小学六年级数学求阴影面积与周长
小学六年级数学求阴影面积与周长专项练习试题

小学六年级数学求阴影面积与周长专项练习试题以下是小学六年级数学求阴影面积与周长专项练的题目:1.求阴影部分的面积(单位:厘米)。
2.已知正方形面积为7平方厘米,求阴影部分的面积(单位:厘米)。
3.求图中阴影部分的面积(单位:厘米)。
4.求阴影部分的面积(单位:厘米)。
5.求阴影部分的面积(单位:厘米)。
6.已知小圆半径为2厘米,大圆半径是小圆的3倍,问空白部分甲比乙的面积多多少厘米。
7.求阴影部分的面积(单位:厘米)。
8.求阴影部分的面积(单位:厘米)。
9.求阴影部分的面积(单位:厘米)。
10.求阴影部分的面积(单位:厘米)。
11.求阴影部分的面积(单位:厘米)。
12.求阴影部分的面积(单位:厘米)。
13.求阴影部分的面积(单位:厘米)。
14.求阴影部分的面积(单位:厘米)。
15.已知直角三角形面积为12平方厘米,求阴影部分的面积。
16.求阴影部分的面积(单位:厘米)。
17.图中圆的半径为5厘米,求阴影部分的面积(单位:厘米)。
18.在边长为6厘米的等边三角形中挖去三个同样的扇形,求阴影部分的周长。
19.正方形边长为2厘米,求阴影部分的面积。
20.正方形ABCD的面积为36平方厘米,求阴影部分的面积。
21.四个圆的半径都是1厘米,求阴影部分的面积。
22.正方形边长为8厘米,求阴影部分的面积。
23.图中的4个圆的圆心是正方形的4个顶点,它们的公共点是该正方形的中心,如果每个圆的半径都是1厘米,那么阴影部分的面积是多少?24.有8个半径为1厘米的小圆,用它们的圆周的一部分连成一个花瓣图形,图中的黑点是这些圆的圆心。
如果圆周π率取3.1416,那么花瓣图形的面积是多少平方厘米?25.四个扇形的半径相等,求阴影部分的面积(单位:厘米)。
26.等腰直角三角形ABC和四分之一圆DEB,AB=5厘米,BE=2厘米,求图中阴影部分的面积。
27.正方形ABCD的对角线AC=2厘米,扇形ACB是以AC为直径的半圆,扇形DAC是以D为圆心,AD为半径的圆的一部分,求阴影部分的面积。
小学六年级数学求阴影面积与周长

小学六年级数学求阴影面积与周长例1.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。
(单位:厘米)解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。
例4.求阴影部分的面积。
(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。
(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。
(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)例8.求阴影部分的面积。
(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。
小学六年级数学之圆_阴影部分面积(含答案)

求阴影部分面积例1.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。
(单位:厘米)解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。
例4.求阴影部分的面积。
(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。
(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。
(单位:厘米) 解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形) 例8.求阴影部分的面积。
(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。
人教版六年级上册数学 求阴影部分的面积

判断对错:
(2)两个圆的周长相等,面
积也一定相等。
(√ )
判断对错:
(3)圆的半径越大,圆所占
的面积也越大。
(√ )
判断对错: (4)圆的半径扩大3倍,它
× 的面积扩大6倍。 ( )
人 教 版 六 年 级上册 数学 求 阴 影部 分的面 积
判断:
(1)下图哪个是圆环?
·
·
·
图1
图2
图3
×
√
×
9cm 3cm
人 教 版 六 年 级上册 数学 求 阴 影部 分的面 积
人 教 版 六 年 级上册 数学 求 阴 影部 分的面 积
思考: 计算圆环的面积需要知道哪些 条件呢?
外圆和内圆的半径
人 教 版 六 年 级上册 数学 求 阴 影部 分的面 积
人 教 版 六 年 级上册 数学 求 阴 影部 分的面 积
人 教 版 六 年 级上册 数学 求 阴 影部 分的面 积
人 教 版 六 年 级上册 数学 求 阴 影部 分的面 积
光盘的银色部分是一个圆环,内圆 半径是3cm,外圆半径是9cm。它 的面积是多少?
3.14×(92 -32) =3.14 ×72 =226.08(cm2)
答:它的面积是226.08 cm2。
一个圆形金鱼池的半径是8米,周 围有一条2米宽的小路(如图)。 这条小路的占地面积是多少平方米?
8+2=10(m)
3.14×(102 -82)
=3.14 ×36
=113.04(m2)
2m
8m
答:它的面积是113.04 m2。
人 教 版 六 年 级上册 数学 求 阴 影部 分的面 积
人 教 版 六 年 级上册 数学 求 阴 影部 分的面 积
小学数学图形求阴影部分面积十大方法总结(附例题)

小学数学图形求阴影部分面积十大方法总结(附例题)_2023.9小学阶段的学生通常在学习上存在着总结归纳能力欠缺等问题,为了很好地帮助孩子系统地掌握小学阶段的数学知识,老师把小学求图形面积的十大方法给大家做了总结,各位家长,快给孩子收藏起来吧!我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算。
如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。
那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。
例题分析例1、如下图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。
一句话:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。
例2、如下图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF 的面积彼此相等,求三角形AEF的面积。
一句话:因为△ABE、△ADF与四边形AECF的面积彼此相等,都等于正方形ABCD面积的三分之一,也就是12厘米。
解:S△ABE=S△ADF=S四边形AECF=12在△ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2,∴△ECF的面积为2×2÷2=2。
所以S△AEF=S四边形AECF-S△ECF=12-2=10(平方厘米)。
例3、两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。
如右图那样重合.求重合部分(阴影部分)的面积。
一句话:阴影部分面积=S△ABG-S△BEF,S△ABG和S△BEF都是等腰三角形总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决求面积十大方法01相加法这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如:求下图整个图形的面积一句话:半圆的面积+正方形的面积=总面积02相减法这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差. 例如:下图,求阴影部分的面积。
(六年级)求阴影部分面积(圆和扇形)复习进程

竹溪县实验小学 吴怀忠
图中圆与长方形面积相等,圆的周 长是6.28米。阴影部分面积多少平 方米?
2020年6月8日星期一
竹溪县实验小学 吴怀忠
6 求阴影部分面积。(单位:dm)
2020年6月8日星期一
o 10
竹溪县实验小学 吴怀忠
7 求阴影部分面积。
2020年6月8日星期一
2cm
竹溪县实验小学 吴怀忠
10 求阴影部分面积。
2020年6月8日星期一
4cm
竹溪县实验小学 吴怀忠
11 求阴影部分面积。
2020年6月8日星期一
4m
4m
竹溪县实验小学 吴怀忠
8
2020年6月8日星期一
竹溪县实验小学 吴怀忠
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
竹溪县实验小学 吴怀忠
计算图中蓝色部分的面积 8分米
3分米
15分米
3 求阴影部分的周长与面积。(单位:cm4Βιβλιοθήκη 102020年6月8日星期一
竹溪县实验小学 吴怀忠
4 求阴影部分周长和 面积。(单位:dm)
3
2020年6月8日星期一
5
竹溪县实验小学 吴怀忠
5 求阴影部分面积。(单位:dm)
1
3
2020年6月8日星期一
=
+
求阴影面积: 直接算呢?有简便方法吗?
4cm 4cm
求阴影部分的面积。(单位:厘米)
求下列各图中阴影部分面积。
阴影部分的面积 =大半圆的面积 -小半圆的面积
阴影部分的面积 =正方形的面积 -直角扇形的面积
求阴影部分的面积。
| ← 15厘米 →|
小学六年级数学求阴影面积与周长(含详细的解析)道

1 求阴影面积的常用方法计算平面图形的面积问题是常见题型求平面阴影部分的面积是这类问题的难点。
不规则阴影面积常常由三角形、四边形、弓形、扇形和圆、圆弧等基本图形组合而成的在解此类问题时要注意观察和分析图形会分解和组合图形或平移旋转或割补。
现介绍几种常用的方法。
一、转化法此法就是通过等积变换、平移、旋转、割补等方法将不规则的图形转化成面积相等的规则图形再利用规则图形的面积公式计算出所求的不规则图形的面积。
例1.如图1点C、D是以AB为直径的半圆O上的三等分点AB12则图中由弦AC、AD和CD ⌒围成的阴影部分图形的面积为_________。
分析连结CD、OC、OD如图2。
易证AB//CD则ACDOCD和的面积相等所以图中阴影部分的面积就等于扇形OCD的面积。
易得COD60故SSOCD阴影扇形60636062。
二、和差法有一些图形结构复杂通过观察分析出不规则图形的面积是由哪些规则图形组合而成的再利用这些规则图形的面积的和或差来求从而达到化繁为简的目的。
例2.如图3是一个商标的设计图案AB2BC8ADE⌒为14圆求阴影部分面积。
分析经观察图3可以分解出以下规则图形矩形ABCD、扇形ADE、RtEBC。
所以SSS SADEABCDRtEBC阴影扇形矩形9043604812412482。
2 三、重叠法就是把所求阴影部分的面积问题转化为可求面积的规则图形的重叠部分的方法。
这类题阴影一般是由几个图形叠加而成。
要准确认清其结构理顺图形间的大小关系。
例3.如图4正方形的边长为a以各边为直径在正方形内作半圆求所围成阴影部分图形的面积。
解因为4个半圆覆盖了正方形而且阴影部分重叠了两次所以阴影部分的面积等于4个半圆的面积和与正方形面积的差。
故2221222aaaS阴影。
四、补形法将不规则图形补成特殊图形利用特殊图形的面积求出原不规则图形的面积。
例4. 如图5在四边形ABCD中AB2CD1ABD6090求四边形ABCD所在阴影部分的面积。
(六年级)求阴影部分面积(圆和扇形)

2020年3月5日星期四
10m2
竹溪县实验小学 吴怀忠
3 求阴影部分的周长与面积。(单位:cm
4
10
2020年3月5日星期四
竹溪县实验小学 吴怀忠
4 求阴影部分周长和 面积。(单位:dm)
3
2020年3月5日星期四
5
竹溪县实验小学 吴怀忠
5 求阴影部分面积。(单位:dm)
8 求阴影部分周长和 面积。(单位:cm)
4
2020年3月5日星期四
2
竹溪县实验小学 吴怀忠
9 跑道外圈长多少米?内圈长 多少米?(两端各是半圆) 跑道和草坪面积分别是多少?
2020年3月5日星期四
100米
竹溪县实验小学 吴怀忠
10 求阴影部分面积。
2020年3月5日星期四
4cm
竹溪县实验小学 吴怀忠
11 求阴影部分面积。
2020年3月5日星期四
4m
4m
竹溪县实验小学 吴怀忠
8
2020年3月5日星期四
竹溪县实验小学 吴怀忠
10
10
用割补法:阴影部分的面积=圆面积的一半
求阴影部分的周长和面积。
6dm
求阴影部分周长和 面积。(单位:cm)
20
右面图形的中间是一个 边长为4厘米的正方形。 计算整个图形的面积是 多少平方厘米?
=
+
求阴影面积: 直接算呢?有简便方法吗?
4cm 4cm
求下列各图中阴影部分面积。
阴影部分的面积 =大半圆的面积 -小半圆的面积
一、复习
1、求圆面积的计算公式。 S = πr2
2、求正方形面积的计算公式。 S = a2
3、求三角形面积的计算公式。 S = a×h÷2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学六年级数学求阴影面积与周长
1.求阴影部分的面积。
(单位:厘米)
2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)
3.求图中阴影部分的面积。
(单位:厘米)
4.求阴影部分的面积。
(单位:厘米)
5.求阴影部分的面积。
(单位:厘米)
8.求阴影部分的面积。
(单位:厘米)
9.求阴影部分的面积。
(单位:厘米)
10.求阴影部分的面积。
(单位:厘米) 11,求阴影部分的面积。
(单位:厘米) 12,求阴影部分的面积。
(单位:厘米)
13.求阴影部分的面积。
(单位:厘米)
14.求阴影部分的面积。
(单位:厘米)
17.图中圆的半径为5厘米,求阴影部分的面积。
(单位:厘米)
18.如图,在边长为6厘米的等边三角形中挖去三个同样的扇形,求阴影部分的周长。
19、边长为2厘米,求阴影部分的面积。
20.如图,正方形ABCD的面积是36平方厘米,求阴影部分的面积。
22.如图,正方形边长为8厘米,求阴影部分的面积。
33.求阴影部分的面积。
(单位:厘米)。