高中数学第一轮复习函数与基本函数详细知识点和经典题目含答案

合集下载

2024高考一轮复习函数知识点及最新题型归纳

2024高考一轮复习函数知识点及最新题型归纳

2024高考一轮复习函数知识点及最新题型归纳函数是数学领域的一个重要概念,在高考中占据着很大的比重。

下面是2024年高考一轮复习函数知识点及最新题型的详细归纳。

1.函数的定义函数是一种特殊的关系,它将一个集合的元素映射到另一个集合的元素上。

通常用f(x)表示函数,其中x是函数的自变量,f(x)是函数的因变量。

2.函数的表示方法函数可以用解析式、图像、表格等多种方式表示。

其中,解析式是最常见的表示方法,常见的函数表示如下:线性函数:f(x) = ax + b二次函数:f(x) = ax^2 + bx + c指数函数:f(x)=a^x对数函数:f(x) = loga(x)三角函数:sin(x),cos(x),tan(x)3.函数的性质-定义域和值域:函数的定义域是自变量能取的全部实数值的集合,值域是因变量能取的全部实数值的集合。

-奇偶性:若对于函数的定义域内的任意x,有f(-x)=f(x),则称函数是偶函数;若对于函数的定义域内的任意x,有f(-x)=-f(x),则称函数是奇函数。

-单调性:如果对于函数的定义域内的任意x₁和x₂,当x₁<x₂时,有f(x₁)<f(x₂),则称函数是递增的;如果当x₁<x₂时,有f(x₁)>f(x₂),则称函数是递减的。

-周期性:如果对于函数的定义域内的任意x,有f(x)=f(x+T),其中T为正常数,则称函数具有周期T。

4.函数的运算函数之间可以进行加法、减法、乘法和除法等运算。

-两个函数的和:(f+g)(x)=f(x)+g(x)-两个函数的差:(f-g)(x)=f(x)-g(x)-两个函数的乘积:(f*g)(x)=f(x)*g(x)-一个函数除以另一个函数:(f/g)(x)=f(x)/g(x)随着高考的,函数的考查形式也在不断变化,以下是一些最新的函数题型归纳:-函数的图像分析:考生需要根据给定函数的解析式或表格,画出其对应的图像,然后分析图像的特点,如极值、拐点、单调性等。

高中数学第一轮复习函数与基本函数_详细知识点和经典题目含答案

高中数学第一轮复习函数与基本函数_详细知识点和经典题目含答案

函数、基本初等函数1.指数函数(1)通过具体实例(如细胞的分裂,考古中所用的14C的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景;(2)理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。

(3)理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点;(4)在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型2.对数函数(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用;(2)通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;3.知道指数函数xay=与对数函数xyalog=互为反函数(a>0,a≠1)。

4.幂函数(1)了解幂函数的概念(2)结合函数y=x, ,y=x2, y=x3,y=x21,y=x1的图象,了解它们的变化情况二.【命题走向】指数函数、对数函数、幂函数是三类常见的重要函数,在历年的高考题中都占据着重要的地位。

从近几年的高考形势来看,对指数函数、对数函数、幂函数的考查,大多以基本函数的性质为依托,结合运算推理,能运用它们的性质解决具体问题。

为此,我们要熟练掌握指数、对数运算法则,明确算理,能对常见的指数型函数、对数型函数进行变形处理。

预测20XX年对本节的考察是:1.题型有两个选择题和一个解答题;2.题目形式多以指数函数、对数函数、幂函数为载体的复合函数来考察函数的性质。

同时它们与其它知识点交汇命题,则难度会加大三.【要点精讲】1.指数与对数运算 (1)根式的概念:①定义:若一个数的n 次方等于),1(*∈>N n n a 且,则这个数称a 的n 次方根。

即若a x n =,则x 称a 的n 次方根)1*∈>N n n 且,1)当n 为奇数时,n a 的次方根记作na ;2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作)0(>±a a n ②性质:1)a a n n =)(;2)当n 为奇数时,a a nn =; 3)当n 为偶数时,⎩⎨⎧<-≥==)0()0(||a a a a a a n。

完整版)高一数学函数经典习题及答案

完整版)高一数学函数经典习题及答案

完整版)高一数学函数经典习题及答案函数练题一、求函数的定义域1、求下列函数的定义域:⑴y = (x-1)/(2x^2-2x-15)⑵y = 1-[(2x-1)+4-x^2]/[1/(x+1)+1/(x+3)-3]2、设函数f(x)的定义域为[0,1],则函数f(x-2)的定义域为[-2,-1];函数f(2x-1)的定义域为[(1/2,1)]。

3、若函数f(x+1)的定义域为[-2,3],则函数f(2x-1)的定义域为[-3/2,2];函数f(2)的定义域为[1,4]。

4、已知函数f(x)的定义域为[-1,1],且函数F(x) = f(x+m)-f(x-m)的定义域存在,求实数m的取值范围。

二、求函数的值域5、求下列函数的值域:⑴y = x+2/x-3 (x∈R)⑵y = x+2/x-3 (x∈[1,2])⑶y = 2/(3x-1)-3/(x-1) (x∈R)⑷y = (x+1)/(x+1) if x≥5y = 5x^2+9x+4/2x-6 (x<5)⑸y = (x-3)/(x+2)⑹y = x-3+x+1⑺y = (x^2-x)/(2x-1)(x+2)⑼y = -x^2+4x+5⑽y = 4-1/(x^2+4x+5)⑾y = x-1-2x/(2x^2+ax+b)6、已知函数f(x) = 2x+1/(x∈R)的值域为[1,3],求a,b的值。

三、求函数的解析式1、已知函数f(x-1) = x-4x,求函数f(x),f(2x+1)的解析式。

2、已知f(x)是二次函数,且f(x+1)+f(x-1) = 2x-4x,求f(x)的解析式。

3、已知函数2f(x)+f(-x) = 3x+4,则f(x) = (3x+4)/5.4、设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x) =x/(1+x),则f(x)在R上的解析式为f(x) = x/(1+x)-2/(1-x^2)。

5、设f(x)与g(x)的定义域是{x|x∈R,且x≠±1},f(x)是偶函数,g(x)是奇函数,且f(x)+g(x) = 3x,则f(x) = x,g(x) = 3x-x^3.四、求函数的单调区间6、求下列函数的单调区间:⑴y = x+2/x+3⑵y = -x^2+2x+3⑶y = x-6/x-127、函数f(x)在[0,+∞)上是单调递减函数,则f(1-x)的单调递增区间是(0,1]。

高中数学函数经典复习题(含答案)

高中数学函数经典复习题(含答案)

《函 数》复习题一、 求函数的定义域1、求下列函数的定义域:⑴33y x =+-⑵y =⑶01(21)111y x x =+-++-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。

4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸y =⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-⑼y ⑽4y =⑾y x =-6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。

三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满意2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y =⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是 ;函数y =的递减区间是五、综合题9、推断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。

高中数学函数经典复习题(含答案)

高中数学函数经典复习题(含答案)

《函 数》复习题一、 求函数的定义域 1、求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-++-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。

4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

二、求函数的值域 5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸ y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-⑼y ⑽ 4y =⑾y x =-6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。

三、求函数的解析式 1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间 6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是 ;函数y =的递减区间是五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。

高考一轮复习函数知识点

高考一轮复习函数知识点

高考一轮复习函数知识点函数作为数学的一个重要概念,在高中数学课程中占据着非常重要的地位。

对于学生来说,掌握好函数的相关知识点不仅有助于在高考中取得更好的成绩,还能为将来的学习和工作打下坚实的数学基础。

在本文中,我们将介绍一些高考中常见的函数知识点,希望能对大家的复习提供一些帮助。

一、函数的定义函数是一种对应关系,它将一个自变量的值映射到一个因变量的值上。

在数学中,我们常用f(x)表示函数,其中x为自变量,f(x)为因变量。

函数的定义包括定义域、值域和对应关系三个要素。

在复习函数的过程中,我们要注意区分函数和方程的概念,理解函数作为一种映射关系的特性。

二、常见函数类型1. 一次函数一次函数,也称线性函数,是指函数的表达式中只含有一次幂的变量。

例如,f(x) = ax + b就是一个一次函数,其中a和b为常数。

在高考中,一次函数的性质和应用经常会被考察,我们要掌握一次函数的图像特征、截距和斜率等重要概念。

2. 二次函数二次函数是函数的表达式中含有二次幂的变量。

例如,f(x) =ax^2 + bx + c就是一个二次函数,其中a、b和c为常数,a ≠ 0。

二次函数的图像通常为抛物线,我们需要对二次函数的开口方向、顶点坐标和对称轴等进行熟练掌握。

3. 指数函数指数函数是以一个常数为底数,自变量是指数的函数。

例如,f(x) = a^x就是一个指数函数,其中a为常数。

指数函数在自然界和社会现象中有广泛应用,我们要了解指数函数的增减性、图像特征和指数函数与对数函数的相关性质。

4. 对数函数对数函数是指以某个正常数为底数,自变量为真数的对数的函数。

例如,f(x) = loga(x)就是一个对数函数,其中a为大于0且不等于1的常数。

在复习对数函数时,我们要熟练掌握对数函数的单调性、图像特征和对数函数与指数函数的性质。

5. 三角函数三角函数是以角度(或弧度)为自变量的周期函数。

例如,f(x) = sin(x)就是一个正弦函数,其中x可以表示角度或弧度。

高一数学《函数的基本性质》知识点及对应练习(详细答案)

高一数学《函数的基本性质》知识点及对应练习(详细答案)

函数的基本性质一、函数的有关概念1.函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作:y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域.概念重点疑点:对于定义域中任何x ,都有唯一确定的y=f (x )与x 相对应。

即在直角坐标系中的图像,对于任意一条x=a (a 是函数的定义域)的直线与函数y=f (x )只有一个交点;例1、下列对应关系中,x 为定义域,y 为值域,不是函数的是()A.y=x 2+x3 B.y= C.|y|=x D.y=8x 解:对于|y|=x ,对于任意非零x ,都有两个y 与x 对应,所以|y|=x 不是函数。

图像如下图,x=2的直线与|y|=x 的图像有两个交点。

故答案选C 例2、下列图象中表示函数图象的是()(A ) (B) (C ) (D)解析:对于任意x=a 的直线,只有C 选项的图形与x=a 的直线只有一个交点,即对于定义域中任何x ,都有唯一确定的y=f (x )与x 相对应。

故选C 。

x y 0 x y 0 x y 0xy注意:1、如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;2、函数的定义域、值域要写成集合或区间的形式.定义域补充:能使函数式有意义的实数x 的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于 1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x 的值组成的集合.(6)指数为零底不可以等于零(7)实际问题中的函数的定义域还要保证实际问题有意义.(注意:求出不等式组的解集即为函数的定义域。

高中数学函数的概念知识点总结及练习题(含答案)

高中数学函数的概念知识点总结及练习题(含答案)

高中数学函数的概念知识点总结及练习题(含答案)※函数的定义设f是集合A﹐B中元素之间的一个对应关系。

若对于集合A中的每个元素a﹐都可以找到集合B中的唯一元素b﹐使得a对应到b﹐则称f为A到B的一个函数。

用f:A→ B表示此函数。

而a对应到b记为f(a)=b﹐b称为函数f在a的值。

集合A称为f的定义域﹐集合B称为f的对应域高中数学中常见的函数﹐例如多项式函数﹑指数函数﹑对数函数﹑三角函数等﹐因为函数值都是实数﹐故对应域皆可定为实数集合R﹐通称为实数值函数。

一般而言﹐实数值函数的定义域指的是﹐会使函数作用有意义的最大可能集合。

※根式函数y=x此函数是由非负实数所成的集合﹐到实数集合R的一个对应关系每一个非负实数﹐都有唯一的非负平方根。

函数的定义域:{x|x∈﹐且x≥0}函数的对应域:实数集合R函数的值域:{y|y∈﹐且y≥0}例题1 ---------------------------------------------------------------------------------------------------------------- 试求下列各函数的定义域:(1)f (x )=1x (2)f (x )=3-x (3)f (x )=1x 2-x +1------------------------------------------------------------------------------------------------------------------------ (1)定义域为{x |x ∈﹐且 x 0}。

(2)定义域为{x |x ∈﹐且 x ≤3}。

(3)分母须有 x 2-x +10﹐但 x 2-x +1=⎝ ⎛⎭⎪⎫x -12 2+34 >0 恒成立﹐故定义域为 R 。

随堂练习 ------------------------------------------------------------------------------------------------------------ 试求下列各函数的定义域: (1)f (x )=1x 2-4 (2)f (x )=1x 2+x +1(3)f (x )=x -2 ------------------------------------------------------------------------------------------------------------------------※区间的符号设 a ﹐b 为实数﹐且 a <b 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数、基本初等函数1.指数函数(1)通过具体实例(如细胞的分裂,考古中所用的14C的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景;(2)理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。

(3)理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点;(4)在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型2.对数函数(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用;(2)通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;3.知道指数函数xay=与对数函数xyalog=互为反函数(a>0,a≠1)。

4.幂函数(1)了解幂函数的概念(2)结合函数y=x, ,y=x2, y=x3,y=x21,y=x1的图象,了解它们的变化情况二.【命题走向】指数函数、对数函数、幂函数是三类常见的重要函数,在历年的高考题中都占据着重要的地位。

从近几年的高考形势来看,对指数函数、对数函数、幂函数的考查,大多以基本函数的性质为依托,结合运算推理,能运用它们的性质解决具体问题。

为此,我们要熟练掌握指数、对数运算法则,明确算理,能对常见的指数型函数、对数型函数进行变形处理。

预测2010年对本节的考察是:1.题型有两个选择题和一个解答题;2.题目形式多以指数函数、对数函数、幂函数为载体的复合函数来考察函数的性质。

同时它们与其它知识点交汇命题,则难度会加大三.【要点精讲】1.指数与对数运算 (1)根式的概念:①定义:若一个数的n 次方等于),1(*∈>N n n a 且,则这个数称a 的n 次方根。

即若a x n =,则x 称a 的n 次方根)1*∈>N n n 且,1)当n 为奇数时,n a 的次方根记作na ;2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作)0(>±a a n ②性质:1)a a n n =)(;2)当n 为奇数时,a a nn =; 3)当n 为偶数时,⎩⎨⎧<-≥==)0()0(||a a a a a a n。

(2).幂的有关概念①规定:1)∈⋅⋅⋅=n a a a a n (ΛN *;2))0(10≠=a a ; n 个3)∈=-p a a p p (1Q ,4)m a a a n m n m,0(>=、∈n N * 且)1>n ②性质:1)r a a a a s r s r ,0(>=⋅+、∈s Q ); 2)r a a a sr s r ,0()(>=⋅、∈s Q ); 3)∈>>⋅=⋅r b a b a b a r r r ,0,0()( Q )。

(注)上述性质对r 、∈s R 均适用。

(3).对数的概念①定义:如果)1,0(≠>a a a 且的b 次幂等于N ,就是N a b=,那么数b 称以a 为底N 的对数,记作,log b N a =其中a 称对数的底,N 称真数1)以10为底的对数称常用对数,N10log 记作N lg ;2)以无理数)71828.2(Λ=e e 为底的对数称自然对数,Ne log ,记作N ln ;②基本性质:1)真数N为正数(负数和零无对数);2)1log=a;3)1log=aa;4)对数恒等式:Na N a=log。

③运算性质:如果,0,0,0,0>>≠>NMaa则1)NMMNaaaloglog)(log+=;2)NMNMaaalogloglog-=;3)∈=nMnMana(loglogR)④换底公式:),0,1,0,0,0(logloglog>≠>≠>=NmmaaaNNmma1)1loglog=⋅abba;2)bmnbana mloglog=。

2.指数函数与对数函数(1)指数函数:①定义:函数)1,0(≠>=aaay x且称指数函数,1)函数的定义域为R;2)函数的值域为),0(+∞;3)当10<<a时函数为减函数,当1>a时函数为增函数。

②函数图像:1)指数函数的图象都经过点(0,1),且图象都在第一、二象限;2)指数函数都以x轴为渐近线(当10<<a时,图象向左无限接近x轴,当1>a时,图象向右无限接近x轴);3)对于相同的)1,0(≠>a a a 且,函数xx a y a y -==与的图象关于y 轴对称③函数值的变化特征:(2)对数函数: ①定义:函数)1,0(log ≠>=a a x y a 且称对数函数,1)函数的定义域为),0(+∞;2)函数的值域为R ; 3)当10<<a 时函数为减函数,当1>a 时函数为增函数; 4)对数函数xy a log =与指数函数)1,0(≠>=a a a y x 且互为反函数 ②函数图像:1)对数函数的图象都经过点(0,1),且图象都在第一、四象限; 2)对数函数都以y 轴为渐近线(当10<<a 时,图象向上无限接近y 轴;当1>a 时,图象向下无限接近y 轴);4)对于相同的)1,0(≠>a a a 且,函数xy x y aa 1log log ==与的图象关于x 轴对称。

③函数值的变化特征:(3)幂函数1)掌握5个幂函数的图像特点10<<a1>a①100<<>y x 时, ②10==y x 时, ③10><y x 时 ①10>>y x 时, ②10==y x 时, ③100<<<y x 时,10<<a1>a①01<>y x 时, ②01==y x 时, ③010><<y x 时.①01>>y x 时, ②01==y x 时, ③100<<<y x 时.2)a>0时,幂函数在第一象限内恒为增函数,a<0时在第一象限恒为减函数 3)过定点(1,1)当幂函数为偶函数过(-1,1),当幂函数为奇函数时过(-1,-1) 当a>0时过(0,0)4)幂函数一定不经过第四象限要点考向一:基本初等函数问题考情聚焦:1.一元二次函数、指数函数、对数函数和幂函数是最重要的基本初等函数,在每年高考中都有涉及到直接考查它们定义、定义域和值域、图象和性质的问题。

2.常与函数的性质、方程、不等式综合命题,多以选择、填空题的形式出现,属容易题。

考向链接:1.一元二次、二次函数及指数\对数函数和幂函数的定义、定义域、值域、图象和性质是解决此类题目的关键,同时要注意数形结合、化归和分类讨论思想的应用。

2.熟记幂和对数的运算性质并能灵活运用。

例1:(2011四川文)4.函数1()12x y =+的图象关于直线y =x 对称的图象像大致是(天津文)5.已知244log 3.6,log 3.2,log 3.6a b c ===则A .a b c >>B .a c b >>C .b a c >>D .c a b >>例2:(2010·天津高考文科·T6)设554a log 4b log c log ===25,(3),,则( ) (A)a<c<b (B) )b<c<a (C) )a<b<c (D) )b<a<c 【命题立意】考查利用对数的性质及对数函数的单调性比较大小。

【方法技巧】比较对数函数值的大小问题,要特别注意分清底数是否相同,如果底数相同,直接利用函数的单调性即可比较大小;如果底数不同,不仅要利用函数的单调性,还要借助中间量比较大小。

要点考向二:函数与映射概念的应用问题考情聚焦:1.该考向在高考中主要考查与函数、映射概念相关的定义域、映射个数、函数值、解析式的确定与应用。

2.常结合方程、不等式及函数的有关性质交汇命题,属低、中档题。

考向链接:1.求函数定义域的类型和相应方法。

2.求f(g(x))类型的函数值时,应遵循先内后外的原则,面对于分段函数的求值问题,必须依据条件准确地找出利用哪一段求解,特别地对具有周期性的函数求值要用好其周期性。

3.求函数的解析式,常见命题规律是:先给出一定的条件确定函数的解析式,再研究函数的有关性质;解答的常用方法有待定系数法、定义法、换元法、解方程组法、消元法等。

4.映射个数的计算一般要分类计数。

例3:(2011福建文)8.已知函数f (x )=。

若f (a )+f (1)=0,则实数a 的值等于A .-3B .-1C .1D .3(2011山东文)3.若点(a,9)在函数3xy =的图象上,则tan=6a π的值为 (A )0 (B)3(C) 1 (D) 3(2011陕西文)6.方程cos x x =在(),-∞+∞内 ( ) (A)没有根 (B)有且仅有一个根 (C) 有且仅有两个根 (D )有无穷多个根(湖南文)8.已知函数2()1,()43,xf x eg x x x =-=-+-若有()(),f a g b =则b 的取值范围为 A .[22,22]-+ B .(22,22) C .[1,3] D .(1,3)(2011安徽文)(11)设()f x 是定义在R 上的奇函数,当x≤0时,()f x =22x x -,则(1)f = ..要点考向三:函数图象问题考情聚焦:1.函数图象作为高中数学的一个“重头戏”,是研究函数性质、方程、不等式的重要武器,已成为各省市高考命题的一个热点。

2.常以几类初等函数的图象为基础,结合函数的性质综合考查,多以选择、填空题的形式出现。

考向链接:1.基本初等函数的图象和性质,函数图象的画法以及图象的三种变换。

2.在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系、结合图象研究。

3.在研究一些陌生的方程和不等式时常用数形结合法求解。

例4:(2011陕西文)4. 函数13y x =的图像是 ( )(2010·山东高考·T11)函数22xy x =-的图象大致是( )【命题立意】本题考查函数的图象,函数的基础知识以及数形结合的思维能力, 考查了考生的分析问题解决问题的能力和运算求解能力。

要点考向四:函数性质问题考情聚焦:该考向是各省市高考命题大做文章的一个重点。

相关文档
最新文档