填料塔液测传质系数的测定
实验四填料塔液相传质系数的测定lun

实验四填料塔液相传质系数的测定环工021 伦裕旻15号一、实验目的:吸收是传质过程的重要操作,应用非常广泛。
为强化吸收过程,必须研究传质过程的控制步骤,测定传质膜系数和总传质系数。
本实验采用水吸收CO2,测定填料塔的液相传质膜系数、总传质系数和传质单元高度,并通过实验确定液相传质系数和各项操作条件的关系。
通过本实验,学习并掌握研究物质传质过程的一种实验方法,并加深对传质过程原理的理解。
二、实验原理:三、根据双膜模型的基本假设,气相和液相的吸收质A的传质速率方程可分别表达为气膜D A=KgA(P A—P A i) (1)液膜G A=K1A(C Ai—C A)(2)公式中G A——A组分的传质速率,kmol.S-1;A——两相接触面积,m2;P A————气相A组分的平均分压,paP A i——相界面A组分的分压,paC A————液相A组分的平均浓度,kmol.m-3Kg——以分压表达推动力的气相传质膜系数,kmol.m-3K1————以物质的浓度表达推动力的液相传质膜系数,m.s-1以气相分压或以液相浓度表示传质过程推动力的相际传质速率方程又可分别表达为:D A=K G A(P A—P A*) (3)G A=K L A(C A*—C A)(4)式中P A*为液相中A组分的实际浓度所要求的气相平衡分压,paC A*为气相中A组分的实际分压所要求的饿液相平衡浓度,kmol.m-3K G 为以气相分压表示推动力的总传质系数或 简称为气相传质总系数,kmol.m -2.S -1. pa -1K L 为以液相浓度表示推动力的总传质系数或 简称为液相传质总系数,m .S -1; 若气液相平衡关遵循亨利定理:A A HP C =,则 :1111Hk K k g G += (5)111k K H k g L += (6) 当气膜阻力远大于液膜阻力时,则相际传质过程受气膜传质速率控制,此时,g L K K =;反之,当液膜阻力远大于气膜阻力时,则相际传质过程受液膜传质速率控制,此时l L K K =。
实验填料塔液相传质系数的测定lun

实验四填料塔液相传质系数的测定环工021 伦裕旻15号一、实验目的:吸收是传质过程的重要操作,应用非常广泛。
为强化吸收过程,必须研究传质过程的控制步骤,测定传质膜系数和总传质系数。
本实验采用水吸收CO2,测定填料塔的液相传质膜系数、总传质系数和传质单元高度,并通过实验确定液相传质系数和各项操作条件的关系。
通过本实验,学习并掌握研究物质传质过程的一种实验方法,并加深对传质过程原理的理解。
二、实验原理:根据双膜模型的基本假设,气相和液相的吸收质A的传质速率方程可分别表达为气膜D A=KgA(P A—P A i) (1)液膜G A=K1A(C Ai—C A)(2)公式中G A——A组分的传质速率,kmol.S-1;A——两相接触面积,m2;P A————气相A组分的平均分压,paP A i——相界面A组分的分压,paC A————液相A组分的平均浓度,kmol.m-3Kg——以分压表达推动力的气相传质膜系数,kmol.m-3K1————以物质的浓度表达推动力的液相传质膜系数,m.s-1以气相分压或以液相浓度表示传质过程推动力的相际传质速率方程又可分别表达为:D A=K G A(P A—P A*) (3)G A=K L A(C A*—C A)(4)式中P A*为液相中A组分的实际浓度所要求的气相平衡分压,paC A*为气相中A组分的实际分压所要求的饿液相平衡浓度,kmol.m-3K G 为以气相分压表示推动力的总传质系数或 简称为气相传质总系数,kmol.m -2.S -1. pa -1K L 为以液相浓度表示推动力的总传质系数或 简称为液相传质总系数,m .S -1; 若气液相平衡关遵循亨利定理:A A HP C =,则 :1111Hk K k g G += (5)111k K H k g L += (6) 当气膜阻力远大于液膜阻力时,则相际传质过程受气膜传质速率控制,此时,g L K K =;反之,当液膜阻力远大于气膜阻力时,则相际传质过程受液膜传质速率控制,此时l L K K =。
填料塔中传质系数的测定

实验六吸收实验一、实验目的二、基本原理三、计算方法、原理、公式四、设备参数和工作原理五、操作步骤六、实验报告要求七、思考题八、注意事项实验目的1、了解填料吸收装置的基本流程及设备结构;2、了解填料特性的测量与计算方法;3、气液两相逆向通过填料层的压降变化规律以及液泛现象;4、喷淋密度对填料层压降和泛点速度的影响;5、测定在操作条件下的总传质系数K;6、了解吸收过程的基本操作与控制方法。
1、填料塔流体力学特性:气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。
在双对数坐标系中用压降对气速作图得到一条斜率为1.8-2的直线(图中aa线)。
而有喷淋量时,在低气速时(C点以前)压降也比例于气速的1.8-2次幂,但大于同一气速下干填料的压降(图中bc段)。
随气速增加,出现载点(图中c 点),持液量开始logbcdaa log△PU填料层压降空塔气速关系图1、填料塔流体力学特性:增大,压降-气速线向上弯曲,斜率变大,(图中cd 段)。
到液泛点(图中d 点)后在几乎不变的气速下,压降急剧上升。
测定填料塔的压降和液泛速度,是为了计算填料塔所需动力消耗和确定填料塔的适宜制作范围,选择合适的气液负荷。
log b c da a log △PU 填料层压降空塔气速关系图2、传质实验:填料塔与板式塔内气液两相的接触情况有着很大的不同。
在板式塔中,两相接触在各块塔板上进行,因此接触是不连续的。
但在填料塔中,两相接触是连续地在填料表面上进行,需计算的是完成一定吸收任务所需填料高度。
填料层高度计算方法有传质系数法、传质单元法以及等板高度法。
总体积传质系数KYa是单位填料体积、单位时间吸收的溶质量。
它是反映填料吸收塔性能的主要参数,是设计填料高度的重要数据。
本实验是水吸收空气-氨混合气体中的氨。
混合气体中氨的浓度很低。
吸收所得的溶液浓度也不高。
气液两相的平衡关系可以认为服从亨利定律(即平衡线在x-y 坐标系为直线)。
试验七填料吸收塔的操作及吸收传质系数的测定

试验七填料吸收塔的操作及吸收传质系数的测定1.实验目的本实验旨在通过填料吸收塔的操作,测定其中一种气体在液体中的吸收特性,并计算其吸收传质系数。
2.实验原理填料吸收塔是一种用于气体吸收液体的设备,常用于废气治理和化学工艺中。
填料吸收塔的主要组成部分包括填料层和液相层。
气体从塔底进入填料层,通过填料与液相进行接触,在质量传递的作用下,溶于气体中的物质被液相吸收,并由塔顶排出。
吸收传质系数是描述气体在液体中传质性能的参数,通常用k来表示。
吸收塔中气体的吸收速率与扩散速率成正比,与接触面积成反比。
传质速率可通过如下公式计算:NTU = k * A * (Cg - Cgi)其中,NTU为传质单位时间内的传质量,k为吸收传质系数,A为塔内液相与气相的有效接触面积,Cg为塔底气相的浓度,Cgi为塔顶气相的浓度。
通过测量塔底和塔顶气相的浓度,以及塔底传质率,即可计算出吸收传质系数k。
3.实验步骤(1)准备工作:将填料装入填料层,根据需要确定填料层的高度;(2)连接好气相和液相导管,并确保无漏气现象;(3)启动搅拌器,使液相均匀分布在填料层上;(4)将适量的气体通入塔底,并记录下通气时间;(5)在通气过程中,采集塔底和塔顶气相的样品,并测定其浓度;(6)根据浓度和通气时间计算塔底传质率;(7)根据传质率、填料表面积等参数计算吸收传质系数k。
4.实验注意事项(1)操作过程中需注意安全,避免吸入有害气体;(2)确保气相和液相导管的连接紧密,无泄漏现象;(3)在取样时,保持塔内气相的稳定,避免因取样产生扰动;(4)实验结束后,清洗设备,存放妥善。
5.计算与分析根据实验测得的塔底和塔顶气相浓度,以及通气时间,计算出塔底传质率。
根据塔底传质率、填料表面积等参数,计算出吸收传质系数k。
6.结论通过填料吸收塔的操作及吸收传质系数的测定,可以了解其中一种气体在液体中的吸收特性,并进一步计算其吸收传质系数。
吸收传质系数的测定可用于化学工程中的设计与优化。
填料吸收塔传质系数测定实验报告数据处理

填料吸收塔传质系数测定实验报告的数据处理是为了从实验数据中计算出填料吸收塔的传质系数。
下面是一个常见的数据处理步骤,供参考:
1. 数据整理:整理实验所得数据,包括填料层高度、溶液进口浓度、出口浓度等参数,以及实验过程中记录的温度、压力等信息。
2. 确定传质模型:根据实验设计和填料吸收塔的结构特点,确定适合的传质模型,如洗涤理论、湿壁传质模型等。
3. 建立浓差和质量平衡方程:根据传质模型和实验条件,建立质量平衡和浓差方程,用以描述塔内物质的传质过程。
4. 参数拟合:通过最小二乘法等拟合方法,将实验数据与传质模型进行拟合,得到各传质参数的估计值。
这可能涉及到填料层高度、传质系数、扩散系数等参数。
5. 统计分析:进行相关的统计分析,如计算参数估计的标准误差或置信区间,以评估参数估计的精确性和可靠性。
6. 结果解释:根据参数估计结果,计算填料吸收塔的传质系
数,并结合理论知识和实验结果,对传质过程进行分析和解释。
需要注意的是,数据处理的具体方法和步骤可能因实验设计和传质模型的不同而有所差异。
在进行数据处理时,应参考相关的传质模型和实验设计,并根据实际情况进行适当的调整和修正。
此外,数据处理的结果应结合实验结果和领域知识进行分析和解释,以得出准确且有意义的结论。
吸收实验—填料塔吸收传质系数的测定.

实验八吸收实验—填料塔吸收传质系数的测定一、实验目的⒈了解填料塔吸收装置的基本结构及流程;⒉掌握总体积传质系数的测定方法;⒊测定填料塔的流体力学性能;⒋了解气体空塔速度和液体喷淋密度对总体积传质系数的影响;⒌了解气相色谱仪和六通阀在线检测CO2浓度和测量方法;二、基本原理气体吸收是典型的传质过程之一。
由于CO2气体无味、无毒、廉价,所以气体吸收实验选择CO2作为溶质组分是最为适宜的。
本实验采用水吸收空气中的CO2组分。
一般将配置的原料气中的CO2浓度控制在10%以内,所以吸收的计算方法可按低浓度来处理。
又CO2在水中的溶解度很小,所以此体系CO2气体的吸收过程属于液膜控制过程。
因此,本实验主要测定Kxa和HOL。
⒈计算公式:填料层高度h为:h=⎰h0dh=LKXaΩ⎰XbdXX-X*Xa=HOL⋅NOL A=LmV,则:NOL=11-Aln[(1-A)Yb-mXaYb-mXb+A]令:吸收因数HOL=LKxaΩ=hNOLKXa=LHOLΩ式中:h──填料层高度,m;L──液体的摩尔流量,kmol/s;Ω──填料塔的横截面积,m2;Kxa──以△X为推动力的液相总体积传质系数,kmol/(m3〃s);HOL──液相总传质单元高度,m;NOL──液相总传质单元数,无因次;Xa,Xb──CO2在塔顶、塔底液相中的摩尔比浓度,无因次;Ya,Yb──CO2在塔顶、塔底气相中的摩尔比浓度,无因次。
⒉测定方法(a)空气流量和水流量的测定本实验采用转子流量计测得空气和水的流量,并根据实验条件(温度和压力)和有关公式换算成空气和水的摩尔流量。
(b)测定塔顶和塔底气相组成yb和ya;(c)平衡关系。
本实验的平衡关系可写成: Y=mX 式中:m──相平衡常数,m=E/P;E──亨利系数,E=f(t),Pa,根据液相温度测定值由附录查得;P──总压,Pa。
对清水而言,Xa=0,由全塔物料衡算V(Yb-Ya)=L(Xb-Xa),可得Xb。
填料塔吸收传质系数的测定

填料塔吸收传质系数的测定
填料塔是一种常用的萃取设备,它常被用于处理多组分流,进行物质传质和分离。
它具有萃取效率高、无污染、操作成本低和其他特性,在石油、化学、冶金、农药、食品和环境污染控制等行业中都有广泛的应用。
因此,确定填料塔吸收传质系数对于优化萃取工艺及提高工业生产效率至关重要,它也是控制填料塔性能的重要指标。
填料塔的吸收传质系数是指填料塔中某一物质传质分离效率的
程度,它用于衡量进入填料塔的某一物质的操纵效率,解释萃取效率的物理含义,反映填料塔的整体性能。
传质系数受到各种因素的影响,如结构型号、流体性能、运行参数等,传质系数高和不稳定会导致萃取效率低,因此测定填料塔吸收传质系数是调试填料塔及确定优化参数的重要步骤。
填料塔吸收传质系数测定一般采用全质量法、相比法、声速法和动态谱法等,它们有其自身特点,也存在计算繁琐、数据准确度低、测量范围有限等问题。
因此,实验室往往采用不同的方法比较,以确保测量结果的准确性。
测定填料塔吸收传质系数时,需要仔细分析各类参数影响,选择合适的方法,通过精细调整萃取溶液浓度、操作温度、填料数量和流动速度等参数,经过比较,误差不超过5%的结果才被认为是正确的。
同时,在测定填料塔吸收传质系数过程中,实验室应采用非破坏性的控制手段,使用无毒、无害的化学药品,正确操作填料,避免环境污染。
还应定期检查填料塔设备,确保填料塔运行持续、可靠,减
少实验成本。
总之,萃取工艺设计时,测定填料塔吸收传质系数是非常重要的一步,它可用于控制填料塔性能,确保安全生产、提高工作效率和降低设备运行成本。
合理的传质系数测定,可以帮助识别萃取工艺的瓶颈,提高工作质量和生产率。
填料塔吸收传质系数的测定

填料塔吸收传质系数的测定填料塔是一种常用的传质设备,广泛应用于化工、环保等领域。
在填料塔中,气相和液相通过填料的接触和传质过程实现物质的分离和转移。
填料塔的传质性能是评价其性能优劣的重要指标之一,而填料塔吸收传质系数的测定则是评估其传质性能的重要手段之一。
填料塔吸收传质系数的测定是通过实验方法来确定填料塔在给定操作条件下的传质效率。
传质系数是描述填料塔传质性能的重要参数,它反映了气相和液相之间物质传递的速率和效果。
传质系数的大小直接影响到填料塔的传质效率和设备的经济性。
填料塔吸收传质系数的测定通常采用实验室或中试设备进行。
首先,需要准备好填料塔的实验装置,包括填料塔本体、进料管道、出料管道、气相和液相流量计等。
然后,选择合适的试验液体和气体,并将其分别输入填料塔中。
在实验过程中,通过调节流量和操作参数,使填料塔达到稳定工况,确保实验结果的准确性。
填料塔吸收传质系数的测定可以采用不同的方法,如湿式法、干式法、滴定法等。
其中,湿式法是最常用的方法之一。
在湿式法中,通过测量进料液体和出料液体的浓度差异,计算出传质系数。
具体步骤如下:1. 将试验液体注入填料塔中,使其充满整个填料层。
2. 开始实验,记录进料液体和出料液体的流量和浓度。
3. 在实验过程中,保持填料塔的稳定工况,确保液体和气体的接触充分。
4. 定期取样,测量出料液体的浓度。
5. 根据浓度差异,计算出传质系数。
在填料塔吸收传质系数的测定中,需要注意以下几点:1. 实验条件的选择:实验条件包括温度、压力、流量等,需要根据具体情况进行选择。
实验条件的选择应尽可能接近实际工况,以保证实验结果的可靠性。
2. 填料的选择:填料的选择对传质性能有着重要影响。
不同的填料具有不同的表面积和孔隙结构,会影响到气液接触的充分程度和传质效果。
因此,在实验中应选择合适的填料,以保证实验结果的准确性。
3. 数据处理和分析:在实验结束后,需要对实验数据进行处理和分析。
通过计算和比较不同试验条件下的传质系数,可以评估填料塔的传质性能,并进行优化和改进。