 将投 资扩 轮机 ;基 于旋 转 执行器 的微型 泵 可 以集 成 到芯 片 实验 室 技 大生产 使产 能达 到每年 1 3 5 0亿卢 布 ;医疗领 域 的突破性 项 术 制造 的 设备 上 ;还 可 以将其 应 用于机 器 人 、假肢 及 各种 目包括 血栓早 期诊 断项 目,预 计 2 1 0 2年秋季 将进 行该项 目 传 感 器上 。 产 品 的 技 术 认 证 , 始 产 品 的工 业 化 生 产 。 项 目 已引 起 欧 开 该
国家重点研发计划纳米科技重点专项2016年度拟立项项目

*
3
2016YFA0200300
芳香纳米材料制备与应用研究
上海香料研究所
肖作兵
3520.00
5
4
2016YFA0200400
应变诱导大面积纳米结构的可控 加工方法及应用基础研究
中国科学院物理研究所
顾长志
*
5
2016YFA0200500
基于光子束调制的跨尺度微纳结 构加工与器件应用研究
中国科学院理化技术研究所
中国科学技术大学
崔华
2700.00
5
14
2016YFA0201400
基于纳米分子影像探针的癌症微 创介入诊疗导航技术
北京大学
戴志飞
3200.00
5
15
2016YFA0201500
临床需求导向的肿瘤新型纳米药 物研发
中国医学科学院肿瘤医院
马洁
3200.00
5
16
2016YFA0201600
医用及工业纳米材料的毒理学机 制与安全性评价研究
包文中
*
40
2016YFA0204000
咼稳定性、全光谱、咼效率太阳 能电池材料探索和器件实现
上海科技大学
宁志车
*
41
2016YFA0204100
二维催化材料的表界面调控及
C1分子高效转化研究
中国科学院大连化学物理研 究所
邓德会
*
42
2016YFA0204200
电荷空间分离技术同步光催化降 解重金属-有机污染物废水的研 究
彭练矛
3200.00
5
20
2016YFA0202000
新型纳米冷阴极平板X射线源和 高灵敏度探测器件及其CT图像 重建方法研究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
项目名称:功能导向大面积、有序纳米结构可控制备和应用基本科学问题研究首席科学家:xxx起止年限:2011.1至2015.8依托部门:xxx二、预期目标(一)本项目的总体目标:本建议根据国家中长期发展规划,在上期项目研究工作的基础上,着眼于大面积、高有序纳米结构和材料制备的重大基础科学问题,结合国际上该领域发展趋势和我国的研究积累和重大战略需求,旨在发展纳米材料大面积、高有序生长方法学,揭示材料结构与性能的关系及其变化规律,特别注重结构和性能的调控以及功能导向大面积纳米阵列的构建和多功能集成,实现材料应用的突破和跨越。
争取在具有特定功能的大面积、高有序共轭有机、有机/无机分子体系纳米材料和结构的组装及其相关技术方面取得一些有影响和自主知识产权的成果,对有机纳米材料关键功能单元的设计、合成和功能调控规律加深认识,揭示分子、超分子各向异性相互作用对有机低维纳米结构形成的影响规律,对功能分子体系纳米结构材料的生长机理、自组装过程以及动力学有更深层次的认识,实现高有序有机纳米材料的可控制备和大面积自组装生长。
在大面积、高性能有序阵列结构与器件的制备方面取得创新性的突破。
突出新概念、新思想,在基于功能纳米材料的新概念器件、等方面取得一批具有广泛影响和自主知识产权的成果;在纳米器件的界面科学与工程、大面积纳米器件的构筑、组装方法,纳米器件的互连、集成、纳米电路的构筑方面取得突破,促进我国纳米电子学的发展。
(二)五年预期目标:通过本项目的实施,实现有机纳米结构形貌、尺寸、维数和性能的调控以及大面积、高有序的自组装生长方法学与机理的建立。
发展大面积纳米结构材料直接在光、电、生物和信息技术中的应用,基本实现大面积器件的构建和集成以及材料应用的突破和跨越。
提升我国在该领域的自主创新和发展核心技术的能力,取得一批具有原创性的重要科学成果。
形成一支在国际上有影响的研究队伍,培养一批高水平的研究人才。
在项目实施的5年内,达到如下目标:1. 继续人工类石墨烯纳米带有机功能分子的合成,实现具有独特光电性能的多种类石墨烯纳米带类有机功能分子的高效合成和宏量制备。
达到克量级的制备;实现电活性,光活性的多类特定结构和功能有机共轭分子的大量合成,形成功能性的有机纳米结构,实现多种高性能有机半导体分子大尺寸晶体和大面积晶态薄膜的可控制备,获得3-5类具有高效光、电和光电转换性能的材料。
2. 在有机、有机/无机功能分子体系聚集态多层次和多尺度上研究其纳米结构和性能的关系,发展定向、维数可控、大面积、高有序自组装生长的关键技术,建立具有自己特色的高效生长大面积、高有序有机、有机/无机功能纳米结构的机理和关键技术。
获得2-3项具有自主知识产权大面积、高性能的有机纳米阵列生长技术和1-2项新结构半导体材料有序晶态薄膜大面积组装技术。
为功能导向大面积、有序纳米结构的可控制备奠定坚实的材料基础,实现这些材料在高技术发展中关键技术的应用。
3. 纳米器件与制造是纳米科技中的前沿和核心研究领域,能够有力推动纳米材料、纳米加工、纳米检测、纳米物理等其他纳米科学分支的迅速发展。
实现大面积、高性能有序纳米阵列结构在在光电和信息器件中的应用是本项目的重要目标。
在项目执行期间实现高性能的场效应晶体管为驱动的相关器件的应用,特别是制备基于有机场效应晶体管单比特与多比特存储器件应有方面。
实现2-3类核心电路,如倒相器、环振荡器和存储器件的构建;在新结构光电器件等方面获得突破性进展,提出1-2具有自主知识产权的储能应用的器件。
4. 获得具有多重响应的,特别是对光电敏感的纳米结构器件,研究这些响应对纳米器件的分离、协同效应,力争实现这些新概念、新结构、多功能器件的应用,实现纳米器件的互连与集成和纳米电路的构筑,制备2-3类大面积、多功能器件应用和纳米电路的构筑。
5. 形成系列有自主知识产权的专利技术、发表系列高质量有影响的研究论文,每年发表论文50篇以上(影响因子大于6.0的8篇以上,大于3.0的30篇以上),加强优秀青年人才和有创新力团体的培养,形成一支高水平、在国际上有影响、有竞争力的研究队伍。
三、研究方案(一)学术思路:本研究围绕功能导向大面积、有序纳米结构的可控制备和应用基本科学问题研究而展开,从功能导向的高有序有机纳米材料的构筑方法、大尺寸高有序功能纳米材料的自组装生长机理和性能调控、大面积纳米结构材料在光电和信息器件中的应用以及纳米器件的关键科学问题研究等几个方面入手开展研究。
功能导向的高有序有机纳米材料的构筑是整体研究工作的基础,而大尺寸高有序功能纳米材料的自组装生长机理和性能调控是研究工作的关键,贯穿于整个项目研究过程中,是整个项目的桥梁;大面积纳米结构材料在光电和信息器件中的应用是整体研究工作的集成;纳米器件的关键科学问题研究主要是有效克服器件组装和集成中的关键问题。
这几方面的研究相互联系,相互交叉,整个方案可以图示如下:总体研究方案突出体现:(1)把握基础性、前瞻性和交叉性的研究特征,体现国家重大需求和科学前沿的有限目标;(2)加强化学、物理与材料等学科的交叉与合作;(3)鼓励原始创新和探索研究,突出重点,在研究计划的总体目标下加强研究项目的集成。
围绕关键科学问题,注重基础研究,发展关键技术。
项目将分成四个课题开展工作:1、功能导向分子材料设计、合成2、大尺寸有序纳米材料的自组装方法学和性能调控3、大面积纳米结构材料在光电和信息器件中的应用4、有机纳米结构在器件中的应用关键科学问题和技术项目的组织实施将围绕关键科学问题,注重“基础研究,发展关键技术”的总体思路,加强化学、物理与材料等学科的交叉与合作,注重原始创新研究。
凝练科学目标,积极促进学科交叉,各课题密切交叉,重视课题间前后衔接和团队攻关。
通过本项目的实施在形貌、尺寸、维数、结构和性能的调控以及大面积、高有序的自组装生长方法学与机理研究方面获得多项具有自主知识产权的新方法和关键技术。
实现大面积纳米阵列直接在光、电、生物和信息技术中的应用并基本实现大面积器件的构建和集成。
(二)技术途径:本项目根据国家中长期发展规划,在上期项目研究工作的基础上,着眼于大面积、高有序纳米结构和材料制备的重大基础科学问题,结合国际上该领域发展趋势和我国的研究积累和重大战略需求,发展纳米材料大面积、高有序生长方法学,揭示材料结构与性能的关系及其变化规律,以及大面积有机纳米结构材料在光电和信息器件中的应用等几方面入手,开展协同攻关。
1. 功能导向分子材料的设计、合成在上期取得重要进展的基础上,继续人工类石墨烯纳米带有机功能分子或薄膜的合成,围绕具有独特光电性能的类石墨烯纳米带有机功能分子,建立高效合成方法和宏量制备,合成多类不同结构的类石墨烯分子或薄膜,研究分子构成及纳米结构的变化规律和功能单元结构与性能关系,形成有特色的自主知识产权人工合成类石墨烯研究体系,用于器件构造的关键材料和技术。
◆设计合成具有优良加工、组装性质的共轭大-体系有机分子及其组合材料体系。
构造有机导体、有机半导体、有机半导体-无机半导体,D—A、A—D型等功能分子并研究宏观量制备技术和方法以及分子晶体的培养并制备金属、II-VI族化合物与聚合物形成的新型杂化材料,研究这些分子体系在固态下的电化学和光谱性质,电子、能量和质子转移过程,以及外界条件对这些性质的影响,为制备高性能的器件打下坚实基础。
◆设计、合成结构新型、组装和自组装性能优异可形成厘米级纳米阵列、稳定性好的小分子(C60和苝四甲酰二亚胺衍生物)和共轭高分子光伏及场效应材料,包括p-型和n-型半导体材料并研究这些分子体系的掺杂,通过对功能有机分子进行无机阴离子和金属及金属离子掺杂,制备有机掺杂复杂体系材料,提高其导电性和降低电子亲和势,产生高性能光电和光电转换材料,制备大尺寸阵列作为关键光电技术材料。
◆合成并引入可组装基团,带共轭支链和取代基区域规整的聚噻吩,支链采用苯乙烯、噻吩乙烯链段或吩噻嗪,共轭支链通过碳-碳双键与主链的噻吩环相连接,扩展聚合物的吸收谱带和提高电荷载流子迁移率。
通过调节共轭支链的长度和数目以及共轭主链的组成和结构来调控聚合物的吸收光谱。
通过控制活性层给体/受体互穿网络结构的组成和形貌改善电荷分离和传输性能,使用适当的电极修饰层改善电荷收集性能,宏观改善构建器件材料的能量转换性质和效率。
◆通过理论与计算设计具有新型结构的分子材料,对材料中分子和分子聚集体的微观结构与性能进行预测,合成具有光、电、磁行为的有机共轭“明星”分子,形成特色体系并研究分子的功能晶体生长,分子的有序控制合成及宏观量制备.开展结构-性能关系研究,分子间相互作用,分子排列的有序性,电导电子与局域电子自旋间相互作用,以及功能耦合等相关凝聚态问题的研究,为器件研究提供材料基础和组装原理。
◆结合超分子化学与晶体工程学,通过分子结构的裁剪和作用力调控实现微纳尺度上有机半导体分子的组装、排列和大面积有序结构,重点理解纳米尺度下分子间弱相互作用产生的协同驱动机制,揭示分子、超分子各向异性相互作用对有机低维结构形成的影响规律。
明确提出大面积组装和有机低维结构形成与动力学过程之间的关系。
建立和发展大尺寸有机低维晶体生长的手段和方法,有效调控大尺寸有机低维晶体结构和性能,发展多种高性能有机半导体分子大尺寸晶体和大面积晶态薄膜的制备技术。
2. 大尺寸有序纳米材料的自组装方法学和性能调控◆发展尺寸与结构可控的有机纳米结构制备方法,新的定向、定维自组装技术,复合异质结构中的超晶格材料的控制生长,超分子组装中的分子聚集态的趋向,功能有机纳米尺度超结构的形成,大面积、多层次有序纳米结构自组装问题。
从微观到宏观,揭示有机功能自组装纳米材料的本质,研究这些分子纳米结构固态下的电子、能量转移过程,特别是固态下的性质和性能并研究这些体系的大面积、有序结构生长。
明确组装、生长机理和过程,研究这些具有响应性纳米结构在器件方面的应用。
◆通过有机功能单元的结构设计和裁减,调控功能单元间的相互作用,进而调控其能带结构,通过选择光、电功能单元进行有序结构及异质结构组装,揭示在胶体、固态下的光物理过程,及分子内和分子间的协同效应;同时充分理解外界条件对这些性质的影响和响应,并理解自组装功能单元、表面、界面特别是界表面相互作用方式与其宏观性能的关系。
利用这些规律提出新概念为构建高性能器件提出依据。
◆固态化学反应结合极端条件、自组装、定向诱导、原位或者非原位的组装、分子模板等,发展新颖的二级和多级自组装技术,实现选择性自组装或依据器件要求自然生长图案化。
理解有机纳米材料的生长机理、过程等,从理论上进行模拟,发展有机纳米材料有序结构的形成机理相关理论,指导大尺寸、高有序生长和认识组装的相关动力学和热力学过程。