APD光电二极管特性测试实验

合集下载

APD光电二极管特性(精)

APD光电二极管特性(精)
教学章节
APD光电二极管特性
教学环境
多媒体机房
教学
内容
1.APD光电二极管一般性能
2.倍增因子
3.过剩噪声因子
教学
目标
1.了解PIN光电二极管一般性能2.ຫໍສະໝຸດ 解倍增因子3.了解过剩噪声因子
重点
难点
1、掌握查看APD光电二极管的参数表,并根据参数表选型。
教学
方法
讲授、讨论、总结
教学
过程
讲授:
1.APD光电二极管一般性能
例举Si材料和InGaAs材料的雪崩光电二极管的参数表格,APD光电二极管的参数
包括光谱响应范围、峰值波长、灵敏度、量子效率、击穿电压、击穿电压温度系数、暗电流、截止波长、结电容、附加噪声指数和增益等。以及两者的特点和应用场合。
2.倍增因子
倍增因子是APD输出光电流和一次光生电流的比值,APD的响应度比PIN增加了g
倍。现有的APD的g值已达几十甚至上百,随反向偏压、波长和温度变化
3.过剩噪声因子
过剩噪声因子F是由于雪崩效应的随机性引起噪声增加的倍数。附加噪声指数与器件所用的材料和工艺相关,并例举了硅、锗和铟镓砷几种材料的附加噪声指数。
小结:
课堂总结

(整理)APD光电二极管综合实验.

(整理)APD光电二极管综合实验.

APD光电二极管综合实验仪GCAPD-B实验指导书(V1.0)武汉光驰科技有限公司WUHAN GUANGCHI TECHNOLOGY CO.,LTD目录第一章 APD光电二极管综合实验仪说明 ................ - 3 -1、电子电路部分结构分布......................... - 3 -2、光通路组件 .................................. - 4 - 第二章 APD光电二极管特性测试.................... - 5 -1、APD光电二极管暗电流测试..................... - 7 -2、APD光电二极管光电流测试..................... - 8 -3、APD光电二极管伏安特性....................... - 8 -4、APD光电二极管雪崩电压测试 ................... - 9 -5、APD光电二极管光照特性....................... - 9 -6、APD光电二极管时间响应特性测试 .............. - 10 -7、APD光电二极管光谱特性测试 .................. - 10 -第一章 APD光电二极管综合实验仪说明一、产品介绍雪崩光电二极管的特点是高速响应性和放大功能。

雪崩光电二极管(APD)的基片材料可采用硅和锗等材料。

其结构是在n型基片上制作p层,然后在配置上p+层。

一般上部的电极制作成环状,这是考虑到能获得稳定的“雪崩”效应。

外来的光线通过薄的p+层,然后被p层吸收,从而产生了电子和空穴。

由于在p层上存在着105V/cm的电场,因此位于价带的电子被冲击离子化后,产生雪崩倍增效应,电子和空穴不断产生。

这种元件可以用作0.8m范围的光纤通信的受光装置和光磁盘的受光期间还,能够有效地处理微弱光线的问题,当量子效率为68%以上时,可得到大于300MH z的高速响应。

APD光电二极管的特性测试及应用研究1

APD光电二极管的特性测试及应用研究1
由于硅半导体工艺技术业已完善成熟,特别容易与其他微电子器件结合,而且在制作硅基半导体器件时的Si薄膜材料有晶体型,无定型和多孔型等多种形式,应用灵活方便。因此硅基光电探测器对于探测波长为200nm-900nm的波段应用越来越普遍,而且在这个波段Si基光电子探测器的响应度比较高,但是随着波长的增加到1000nm左右的时候器件敏感响应度会很低。
[5]王庆有.光电传感器应用技术[M].北京:机械工业出版社,2007.10.
[6]其他:可网上搜索查找相关中文和外文文献。
3.进度安排
设计(论文)各阶段名称
起止日期
1
查阅文献资料,确定方案,写文献综述
2014.1.18-3.20
2
学习APD光电二极管的工作原理
2014.3.21-3.30
3
理解APD光电二极管的各项参数指标并测试
因此,拓宽硅基光电探测器件的探测波长范围及探测效率,不仅成为一个较为热点的研究领域,引起了各国科研工作者的兴趣,同时也成为光通信领域迫切需要克服的难题,是市场应用所需迫切解决的问题。最近几年人们尝试了各种方法来提高Si基APD的近红外探测效率,其中有增加Si基APD吸收层的厚度从而提高光子在Si中的吸收,然而随着APD体积的增加,不但提高了近红外处的量子效率,同样增加APD器件的暗电流和噪声,也提高了APD的响应时间,所以用这种方法提高APD近红外的敏感率并不是最好的方法。还有一种方法就是在APD器件表面设计一层防反射层,这层防反射层可以使入射光在APD器件的表面发生多次反射,从而增加了透入到器件内部的光子,也不会增加APD器件的体积,但是这种方法对工艺制作流程要求严格,成本较高,虽然能提高器件的整体效果但依然不能将1064nm处的光探测效率提高到理想的程度。
制约硅基APD在近红外方向特别是1064nm波段发展的原因有两个,第一,硅的禁带宽度是1.12eV,从而导致硅对1100nm处光的吸收截止。Si是间接带隙材料,在300K时硅的禁带宽度是1.12eV。因此硅的吸收截止波长是1100nm。从而导致由间接半导体材料制做的APD器件在截止波长附近吸收效率非常低。为了使硅基APD在1064nm处获得较高的量子效率,人们研发出使用其它半导体材料(锗、铟或者砷化镓)制作光电子器件,但是这些材料的光电子器件暗电流和噪声比较高,价格昂贵,而且与硅的晶格不匹配。或者改变硅基APD的结构设计,还可以使用飞秒激光微构造技术,来改变硅在近红外处的光吸收特性。第二,APD制造工艺过程中必须引入尽可能少的缺陷以减少暗电流,从而保证器件具有较高的信噪比。

APD光电二极管特性测试实验

APD光电二极管特性测试实验

APD光电二极管特性测试实验一、实验目的1、学习掌握APD光电二极管的工作原理2、学习掌握APD光电二极管的基本特性3、掌握APD光电二极管特性测试方法4、了解APD光电二极管的基本应用二、实验内容1、APD光电二极管暗电流测试实验2、APD光电二极管光电流测试实验3、APD光电二极管伏安特性测试实验4、APD光电二极管雪崩电压测试实验5、APD光电二极管光电特性测试实验6、APD光电二极管时间响应特性测试实验7、APD光电二极管光谱特性测试实验三、实验仪器1、光电探测综合实验仪 1个2、光通路组件 1套3、光照度计 1台4、光敏电阻及封装组件 1套5、2#迭插头对(红色,50cm) 10根6、2#迭插头对(黑色,50cm) 10根7、三相电源线 1根8、实验指导书 1本9、示波器 1台四、实验原理雪崩光电二极管APD—Avalanche Photodiode是具有内部增益的光检测器,它可以用来检测微弱光信号并获得较大的输出光电流。

雪崩光电二极管能够获得内部增益是基于碰撞电离效应。

当PN结上加高的反偏压时,耗尽层的电场很强,光生载流子经过时就会被电场加速,当电场强度足够高(约3x105V/cm)时,光生载流子获得很大的动能,它们在高速运动中与半导体晶格碰撞,使晶体中的原子电离,从而激发出新的电子一空穴对,这种现象称为碰撞电离。

碰撞电离产生的电子一空穴对在强电场作用下同样又被加速,重复前一过程,这样多次碰撞电离的结果使载流子迅速增加,电流也迅速增大,这个物理过程称为雪崩倍增效应。

图6-1为APD的一种结构。

外侧与电极接触的P区和N区都进行了重掺杂,分别以P+和N+表示;在I区和N+区中间是宽度较窄的另一层P区。

APD工作在大的反偏压下,当反偏压加大到某一值后,耗尽层从N+-P结区一直扩展(或称拉通)到P+区,包括了中间的P层区和I 区。

图4的结构为拉通型APD的结构。

从图中可以看到,电场在I区分布较弱,而在N+-P 区分布较强,碰撞电离区即雪崩区就在N+-P区。

光电二三极管特性测试实验报告

光电二三极管特性测试实验报告

光敏二极管特性测试实验一、实验目的1.学习光电器件的光电特性、伏安特性的测试方法;2.掌握光电器件的工作原理、适用范围和应用基础。

二、实验内容1、光电二极管暗电流测试实验2、光电二极管光电流测试实验3、光电二极管伏安特性测试实验4、光电二极管光电特性测试实验5、光电二极管时间特性测试实验6、光电二极管光谱特性测试实验7、光电三极管光电流测试实验8、光电三极管伏安特性测试实验9、光电三极管光电特性测试实验10、光电三极管时间特性测试实验11、光电三极管光谱特性测试实验三、实验仪器1、光电二三极管综合实验仪 1个2、光通路组件 1套3、光照度计 1个4、电源线 1根5、2#迭插头对(红色,50cm) 10根6、2#迭插头对(黑色,50cm) 10根7、三相电源线 1根8、实验指导书 1本四、实验原理1、概述随着光电子技术的发发展,光电检测在灵敏度、光谱响应范围及频率我等技术方面要求越来越高,为此,近年来出现了许多性能优良的光伏检测器,如硅锗光电二极管、PIN光电二极管和雪崩光电二极管(APD)等。

光敏晶体管通常指光电二极管和光电三极管,通常又称光敏二极管和三敏三极管。

光敏二极管的种类很多,就材料来分,有锗、硅制作的光敏二极管,也有III-V族化合物及其他化合物制作的二极管。

从结构我来分,有PN结、PIN结、异质结、肖特基势垒及点接触型等。

从对光的响应来分,有用于紫外光、红外光等种类。

不同种类的光敏二极管,具胡不同的光电特性和检测性能。

例如,锗光敏二极管与硅光敏二极管相比,它在红外光区域有很大的灵敏度,如图所示。

这是由于锗材料的禁带宽度较硅小,它的本征吸收限处于红外区域,因此在近红外光区域应用;再一方面,锗光敏二极管有较大的电流输出,但它比硅光敏二极管有较大的反向暗电流,因此,它的噪声较大。

又如,PIN型或雪崩型光敏二极管与扩散型PN结光敏二极管相比具有很短的时间响应。

因此,在使用光敏二极管进要了解其类型及性能是非常重要的。

APD光电二极管特性测试实验

APD光电二极管特性测试实验

APD光电二极管特性测试实验APD光电二极管特性测试实验1,实验目的1,学习掌握APD光电二极管的工作原理2,学习掌握APD光电二极管的基本特性3,掌握APD光电二极管特性测试方法4,了解APD光电二极管的基本应用2,实验内容有1,APD光电二极管暗电流测试实验2,APD光电二极管光电流测试实验3,APD光电二极管伏安特性测试实验4,APD光电二极管雪崩电压测试实验5、APD光电二极管光电特性测试实验6、APD光电二极管时间响应特性测试实验7、APD光电二极管光谱特性测试实验3、实验仪器1、光电检测综合实验仪器12、光路组件1组3、测光表1组4、1组5和2#重叠插头对(红色,50厘米)和10组6和2#重叠插头对(黑色,50厘米)10根7相电力电缆,1根8相电源线,1本9实验说明书,1台4示波器,雪崩光电二极管APD—雪崩光电二极管是一种具有内部增益的光电探测器,可用于探测微弱的光信号并获得较大的输出光电流。

雪崩光电二极管的内部增益基于碰撞电离效应。

当高反向偏置电压施加到PN结时,5耗尽层中的电场非常强,并且光生载流子在通过时将被电场加速。

当电场强度足够高(约3x10v/cm)时,光生载流子获得大量动能。

它们与半导体晶格高速碰撞,电离晶体中的原子,从而激发新的电子-空穴对。

这种现象被称为碰撞电离碰撞电离产生的电子-空穴对也在强电场的作用下加速,并重复前面的过程。

由于多次碰撞电离,载流子迅速增加,电流迅速增加。

这一物理过程被称为雪崩倍增效应。

++图6-1是APD的结构与电极接触的外侧的P区和N区被重掺杂,分别由P和N+表示;在I区和n区的中间是另一层宽度较窄的p区APD在大的反向偏置下工作。

当反向偏置电压增加到++到一定值时,耗尽层从N-P结区延伸到P区,包括中间P层区和I+区图4的结构是直通APD结构从图中可以看出,电场分布在区域一相对较弱,但在区域N-P++相对较强。

碰撞电离区,即雪崩区,位于n-p区虽然I区的电场比N-P区低得多,但也足够高,达到4(最高2×10V/cm),从而保证载流子达到饱和漂移速度。

光电检测实验报告光电二极管

光电检测实验报告光电二极管
与实验报告有关
一、实验目的
本实验旨在探究光电二极管的基本特性,了解不同参数对光电二极管
的作用原理。

二、实验原理
光电二极管是一种特殊的半导体器件,由一个P半导体和一个N半导
体组成。

其结构类似于普通的二极管,它是由一块金属片和一块硅片组成的。

金属片在表面覆盖着一层半导体材料层,而硅片则覆盖着一层P沟槽,形成一个PN结构,这就是光电二极管的基本结构。

当光电二极管接受到
外部光照时,在P层和N层之间就会产生电子-空穴对,并促使电子向N
层移动,从而在P层和N层之间构成一个电流,也就是由光引起的电流。

三、实验设备
1、光源:LED灯泡;
2、示波器:用于测量光电二极管的输出电流与电压;
3、电源:用于给光电二极管提供电势;
4、电阻:用于限制光电二极管的输出电流;
5、光电二极管:本次实验使用的是JH-PJN22;
6、多用表:用于测量电流、电压。

四、实验步骤
1、用多用表测量光电二极管JH-PJN22的参数,测量其正向电压和正向电流与LED照射强度的关系;
2、设置由电源、电阻和光电二极管组成的电路,并使用示波器测量输出电流和电压;。

APD实验指导书V1.01

目录第一章APD光电二极管综合实验仪说明.......... 错误!未定义书签。

二、实验仪说明................................................................................. 错误!未定义书签。

1、电子电路部分结构分布............................ 错误!未定义书签。

2、光通路组件 ..................................... 错误!未定义书签。

第二章 APD光电二极管特性测试.............. 错误!未定义书签。

1、APD光电二极管暗电流测试........................ 错误!未定义书签。

2、APD光电二极管光电流测试........................ 错误!未定义书签。

3、APD光电二极管伏安特性.......................... 错误!未定义书签。

4、APD光电二极管雪崩电压测试...................... 错误!未定义书签。

5、APD光电二极管光照特性.......................... 错误!未定义书签。

6、APD光电二极管时间响应特性测试.................. 错误!未定义书签。

7、APD光电二极管光谱特性测试...................... 错误!未定义书签。

第一章 APD光电二极管综合实验仪说明一、产品介绍雪崩光电二极管的特点是高速响应性和放大功能。

雪崩光电二极管(APD)的基片材料可采用硅和锗等材料。

其结构是在n型基片上制作p层,然后在配置上p+层。

一般上部的电极制作成环状,这是考虑到能获得稳定的“雪崩”效应。

外来的光线通过薄的p+层,然后被p层吸收,从而产生了电子和空穴。

由于在p层上存在着105V/cm的电场,因此位于价带的电子被冲击离子化后,产生雪崩倍增效应,电子和空穴不断产生。

光电二极管实验报告

光电二极管实验报告一、实验目的1.了解光电效应的基本原理。

2.掌握光电二极管的工作原理和特性。

3.学会使用光电二极管进行光电测量。

二、实验原理光电效应是指在光照射下,金属或半导体材料中的光电子能够从晶体中跃迁至导体中,产生光电流的现象。

光电二极管就是利用这种光电效应工作的电子器件。

光电二极管常用的材料有硅(Si)和锗(Ge)等,它们具有较宽的禁带宽度,能够较好地吸收可见光和红外光。

当外界光照射到光电二极管上,光子的能量被电子吸收,电子获得足够的能量跃迁到导体带中形成电子空穴对,从而产生电流。

光电二极管一般由PN结构构成,当光照射到PN结上时,少数载流子在电场作用下向两边移动形成电流,这个电流就是光电流。

三、实验器材1.光电二极管2.恒流源3.可变电阻器4.白炽灯5.直流电压表6.直流电流表7.导线等四、实验步骤1.搭建实验电路:将光电二极管接入电源电路,连接好电流表和电压表。

2.调节电流源的电流:将可变电阻器设为最小电阻值,使电压表读数为零。

然后慢慢调节电流源的电流,使其电压表读数稳定在一些特定值。

3.测量电流和电压:分别记录下此时的电流表和电压表的读数,作为光敏电流和光敏电压的基准值。

4.光照射:打开白炽灯,将灯光照射到光电二极管上,保持一定的光照强度。

5.测量电流和电压:记录下此时的电流表和电压表的读数。

6.改变灯光强度:逐渐改变灯光的强度,分别记录光敏电流和光敏电压的变化。

五、实验结果和分析在光照下,我们得到了一系列光敏电流和光敏电压的数据,并绘制了相应的图表。

根据实验数据及图表分析,我们得到以下结论:1.光电二极管正向导通电流与光照强度呈线性关系,即光电流与光照强度成正比。

2.在一定的电流源电流下,光电流大小与光照强度呈正相关关系。

3.光电二极管的光敏电压与光照强度成正比,即光敏电压与光照强度呈线性关系。

4.光电二极管的特性曲线一般为S型曲线,即在光照较弱时,光敏电流与光照强度关系不明显;而在光照较强时,光敏电流的增加较为明显,但增幅逐渐减小。

雪崩光电二极管APD倍增特性的测试


三、实验步骤
倍增系数测试 • 启动单色仪,并扫描到800nm位置; • 不打开高压开关,运行软件采集数据,得到APD的无增益


电流值; 将反馈电阻更换为300K,然后打开高压开关,在控制面板 上调节“高压调节”旋钮并观察电压表示数,从60V开始 调节,每次增加5V并采集数据,得到APD的增益电流值, 电压达到反向电压的90%(为上次实验测定的值)时停止, 此时软件自动完成数据处理,显示出APD的倍增系数及其 曲线; 可以更换不同的波长或改变光强(通过改变单色 仪出射狭缝的大小),重复做上述步骤,并把结果进行比 较。 实验结束后,先将高压输出调到最小,然后关闭高压开 关,,并闭溴钨灯电源,最后关闭仪器总电源。
三、实验步骤
暗电流测试 1. 在控制面板上,把APD模块所带数据线小的红色插头插控制 面板上APD特性测试框中地正,大的红色插头插在其中的负, 黑色插头插在其中的地。“高压输出”与APD特性测框中的 “负”相连,“高压输出”与电压表的“2000+”连通,电 压表的“-”与地相连,电压表量程切换到2000V。然后用连 接线将APD特性测试框中的正与12-3中的孔2相连,并在4和 5上插上30M的反馈电阻; 2. 接通仪器总电源,打开高压开关; 3. 在控制面板上调节“高压调节”旋钮并观察电压表示数, 从60V开始调节,每次增加5V并采集数据,电压达到90%反 向电压(为上次实验测定的值)时停止; 实验结束后,先 将高压输出调到最小,然后关闭高压开关,再关闭仪器总 电源。
雪崩光电二极管APD倍增特性 的测试
一、实验目的
1. 2. 3. 4. 5. 加深对雪崩光电二极管工作原理的理解 学会雪崩光电二极管的反向电压的测试方法 学会雪崩光电二极管的暗电流的测试方法 学会雪崩光电二极管的倍增特性的测试方法 掌握雪崩光电二极管的使用方法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

APD光电二极管特性测试实验一、实验目的1、学习掌握APD光电二极管的工作原理2、学习掌握APD光电二极管的基本特性3、掌握APD光电二极管特性测试方法4、了解APD光电二极管的基本应用二、实验内容1、APD光电二极管暗电流测试实验2、APD光电二极管光电流测试实验3、APD光电二极管伏安特性测试实验4、APD光电二极管雪崩电压测试实验5、APD光电二极管光电特性测试实验6、APD光电二极管时间响应特性测试实验7、APD光电二极管光谱特性测试实验三、实验仪器1、光电探测综合实验仪 1个2、光通路组件 1套3、光照度计 1台4、光敏电阻及封装组件 1套5、2#迭插头对(红色,50cm) 10根6、2#迭插头对(黑色,50cm) 10根7、三相电源线 1根8、实验指导书 1本9、示波器 1台四、实验原理雪崩光电二极管APD—Avalanche Photodiode是具有内部增益的光检测器,它可以用来检测微弱光信号并获得较大的输出光电流。

雪崩光电二极管能够获得内部增益是基于碰撞电离效应。

当PN结上加高的反偏压时,耗尽层的电场很强,光生载流子经过时就会被电场加速,当电场强度足够高(约3x105V/cm)时,光生载流子获得很大的动能,它们在高速运动中与半导体晶格碰撞,使晶体中的原子电离,从而激发出新的电子一空穴对,这种现象称为碰撞电离。

碰撞电离产生的电子一空穴对在强电场作用下同样又被加速,重复前一过程,这样多次碰撞电离的结果使载流子迅速增加,电流也迅速增大,这个物理过程称为雪崩倍增效应。

图6-1为APD的一种结构。

外侧与电极接触的P区和N区都进行了重掺杂,分别以P+和N+表示;在I区和N+区中间是宽度较窄的另一层P区。

APD工作在大的反偏压下,当反偏压加大到某一值后,耗尽层从N+-P结区一直扩展(或称拉通)到P+区,包括了中间的P层区和I 区。

图4的结构为拉通型APD的结构。

从图中可以看到,电场在I区分布较弱,而在N+-P 区分布较强,碰撞电离区即雪崩区就在N+-P区。

尽管I区的电场比N+-P区低得多,但也足够高(可达2x104V/cm),可以保证载流子达到饱和漂移速度。

当入射光照射时,由于雪崩区较窄,不能充分吸收光子,相当多的光子进入了I区。

I区很宽,可以充分吸收光子,提高光电转换效率。

我们把I区吸收光子产生的电子-空穴对称为初级电子-空穴对。

在电场的作用下,初级光生电子从I区向雪崩区漂移,并在雪崩区产生雪崩倍增;而所有的初级空穴则直接被P+层吸收。

在雪崩区通过碰撞电离产生的电子-空穴对称为二次电子-空穴对。

可见,I区仍然作为吸收光信号的区域并产生初级光生电子-空穴对,此外它还具有分离初级电子和空穴的作用,初级电子在N+-P区通过碰撞电离形成更多的电子-空穴对,从而实现对初级光电流的放大作用。

图6-1 APD的结构及电场分布碰撞电离产生的雪崩倍增过程本质上是统计性的,即为一个复杂的随机过程。

每一个初级光生电子-空穴对在什么位置产生,在什么位置发生碰撞电离,总共碰撞出多少二次电子一空穴对,这些都是随机的。

因此与PIN光电二极管相比,APD的特性较为复杂。

APD的雪崩倍增因子M定义为M=I P/I P0式中:I P是APD的输出平均电流;I P0是平均初级光生电流。

从定义可见,倍增因子是APD的电流增益系数。

由于雪崩倍增过程是一个随机过程,因而倍增因子是在一个平均之上随机起伏的量,雪崩倍增因子M的定义应理解为统计平均倍增因子。

M随反偏压的增大而增大,随W的增加按指数增长。

APD的噪声包括量子噪声、暗电流噪声、漏电流噪声、热噪声和附加的倍增噪声。

倍增噪声是APD中的主要噪声。

倍增噪声的产生主要与两个过程有关,即光子被吸收产生初级电子-空穴对的随机性和在增益区产生二次电子-空穴对的随机性。

这两个过程都是不能准确测定的,因此APD倍增因子只能是一个统计平均的概念,表示为<M>,它是一个复杂的随机函数。

由于APD具有电流增益,所以APD的响度比PIN的响应度大大提高,有R0=<M>(I P/P)=<M>(ηq/hf)量子效率只与初级光生载流子数目有关,不涉及倍增问题,故量子效率值总是小于1。

APD的线性工作范围没有PIN宽,它适宜于检测微弱光信号。

当光功率达到几uw以上时,输出电流和入射光功率之间的线性关系变坏,能够达到的最大倍增增益也降低了,即产生了饱和现象。

、APD的这种非线性转换的原因与PIN类似,主要是器件上的偏压不能保持恒定。

由于偏压降低,使得雪崩区变窄,倍增因子随之下降,这种影响比PIN的情况更明显。

它使得数字信号脉冲幅度产生压缩,或使模拟信号产生波形畸变,因而应设法避免。

在低偏压下APD没有倍增效应。

当偏压升高时,产生倍增效应,输出信号电流增大。

当反偏压接近某一电压V B时,电流倍增最大,此时称APD被击穿,电压V B称作击穿电压。

如果反偏压进一步提高,则雪崩击穿电流使器件对光生载流子变的越来越不敏感。

因此APD 的偏置电压接近击穿电压,一般在数十伏到数百伏。

须注意的是击穿电压并非是APD的破坏电压,撤去该电压后APD仍能正常工作。

APD的暗电流有初级暗电流和倍增后的暗电流之分,它随倍增因子的增加而增加;此外还有漏电流,漏电流没有经过倍增。

APD的响应速度主要取决于载流子完成倍增过程所需要的时间,载流子越过耗尽层所需的渡越时间以及二极管结电容和负载电阻的RC时间常数等因素。

而渡越时间的影响相对比较大,其余因素可通过改进结构设计使影响减至很小。

五、实验准备1、实验之前,请仔细阅读光电探测综合实验仪说明,弄清实验箱各部分的功能及拨位开关的意义;2、当电压表和电流表显示为“1_”是说明超过量程,应更换为合适量程;3、连线之前保证电源关闭。

4、实验过程中,请勿同时拨开两种或两种以上的光源开关,这样会造成实验所测试的数据不准确。

六、实验步骤1、APD光电二极管暗电流测试实验装置原理框图如图6-2所示图6-2(1)组装好光通路组件,将照度计显示表头与光通路组件照度计探头输出正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口使用彩排数据线相连。

(2)“光源驱动单元”的三掷开关BM2拨到“静态特性”,将拨位开关S1,S2,S3,S4,S5,S6,S7均拨下。

(3)“光照度调节”调到最小,连接好光照度计,直流电源调至最小,打开照度计,此时照度计的读数应为0。

(4)按图6-2所示的电路连接电路图,直流电源选择电源1,负载RL选择RL6=1K欧,电流表选择200uA档.(5)打开电源开关,缓慢调节直流电源电位器,直到微安表显示有读数为止,记录此时电压表U和电流表的读数即为APD光电二极管在U偏压下的暗电流.(注:在测试暗电流时,应先将光电器件置于黑暗环境中30分钟以上,否则测试过程中电压表需一段时间后才可稳定)(6)实验完毕,直流电源调至最小,关闭电源,拆除所有连线。

2、APD光电二极管光电流测试(1)组装好光通路组件,将照度计显示表头与光通路组件照度计探头输出正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口使用彩排数据线相连。

(2)“光源驱动单元”的三掷开关BM2拨到“静态特性”,将拨位开关S1拨上,S2,S3,S4,S5,S6,S7均拨下。

(3)按图6-2所示的电路连接电路图,直流电源选择电源1,负载RL选择RL6=1K欧,电流表选择200uA档.(4)打开电源,缓慢调节光照度调节电位器,直到光照为300lx(约为环境光照),缓慢调节直流电源电位器,直到微安表显示有读数有较大变化为止,记录此时电压表U和电流表的读数即为APD光电二极管在U偏压下的光电流.(5)实验完毕,将光照度调至最小,直流电源调至最小,关闭电源,拆除所有连线。

3、APD光电二极管伏安特性(1)组装好光通路组件,将照度计显示表头与光通路组件照度计探头输出正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口使用彩排数据线相连。

(2)“光源驱动单元”的三掷开关BM2拨到“静态”,将拨位开关S1拨上,S2,S3,S4,S5,S6,S7均拨下。

(3)按图6-2所示的电路连接电路图,直流电源选择电源1,负载RL选择RL6=1K欧。

(3)打开电源顺时针调节照度调节旋钮,使照度值为200Lx,保持光照度不变,调节电源电压电位器,使反向偏压为0V、50V,100V、120V、130V、140V、150V、160V、170V、180V 时的电流表读数,填入下表,关闭电源。

(注:在测试过程中应缓慢调节电位器,当反向偏置电压高于雪崩电压时,光生电流会迅速增加,电流表的读数会增加N个数量级,由于APD在高于雪崩电压的条件下工作时,PN 结上的偏压很容易产生波动,影响到增益的稳定性,因此产生的光电流不稳定,属于正常现象,在记录结果时,取数量级数值即可。

)(特殊说明:在实验过程中,请勿将APD光电二极管长期工作在雪崩电压以上,以免烧坏APD光电二极管,在工业上,APD光电二极管的工作电压略低于雪崩电压。

)(6)根据上述实验结果,作出200lx光照度下的APD光电二极管伏安特性曲线.(注:由于APD雪崩光电二极管的个性差异,不同的APD光电二极管的雪崩电压有~50V差异,测试的数据也有很大差异,属正常现象)4、APD光电二极管雪崩电压测试(1)根据实验3伏安特性的测试方法,重复实验3的实验步骤, 分别测出光照度在1lx,10lx,50lx光照度时,反向偏压为0V、50V,100V、120V、130V、140V、150V、160V、170V、180V时的电流表读数,填入下表,关闭电源。

(2)根据上述实验结果,在同一坐标轴下作出100Lx,300lx和500lx光照度下的APD光电二极管伏安特性曲线,并进行分析,找出光电二极管的雪崩电压.5、APD光电二极管光照特性实验装置原理框图如图6-2所示。

(1)组装好光通路组件,将照度计显示表头与光通路组件照度计探头输出正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口使用彩排数据线相连。

(2)“光源驱动单元”的三掷开关BM2拨到“静态”,将拨位开关S1拨上,S2,S3,S4,S5,S6,S7均拨下。

(3)按图6-2所示的电路连接电路图,直流电源选择电源1,负载RL选择RL6=1K欧。

(4)将“光照度调节”旋钮逆时针调节至最小值位置。

打开电源,调节直流电源电位器,直到电压表的显示值略高于实验4所测试的雪崩电压即可,保持电压不变,顺时针调节该旋钮,增大光照度值,分别记下不同照度下对应的光生电流值,填入下表。

若电流表或照度计显示为“1_”时说明超出量程,应改为合适的量程再测试。

相关文档
最新文档