高中数学函数知识点总结(经典收藏)

合集下载

高一数学函数知识总结6篇

高一数学函数知识总结6篇

高一数学函数知识总结高一数学函数知识总结6篇总结就是对一个时期的学习、工作或其完成情况进行一次全面系统的回顾和分析的书面材料,它能够使头脑更加清醒,目标更加明确,让我们好好写一份总结吧。

总结怎么写才能发挥它的作用呢?以下是小编帮大家整理的高一数学函数知识总结,希望对大家有所帮助。

高一数学函数知识总结1一:函数及其表示知识点详解文档包含函数的概念、映射、函数关系的判断原则、函数区间、函数的三要素、函数的定义域、求具体或抽象数值的函数值、求函数值域、函数的表示方法等1. 函数与映射的区别:2. 求函数定义域常见的用解析式表示的函数f(x)的定义域可以归纳如下:①当f(x)为整式时,函数的定义域为R.②当f(x)为分式时,函数的定义域为使分式分母不为零的实数集合。

③当f(x)为偶次根式时,函数的定义域是使被开方数不小于0的实数集合。

④当f(x)为对数式时,函数的定义域是使真数为正、底数为正且不为1的实数集合。

⑤如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合,即求各部分有意义的实数集合的交集。

⑥复合函数的定义域是复合的各基本的函数定义域的交集。

⑦对于由实际问题的背景确定的函数,其定义域除上述外,还要受实际问题的制约。

3. 求函数值域(1)、观察法:通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域;(2)、配方法;如果一个函数是二次函数或者经过换元可以写成二次函数的形式,那么将这个函数的右边配方,通过自变量的范围可以求出该函数的值域;(3)、判别式法:(4)、数形结合法;通过观察函数的图象,运用数形结合的方法得到函数的值域;(5)、换元法;以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域;(6)、利用函数的单调性;如果函数在给出的定义域区间上是严格单调的,那么就可以利用端点的函数值来求出值域;(7)、利用基本不等式:对于一些特殊的分式函数、高于二次的函数可以利用重要不等式求出函数的值域;(8)、最值法:对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域;(9)、反函数法:如果函数在其定义域内存在反函数,那么求函数的值域可以转化为求反函数的定义域。

高中数学函数知识点(详细)

高中数学函数知识点(详细)

第二章 函数一.函数1、函数的概念:(1)定义:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作:y =)(x f ,x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{)(x f | x ∈A }叫做函数的值域. (2)函数的三要素:定义域、值域、对应法则(3)相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)2、定义域:(1)定义域定义:函数)(x f 的自变量x 的取值范围。

(2)确定函数定义域的原则:使这个函数有意义的实数的全体构成的集合。

(3)确定函数定义域的常见方法:①若)(x f 是整式,则定义域为全体实数②若)(x f 是分式,则定义域为使分母不为零的全体实数 例:求函数xy 111+=的定义域。

③若)(x f 是偶次根式,则定义域为使被开方数不小于零的全体实数例1. 求函数 ()2143432-+--=x x xy 的定义域。

例2. 求函数()02112++-=x x y 的定义域。

④对数函数的真数必须大于零⑤指数、对数式的底必须大于零且不等于1⑥若)(x f 为复合函数,则定义域由其中各基本函数的定义域组成的不等式组来确定⑦指数为零底不可以等于零,如)0(10≠=x x⑧实际问题中的函数的定义域还要保证实际问题有意义. (4)求抽象函数(复合函数)的定义域已知函数)(x f 的定义域为[0,1]求)(2x f 的定义域 已知函数)12(-x f 的定义域为[0,1)求)31(x f -的定义域3、值域 :(1)值域的定义:与x 相对应的y 值叫做函数值,函数值的集合叫做函数的值域。

(2)确定值域的原则:先求定义域 (3)常见基本初等函数值域:一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数(正余弦、正切)(4)确定函数值域的常见方法:①直接法:从自变量x 的范围出发,推出()y f x =的取值范围。

数学高考知识点总结函数

数学高考知识点总结函数

数学高考知识点总结函数一、函数的基本概念1.1 函数的定义在数学中,函数是一种对应关系,它描述了一个集合中的每个元素与另一个集合中的唯一元素之间的关系。

如果对于集合X中的每一个元素x,都有集合Y中的唯一元素y与之对应,那么我们就称这种对应关系为函数。

通常用f(x)表示函数,其中x是自变量,f(x)是因变量。

1.2 函数的表示函数可以用不同的形式进行表示,常见的表示形式包括:① 变量关系式表示:y=f(x)或者y=f(x₁,x₂,…,xₙ)。

② 表格表示:将自变量和因变量的对应关系列成表格。

③ 图像表示:通过绘制函数的图像来表示函数的关系。

二、函数的性质2.1 奇函数和偶函数奇函数和偶函数是函数的一种性质,它们的定义如下:① 奇函数:如果对于任意的x,都有f(-x)=-f(x),那么我们称函数f(x)是奇函数。

② 偶函数:如果对于任意的x,都有f(-x)=f(x),那么我们称函数f(x)是偶函数。

奇函数以原点对称,而偶函数以y轴对称。

2.2 周期函数如果函数f(x)满足对于任意的x,都有f(x+T)=f(x),其中T为一个正常数,那么我们称函数f(x)是周期函数,T称为函数的周期。

2.3 单调性函数的单调性是指函数在定义域内的增减性质,可以分为严格单调增、严格单调减、非严格单调增、非严格单调减四种类型。

2.4 凹凸性函数的凹凸性描述了函数图像的凹凸形状,它可以分为凹函数和凸函数两种类型。

2.5 极值函数的极值是指函数在一定区间内取得最大值或最小值的点,可以分为最大值和最小值两种。

三、函数的图像3.1 函数的图像基本性质函数的图像是函数在平面直角坐标系中的几何形象,它具有以下基本性质:① 函数的图像可以用方程y=f(x)来表示。

② 函数的图像关于y轴对称,当且仅当函数f(-x)=f(x)时。

③ 函数的图像可以用表格来表示,通过将自变量和因变量的对应关系列成表格。

3.2 常见函数的图像常见的函数包括一次函数、二次函数、指数函数、对数函数、幂函数、三角函数等,它们都有各自的特点和图像形状。

高中数学知识点大全(一)

高中数学知识点大全(一)

高中数学知识点大全(一)一、函数与极限1. 函数概念(1)函数的定义:设A、B是非空的集合,如果按照某种确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A。

(2)函数的表示法:解析法、表格法、图象法、分离法。

(3)函数的基本性质:单调性、奇偶性、周期性、对称性。

2. 基本初等函数(1)常数函数:y=c(c为常数)(2)幂函数:y=x^α(α为实数)(3)指数函数:y=a^x(a>0,且a≠1)(4)对数函数:y=log_ax(a>0,且a≠1)(5)三角函数:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数。

(6)反三角函数:反正弦函数、反余弦函数、反正切函数、反余切函数。

3. 函数的极限(1)数列的极限:设{a_n}是一个数列,如果存在实数A,对于任意给定的正数ε(无论多么小),总存在正整数N,使得当n>N时,|a_nA|<ε,那么就称A是数列{a_n}的极限,记作lim(n→∞)a_n=A。

(2)函数的极限:设函数f(x)在点x_0的某一去心邻域内有定义,如果存在实数A,对于任意给定的正数ε(无论多么小),总存在正数δ,使得当0<|xx_0|<δ时,|f(x)A|<ε,那么就称A是函数f(x)当x趋向于x_0时的极限,记作lim(x→x_0)f(x)=A。

(3)无穷小量与无穷大量:无穷小量是指极限为0的量,无穷大量是指极限为无穷的量。

(4)极限的运算法则:四则运算法则、复合函数的极限运算法则。

(5)极限存在的条件:夹逼定理、单调有界定理。

二、导数与微分1. 导数的概念(1)导数的定义:设函数y=f(x)在点x_0的某一邻域内有定义,如果极限lim(Δx→0)[f(x_0+Δx)f(x_0)]/Δx存在,那么就称这个极限为函数y=f(x)在点x_0处的导数,记作f'(x_0)。

高中数学知识点总结(最全版)

高中数学知识点总结(最全版)

高中数学知识点总结(最全版)第一章函数概念(1)函数的概念①设、是两个非空的数集,如果按照某种对应法则,对于集合中任何一个数,在集合中都有唯一确定的数和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的一个函数,记作、②函数的三要素:定义域、值域和对应法则、③只有定义域相同,且对应法则也相同的两个函数才是同一函数、(2)区间的概念及表示法①设是两个实数,且,满足的实数的集合叫做闭区间,记做;满足的实数的集合叫做开区间,记做;满足,或的实数的集合叫做半开半闭区间,分别记做,;满足的实数的集合分别记做、注意:对于集合与区间,前者可以大于或等于,而后者必须,(前者可以不成立,为空集;而后者必须成立)、(3)求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数、②是分式函数时,定义域是使分母不为零的一切实数、③是偶次根式时,定义域是使被开方式为非负值时的实数的集合、④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1、⑤中,、⑥零(负)指数幂的底数不能为零、⑦若是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集、⑧对于求复合函数定义域问题,一般步骤是:若已知的定义域为,其复合函数的定义域应由不等式解出、⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论、⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义、(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的、事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值、因此求函数的最值与值域,其实质是相同的,只是提问的角度不同、求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值、②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值、③判别式法:若函数可以化成一个系数含有的关于的二次方程则在时,由于为实数,故必须有,从而确定函数的值域或最值、④不等式法:利用基本不等式确定函数的值域或最值、⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题、⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值、⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值、⑧函数的单调性法、(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种、解析法:就是用数学表达式表示两个变量之间的对应关系、列表法:就是列出表格来表示两个变量之间的对应关系、图象法:就是用图象表示两个变量之间的对应关系、(6)映射的概念①设、是两个集合,如果按照某种对应法则,对于集合中任何一个元素,在集合中都有唯一的元素和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的映射,记作、②给定一个集合到集合的映射,且、如果元素和元素对应,那么我们把元素叫做元素的象,元素叫做元素的原象、(6)函数的单调性①定义及判定方法函数的性质定义图象判定方法函数的单调性如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x1< x2时,都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数、(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增)(4)利用复合函数如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x1< x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数、(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数、③对于复合函数,令,若为增,为增,则为增;若为减,为减,则为增;若为增,为减,则为减;若为减,为增,则为减、yxo(7)打“√”函数的图象与性质分别在、上为增函数,分别在、上为减函数、(8)最大(小)值定义①一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有;(2)存在,使得、那么,我们称是函数的最大值,记作、②一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有;(2)存在,使得、那么,我们称是函数的最小值,记作、(9)函数的奇偶性①定义及判定方法函数的性质定义图象判定方法函数的奇偶性如果对于函数f(x)定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)叫做奇函数、(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)叫做偶函数、(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y轴对称)②若函数为奇函数,且在处有定义,则、③奇函数在轴两侧相对称的区间增减性相同,偶函数在轴两侧相对称的区间增减性相反、④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数、第二章基本初等函数(Ⅰ)〖2、1〗指数函数【2、1、1】指数与指数幂的运算(1)根式的概念①如果,且,那么叫做的次方根、当是奇数时,的次方根用符号表示;当是偶数时,正数的正的次方根用符号表示,负的次方根用符号表示;0的次方根是0;负数没有次方根、②式子叫做根式,这里叫做根指数,叫做被开方数、当为奇数时,为任意实数;当为偶数时,、③根式的性质:;当为奇数时,;当为偶数时,、(2)分数指数幂的概念①正数的正分数指数幂的意义是:且、0的正分数指数幂等于0、②正数的负分数指数幂的意义是:且、0的负分数指数幂没有意义、注意口诀:底数取倒数,指数取相反数、(3)分数指数幂的运算性质① ②③【2、1、2】指数函数及其性质(4)指数函数函数名称指数函数定义0101函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,、奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,越大图象越高;在第二象限内,越大图象越低、〖2、2〗对数函数【2、2、1】对数与对数运算(1)对数的定义①若,则叫做以为底的对数,记作,其中叫做底数,叫做真数、②负数和零没有对数、③对数式与指数式的互化:、(2)几个重要的对数恒等式,,、(3)常用对数与自然对数常用对数:,即;自然对数:,即(其中…)、(4)对数的运算性质如果,那么①加法:②减法:③数乘:④⑤ ⑥换底公式:【2、2、2】对数函数及其性质(5)对数函数函数名称对数函数定义函数且叫做对数函数图象0101定义域值域过定点图象过定点,即当时,、奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,越大图象越靠低;在第四象限内,越大图象越靠高、(6)反函数的概念设函数的定义域为,值域为,从式子中解出,得式子、如果对于在中的任何一个值,通过式子,在中都有唯一确定的值和它对应,那么式子表示是的函数,函数叫做函数的反函数,记作,习惯上改写成、(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式中反解出;③将改写成,并注明反函数的定义域、(8)反函数的性质①原函数与反函数的图象关于直线对称、②函数的定义域、值域分别是其反函数的值域、定义域、③若在原函数的图象上,则在反函数的图象上、④一般地,函数要有反函数则它必须为单调函数、〖2、3〗幂函数(1)幂函数的定义一般地,函数叫做幂函数,其中为自变量,是常数、(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象、幂函数是偶函数时,图象分布在第一、二象限(图象关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限、②过定点:所有的幂函数在都有定义,并且图象都通过点、③单调性:如果,则幂函数的图象过原点,并且在上为增函数、如果,则幂函数的图象在上为减函数,在第一象限内,图象无限接近轴与轴、④奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数、当(其中互质,和),若为奇数为奇数时,则是奇函数,若为奇数为偶数时,则是偶函数,若为偶数为奇数时,则是非奇非偶函数、⑤图象特征:幂函数,当时,若,其图象在直线下方,若,其图象在直线上方,当时,若,其图象在直线上方,若,其图象在直线下方、〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:②顶点式:③两根式:(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式、②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式、③若已知抛物线与轴有两个交点,且横线坐标已知时,选用两根式求更方便、(3)二次函数图象的性质①二次函数的图象是一条抛物线,对称轴方程为顶点坐标是、②当时,抛物线开口向上,函数在上递减,在上递增,当时,;当时,抛物线开口向下,函数在上递增,在上递减,当时,、③二次函数当时,图象与轴有两个交点、(4)一元二次方程根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布、设一元二次方程的两实根为,且、令,从以下四个方面来分析此类问题:①开口方向:②对称轴位置:③判别式:④端点函数值符号、①k<x1≤x2 ②x1≤x2<k ③x1<k<x2 af(k)<0 ④k1<x1≤x2<k2 ⑤有且仅有一个根x1(或x2)满足k1<x1(或x2)<k2 f(k1)f(k2)0,并同时考虑f(k1)=0或f(k2)=0这两种情况是否也符合⑥k1<x1<k2≤p1<x2<p2 此结论可直接由⑤推出、(5)二次函数在闭区间上的最值设在区间上的最大值为,最小值为,令、(Ⅰ)当时(开口向上)①若,则②若,则③若,则xy0>aOabx2-=pqf(p)f(q)xy0>aOabx2-=pqf(p)f(q)xy0>aOabx2-=pqf(p)f(q)xy0>aOabx2-=pqf(p)f(q)①若,则②,则xy0>aOabx2-=pqf(p)f(q)(Ⅱ)当时(开口向下)①若,则②若,则③若,则xy0<aOabx2-=pqf(p)f(q)xy0<aOabx2-=pqf(p)f(q)xy0<aOabx2-=pqf(p)f(q)①若,则②,则、xy0<aOabx2-=pqf(p)f(q)xy0<aOabx2-=pqf(p)f(q)第三章函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

高中函数知识点归纳总结

高中函数知识点归纳总结

高中函数知识点归纳总结一、函数的概念和性质1.1 函数的定义函数是一个数学概念,它是一种特殊的关系。

如果对于集合D中的每一个元素x,都有一个确定的元素y与之对应,那么这个对应关系就叫作函数。

其中,x是自变量,y是因变量。

1.2 函数的记法函数一般用f(x)表示,其中f是函数的名称,x是自变量。

1.3 函数的性质函数有很多性质,包括定义域、值域、奇偶性、周期性等。

1.3.1 定义域和值域函数的定义域是自变量的取值范围,值域是因变量的取值范围。

1.3.2 奇偶性如果对于所有x∈D,都有f(-x) = f(x),那么函数f是偶函数;如果对于所有x∈D,都有f(-x) = -f(x),那么函数f是奇函数。

1.3.3 周期性如果存在一个正数T,使得对于所有x∈D,都有f(x+T) = f(x),那么函数f是周期函数,T 称为函数的周期。

1.4 函数的图象函数的图象是函数在平面直角坐标系中的图形,它显示了函数的变化规律。

1.5 函数的运算函数有四则运算、复合运算、反函数运算等。

二、基本函数2.1 一次函数一次函数的一般形式是f(x) = kx + b,其中k和b是常数,k≠0。

一次函数的图象是一条直线。

2.2 二次函数二次函数的一般形式是f(x) = ax^2 + bx + c,其中a、b、c是常数,且a≠0。

二次函数的图象是抛物线。

2.3 幂函数幂函数的一般形式是f(x) = x^n,其中n是常数。

2.4 指数函数指数函数的一般形式是f(x) = a^x,其中a是正数且不等于1。

2.5 对数函数对数函数的一般形式是f(x) = loga(x),其中a是正数且不等于1,x是正数。

2.6 三角函数三角函数包括正弦函数、余弦函数、正切函数等。

2.7 反比例函数反比例函数的一般形式是f(x) = k/x,其中k是常数且不等于0。

三、函数的性质和应用3.1 函数的性质函数有很多性质,如单调性、极值、最值、奇偶性、周期性等。

高中函数知识点总结(最新最全)

高中函数知识点总结(最新最全)

高中数学函数知识点归纳1. .函数的单调性(1)设那么上是增函数;上是减函数.(2)设函数在某个区间内可导,如果,则为增函数;如果,则为减函数.2. 奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.3. 多项式函数的奇偶性多项式函数是奇函数的偶次项(即奇数项)的系数全为零.多项式函数是偶函数的奇次项(即偶数项)的系数全为零.23.函数的图象的对称性(1)函数的图象关于直线对称.(2)函数的图象关于直线对称.4. 两个函数图象的对称性(1)函数与函数的图象关于直线(即轴)对称.(2)函数与函数的图象关于直线对称.(3)函数和的图象关于直线y=x对称.25.若将函数的图象右移、上移个单位,得到函数的图象;若将曲线的图象右移、上移个单位,得到曲线的图象.5. 互为反函数的两个函数的关系.27.若函数存在反函数,则其反函数为,并不是,而函数是的反函数.6. 几个常见的函数方程(1)正比例函数,.(2)指数函数,.(3)对数函数,.(4)幂函数,.(5)余弦函数,正弦函数,,.7. 几个函数方程的周期(约定a>0)(1),则的周期T=a;(2),或,或,或,则的周期T=2a;(3),则的周期T=3a;(4)且,则的周期T=4a;(5),则的周期T=5a;(6),则的周期T=6a.8. 分数指数幂(1)(,且).(2)(,且).9. 根式的性质(1).(2)当为奇数时,;当为偶数时,.10. 有理指数幂的运算性质(1).(2).(3).33.指数式与对数式的互化式.34.对数的换底公式(,且,,且,).推论(,且,,且,,).11. 对数的四则运算法则若a>0,a≠1,M>0,N>0,则(1);(2);(3).。

高中数学函数知识点总结(精华版)知识分享

高中数学函数知识点总结(精华版)知识分享

高中数学函数知识点总结(精华版)知识分

高中数学函数知识点总结(精华版)知识分享
1. 函数的定义和性质
- 定义:函数是一个将各个元素从一个集合映射到另一个集合的规则。

- 函数的性质:单调性、奇偶性、周期性等。

2. 基本函数
- 幂函数:y = x^n,n为常数,图像为直线或曲线。

- 三角函数:包括正弦函数、余弦函数、正切函数等,图像具有周期性。

- 指数函数:y = a^x,a为正常数,图像单调递增或递减。

- 对数函数:y = log_a(x),a为正常数,图像单调递增或递减。

3. 函数的运算与变换
- 四则运算:加法、减法、乘法、除法。

- 复合运算:由两个或多个函数构成一个新的函数。

- 反函数:原函数与定义域互为值域的函数。

- 平移、压缩、翻折等函数的变换。

4. 函数的图像与性质
- 函数图像的绘制和分析方法。

- 函数的最值、零点、极值等特性。

5. 函数的应用
- 函数在物理、经济等领域的应用。

- 函数在数学建模中的应用。

6. 解函数方程
- 求函数方程的解法与步骤。

以上是高中数学函数知识点的精华总结和知识分享。

掌握这些知识能够帮助学生更好地理解和应用函数概念,提升数学能力。

注:本文档内容仅为总结分享,并不保证所有内容的正确性,请酌情参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学函数知识点总结1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

{}{}{}C B A x y y x C x y y B x y x A 、、,,,如:集合lg |),(lg |lg |======中元素各表示什么?A 表示函数y=lgx 的定义域,B 表示的是值域,而C 表示的却是函数上的点的轨迹2 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况 注重借助于数轴和文氏图解集合问题。

空集是一切集合的子集,是一切非空集合的真子集。

{}{}如:集合,A x x x B x ax =--===||22301若,则实数的值构成的集合为B A a ⊂(答:,,)-⎧⎨⎩⎫⎬⎭1013显然,这里很容易解出A={-1,3}.而B 最多只有一个元素。

故B 只能是-1或者3。

根据条件,可以得到a=-1,a=1/3. 但是,这里千万小心,还有一个B 为空集的情况,也就是a=0,不要把它搞忘记了。

3. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n要知道它的来历:若B 为A 的子集,则对于元素a 1来说,有2种选择(在或者不在)。

同样,对于元素a 2, a 3,……a n ,都有2种选择,所以,总共有2n 种选择,即集合A 有2n 个子集。

当然,我们也要注意到,这2n 种情况之中,包含了这n 个元素全部在何全部不在的情况,故真子集个数为21n -,非空真子集个数为22n -()若,;2A B A B A A B B ⊆⇔==(3)德摩根定律:()()()()()()C C C C C C U U U U U U A B A B A B A B ==,有些版本可能是这种写法,遇到后要能够看懂4. 你会用补集思想解决问题吗?(排除法、间接法)如:已知关于的不等式的解集为,若且,求实数x ax x aM M M a --<∈∉50352 的取值范围。

()(∵,∴·∵,∴·,,)335305555015392522∈--<∉--≥⇒∈⎡⎣⎢⎫⎭⎪M a a M a aa注意,有时候由集合本身就可以得到大量信息,做题时不要错过;如告诉你函数f(x)=ax 2+bx+c(a>0) 在(,1)-∞上单调递减,在(1,)+∞上单调递增,就应该马上知道函数对称轴是x=1.或者,我说在上,也应该马上可以想到m ,n 实际上就是方程的2个根 5、熟悉命题的几种形式、()()().∨∧⌝可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和“非”若为真,当且仅当、均为真p q p q ∧ 若为真,当且仅当、至少有一个为真p q p q ∨ 若为真,当且仅当为假⌝p p命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。

)原命题与逆否命题同真、同假;逆命题与否命题同真同假。

6、熟悉充要条件的性质(高考经常考)x x A |{=满足条件}p ,x x B |{=满足条件}q ,若;则p 是q 的充分非必要条件B A _____⇔; 若;则p 是q 的必要非充分条件B A _____⇔;若;则p 是q 的充要条件B A _____⇔;若;则p 是q 的既非充分又非必要条件___________⇔;7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B 中有元素无原象。

)注意映射个数的求法。

如集合A 中有m 个元素,集合B 中有n 个元素,则从A 到B 的映射个数有n m 个。

如:若}4,3,2,1{=A ,},,{c b a B =;问:A 到B 的映射有个,B 到A 的映射有个;A 到B 的函数有个,若}3,2,1{=A ,则A 到B 的一一映射有个。

函数)(x y ϕ=的图象与直线a x =交点的个数为个。

8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域)相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备)9. 求函数的定义域有哪些常见类型?()()例:函数的定义域是y x x x =--432lg ()()()(答:,,,)022334函数定义域求法: ● 分式中的分母不为零;● 偶次方根下的数(或式)大于或等于零; ● 指数式的底数大于零且不等于一;● 对数式的底数大于零且不等于一,真数大于零。

● 正切函数x y tan =⎪⎭⎫⎝⎛∈+≠∈Z ππk k x R x ,2,且 ● 余切函数x y cot =()Z π∈≠∈k k x R x ,,且●反三角函数的定义域函数y =arcsinx 的定义域是 [-1, 1],值域是,函数y =arccosx的定义域是 [-1, 1] ,值域是 [0, π] ,函数y =arctgx 的定义域是R ,值域是.,函数y =arcctgx 的定义域是 R ,值域是 (0, π) .当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。

10. 如何求复合函数的定义域?[]如:函数的定义域是,,,则函数的定f x a b b a F(x f x f x ())()()>->=+-0义域是_____________。

[](答:,)a a -复合函数定义域的求法:已知)(x f y =的定义域为[]n m ,,求[])(x g f y =的定义域,可由n x g m ≤≤)(解出x 的范围,即为[])(x g f y =的定义域。

例若函数)(x f y =的定义域为⎥⎦⎤⎢⎣⎡2,21,则)(log 2x f 的定义域为。

分析:由函数)(x f y =的定义域为⎥⎦⎤⎢⎣⎡2,21可知:221≤≤x ;所以)(log 2x f y =中有2log 212≤≤x 。

解:依题意知:2log 212≤≤x 解之,得42≤≤x∴)(log 2x f 的定义域为{}42|≤≤x x11、函数值域的求法1、直接观察法对于一些比较简单的函数,其值域可通过观察得到。

例 求函数y=x1的值域 2、配方法配方法是求二次函数值域最基本的方法之一。

例、求函数y=2x -2x+5,x ∈[-1,2]的值域。

3、判别式法对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进行化简,不必拘泥在判别式上面下面,我把这一类型的详细写出来,希望大家能够看懂.112..22222222ba y 型:直接用不等式性质k+x bxb. y 型,先化简,再用均值不等式x mx nx 1 例:y 1+xx+xx m x n c y 型 通常用判别式x mx n x mx nd. y 型x n法一:用判别式 法二:用换元法,把分母替换掉x x 1(x+1)(x+1)+1 1例:y (x+1)1211x 1x 1x 1==++==≤''++=++++=+++-===+-≥-=+++4、反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。

例 求函数y=6543++x x 值域。

5、函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。

我们所说的单调性,最常用的就是三角函数的单调性。

例 求函数y=11+-x x e e ,2sin 11sin y θθ-=+,2sin 11cos y θθ-=+的值域。

110112sin 11|sin |||1,1sin 22sin 12sin 1(1cos )1cos 2sin cos 1)1,sin()sin()11即又由解不等式,求出,就是要求的答案x x x e yy e y e y y y y y y yx y x x y θθθθθθθθθθθθ-+=⇒=>-+-+=⇒=≤+--=⇒-=++-=++=++=+≤≤6、函数单调性法通常和导数结合,是最近高考考的较多的一个内容 例求函数y=+-25x log 31-x (2≤x ≤10)的值域7、换元法通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型。

换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发 挥作用。

例 求函数y=x+1-x 的值域。

8 数形结合法其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。

例:已知点P (x.y )在圆x 2+y 2=1上,2,(2),2(,20, (1)的取值范围(2)y-2的取值范围 解:(1)令则是一条过(-2,0)的直线.d 为圆心到直线的距离,R 为半径) (2)令y-2即也是直线d dy x x yk y k x x R d x b y x b R +==+-≤=--=≤ 例求函数y=)2(2-x +)8(2+x 的值域。

解:原函数可化简得:y=∣x-2∣+∣x+8∣上式可以看成数轴上点P (x )到定点A (2),B (-8)间的距离之和。

由上图可知:当点P 在线段AB 上时, y=∣x-2∣+∣x+8∣=∣AB ∣=10当点P 在线段AB 的延长线或反向延长线上时, y=∣x-2∣+∣x+8∣>∣AB ∣=10 故所求函数的值域为:[10,+∞) 例求函数y=1362+-x x+542++x x 的值域解:原函数可变形为:y=)20()3(22--+x +)10()2(22+++x上式可看成x 轴上的点P (x ,0)到两定点A (3,2),B (-2,-1)的距离之和,由图可知当点P 为线段与x 轴的交点时,y m in=∣AB ∣=)12()23(22+++=43,故所求函数的值域为[43,+∞)。

注:求两距离之和时,要将函数9 、不等式法利用基本不等式a+b ≥2ab ,a+b+c≥3abc 3(a ,b ,c ∈R +),求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时须要用到拆项、添项和两边平方等技巧。

例: 倒数法 有时,直接看不出函数的值域时,把它倒过来之后,你会发现另一番境况 例 求函数y=32++x x 的值域20112022012时,时,=00y x y y x y y =+≠==+≥⇒<≤+=∴≤≤多种方法综合运用总之,在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。

12. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?切记:做题,特别是做大题时,一定要注意附加条件,如定义域、单位等2(0)113322x =x (应用公式a+b+c 者的乘积变成常数)x xx x +>++≥=≥33()13()32x (3-2x)(0<x<1.5)x x+3-2x =x x (3-2x) (应用公式abc 时,应注意使3者之和变成常数)a b c +⋅⋅≤=++≤东西要记得协商,不要犯我当年的错误,与到手的满分失之交臂()如:,求fx e x f x x +=+1().令,则t x t =+≥10∴x t =-21∴f t et t ()=+--2121 ()∴f x ex x x ()=+-≥-2121013. 反函数存在的条件是什么? (一一对应函数) 求反函数的步骤掌握了吗?(①反解x ;②互换x 、y ;③注明定义域)()()如:求函数的反函数f x x x x x ()=+≥-<⎧⎨⎪⎩⎪1002 ()()(答:)f x x x xx -=->--<⎧⎨⎪⎩⎪1110()在更多时候,反函数的求法只是在选择题中出现,这就为我们这些喜欢偷懒的人提供了大方便。

相关文档
最新文档