填料吸收传质系数的测定
[精品]四、填料吸收传质系数测定
![[精品]四、填料吸收传质系数测定](https://img.taocdn.com/s3/m/3524fdc618e8b8f67c1cfad6195f312b3169eb9e.png)
[精品]四、填料吸收传质系数测定填料吸收传质系数测定是一种测定填料吸收能力的方法,即测定填料不同浓度的溶液的吸收系数。
它是反映填料的密度、类型、孔径大小等特性的一个基本指标,是评估填料质量的重要指标之一。
填料吸收传质系数即实验中所谓的ε,ε=C/V,处理V升溶液用相同量的填料得到C升含量较高的溶液,ε表示这一填料滤过后,所有物质的浓度比值。
填料在过滤环境中有着相当大的影响,对于密度大、筛网晶体及粒径有别于悬浮体的小团聚物来说,这一影响更不可忽视。
填料的性质将改变悬浮体的主要过滤形式,在比较不贴近团聚物的情况下,滤过介质的表面粘附作用发生了较大的变化,因此,填料吸收传质系数的测定具有十分重要的意义。
填料吸收传质系数测定属于重现性实验,在测定填料吸收传质系数时需要满足一定的实验前提条件,如果不能有效把握,则无法获得准确的测定结果。
实验要求:(1)填料的表面活性因素应接近于零,以保证实验溶液的稳定性;(2)应使用适量的溶液样品,以保证完整的吸收;(3)滤过介质的表面状态、滤料的等离子体特性,温度等条件应保持稳定;(4)应确定滤过介质与填料吸收物质之间的可溶度;(5)实验结果应综合考虑填料本身的吸附特性、吸附条件和颗粒结构等因素。
填料吸收传质系数测定一般以普朗克定律为基础,常用的实验装置为普朗克滤管,即由表面均匀的填料和筛井组成的管状介质。
在普朗克滤管装置中,应用现象分析法,使用滤过介质中物质分子和填料表面的类Pi联系,完成横向传质过程。
在普朗克实验室中应做到自我校正,并尽量追求最佳结果,使萃取溶液达到要求。
经过一定时间的实验结束后,将填料上滤过的悬浮体收集起来,然后就可以得出填料的传质系数ε。
填料吸收传质系数的测定具有重要的现实意义,它不仅反映了填料的质量,而且还有助于改善过滤反应操作的安全性,提高悬浮体的分离效率以及滤料的使用寿命。
因此,填料吸收传质系数的准确测定对保证过滤操作的合理性和避免设备破损有十分重要的意义。
填料吸收塔的操作和吸收系数的测定

(4)标准状态下氨气的体积流量V0NH3
V0 NH 3
VNH3
T0 p0
0空 p2 p1 0NH3 T2 T1
(5)
式中,V0NH3 为转子流量计的指示值,m3/h;T0,、p0 为标准状态下空气的温度和压强,273K、
101.33kPa;T1、p1 为标准状态下空气的温度和压强,273K、101.33kPa;T2、p2 为操作状态
V0
V空
T0 p0
p1 p2 T1T2
(4)
式中,V0 空为标准状态下空气的体积流量,m3/h;V 空为转子流量计的指示值,m3/h;T0,、 p0 为标准状态下空气的温度和压强,273K、101.33kPa;T1、p1 为标准状态下空气的温度和 压强,273K、101.33kPa;T2、p2 为操作状态下温度和压强,K、Pa。
2.主要设备及尺寸 (1)填料塔
填料吸收塔仿真实验界面
-4-
有机玻璃塔内径:D=120mm;填料层高度:Z=800mm~900mm;填料:不锈钢θ网环 及陶瓷拉西环;规格:Φ8,Φ10,Φ15。
(2)DC—4 型微音气泵一台。 (3)LZB40 气体流量计,流量范围 0~60m3/h,数量一个;LZB15 气体流量计,流量 范围 0~2.5m3/h,数量一个;LZB15 气体流量计,流量范围 0~160m3/h,数量一个。 (4)LML—2 型湿式气体流量计,容量 5L,数量一台。 (5)水银温度计,规格 0~100℃,数量三只。
nNH3 2 MH2SO4 VH2SO4 103
(7)
式中, M H2SO4 为硫酸的摩尔浓度,mol/L;VH2SO4 为硫酸溶液体积,mL。
-2-
n空
(V空
试验七填料吸收塔的操作及吸收传质系数的测定

试验七填料吸收塔的操作及吸收传质系数的测定1.实验目的本实验旨在通过填料吸收塔的操作,测定其中一种气体在液体中的吸收特性,并计算其吸收传质系数。
2.实验原理填料吸收塔是一种用于气体吸收液体的设备,常用于废气治理和化学工艺中。
填料吸收塔的主要组成部分包括填料层和液相层。
气体从塔底进入填料层,通过填料与液相进行接触,在质量传递的作用下,溶于气体中的物质被液相吸收,并由塔顶排出。
吸收传质系数是描述气体在液体中传质性能的参数,通常用k来表示。
吸收塔中气体的吸收速率与扩散速率成正比,与接触面积成反比。
传质速率可通过如下公式计算:NTU = k * A * (Cg - Cgi)其中,NTU为传质单位时间内的传质量,k为吸收传质系数,A为塔内液相与气相的有效接触面积,Cg为塔底气相的浓度,Cgi为塔顶气相的浓度。
通过测量塔底和塔顶气相的浓度,以及塔底传质率,即可计算出吸收传质系数k。
3.实验步骤(1)准备工作:将填料装入填料层,根据需要确定填料层的高度;(2)连接好气相和液相导管,并确保无漏气现象;(3)启动搅拌器,使液相均匀分布在填料层上;(4)将适量的气体通入塔底,并记录下通气时间;(5)在通气过程中,采集塔底和塔顶气相的样品,并测定其浓度;(6)根据浓度和通气时间计算塔底传质率;(7)根据传质率、填料表面积等参数计算吸收传质系数k。
4.实验注意事项(1)操作过程中需注意安全,避免吸入有害气体;(2)确保气相和液相导管的连接紧密,无泄漏现象;(3)在取样时,保持塔内气相的稳定,避免因取样产生扰动;(4)实验结束后,清洗设备,存放妥善。
5.计算与分析根据实验测得的塔底和塔顶气相浓度,以及通气时间,计算出塔底传质率。
根据塔底传质率、填料表面积等参数,计算出吸收传质系数k。
6.结论通过填料吸收塔的操作及吸收传质系数的测定,可以了解其中一种气体在液体中的吸收特性,并进一步计算其吸收传质系数。
吸收传质系数的测定可用于化学工程中的设计与优化。
填料吸收塔传质系数测定实验报告数据处理

填料吸收塔传质系数测定实验报告的数据处理是为了从实验数据中计算出填料吸收塔的传质系数。
下面是一个常见的数据处理步骤,供参考:
1. 数据整理:整理实验所得数据,包括填料层高度、溶液进口浓度、出口浓度等参数,以及实验过程中记录的温度、压力等信息。
2. 确定传质模型:根据实验设计和填料吸收塔的结构特点,确定适合的传质模型,如洗涤理论、湿壁传质模型等。
3. 建立浓差和质量平衡方程:根据传质模型和实验条件,建立质量平衡和浓差方程,用以描述塔内物质的传质过程。
4. 参数拟合:通过最小二乘法等拟合方法,将实验数据与传质模型进行拟合,得到各传质参数的估计值。
这可能涉及到填料层高度、传质系数、扩散系数等参数。
5. 统计分析:进行相关的统计分析,如计算参数估计的标准误差或置信区间,以评估参数估计的精确性和可靠性。
6. 结果解释:根据参数估计结果,计算填料吸收塔的传质系
数,并结合理论知识和实验结果,对传质过程进行分析和解释。
需要注意的是,数据处理的具体方法和步骤可能因实验设计和传质模型的不同而有所差异。
在进行数据处理时,应参考相关的传质模型和实验设计,并根据实际情况进行适当的调整和修正。
此外,数据处理的结果应结合实验结果和领域知识进行分析和解释,以得出准确且有意义的结论。
吸收实验—填料塔吸收传质系数的测定.

实验八吸收实验—填料塔吸收传质系数的测定一、实验目的⒈了解填料塔吸收装置的基本结构及流程;⒉掌握总体积传质系数的测定方法;⒊测定填料塔的流体力学性能;⒋了解气体空塔速度和液体喷淋密度对总体积传质系数的影响;⒌了解气相色谱仪和六通阀在线检测CO2浓度和测量方法;二、基本原理气体吸收是典型的传质过程之一。
由于CO2气体无味、无毒、廉价,所以气体吸收实验选择CO2作为溶质组分是最为适宜的。
本实验采用水吸收空气中的CO2组分。
一般将配置的原料气中的CO2浓度控制在10%以内,所以吸收的计算方法可按低浓度来处理。
又CO2在水中的溶解度很小,所以此体系CO2气体的吸收过程属于液膜控制过程。
因此,本实验主要测定Kxa和HOL。
⒈计算公式:填料层高度h为:h=⎰h0dh=LKXaΩ⎰XbdXX-X*Xa=HOL⋅NOL A=LmV,则:NOL=11-Aln[(1-A)Yb-mXaYb-mXb+A]令:吸收因数HOL=LKxaΩ=hNOLKXa=LHOLΩ式中:h──填料层高度,m;L──液体的摩尔流量,kmol/s;Ω──填料塔的横截面积,m2;Kxa──以△X为推动力的液相总体积传质系数,kmol/(m3〃s);HOL──液相总传质单元高度,m;NOL──液相总传质单元数,无因次;Xa,Xb──CO2在塔顶、塔底液相中的摩尔比浓度,无因次;Ya,Yb──CO2在塔顶、塔底气相中的摩尔比浓度,无因次。
⒉测定方法(a)空气流量和水流量的测定本实验采用转子流量计测得空气和水的流量,并根据实验条件(温度和压力)和有关公式换算成空气和水的摩尔流量。
(b)测定塔顶和塔底气相组成yb和ya;(c)平衡关系。
本实验的平衡关系可写成: Y=mX 式中:m──相平衡常数,m=E/P;E──亨利系数,E=f(t),Pa,根据液相温度测定值由附录查得;P──总压,Pa。
对清水而言,Xa=0,由全塔物料衡算V(Yb-Ya)=L(Xb-Xa),可得Xb。
填料塔吸收传质系数的测定

填料塔吸收传质系数的测定填料塔是一种常用的传质设备,广泛应用于化工、环保等领域。
在填料塔中,气相和液相通过填料的接触和传质过程实现物质的分离和转移。
填料塔的传质性能是评价其性能优劣的重要指标之一,而填料塔吸收传质系数的测定则是评估其传质性能的重要手段之一。
填料塔吸收传质系数的测定是通过实验方法来确定填料塔在给定操作条件下的传质效率。
传质系数是描述填料塔传质性能的重要参数,它反映了气相和液相之间物质传递的速率和效果。
传质系数的大小直接影响到填料塔的传质效率和设备的经济性。
填料塔吸收传质系数的测定通常采用实验室或中试设备进行。
首先,需要准备好填料塔的实验装置,包括填料塔本体、进料管道、出料管道、气相和液相流量计等。
然后,选择合适的试验液体和气体,并将其分别输入填料塔中。
在实验过程中,通过调节流量和操作参数,使填料塔达到稳定工况,确保实验结果的准确性。
填料塔吸收传质系数的测定可以采用不同的方法,如湿式法、干式法、滴定法等。
其中,湿式法是最常用的方法之一。
在湿式法中,通过测量进料液体和出料液体的浓度差异,计算出传质系数。
具体步骤如下:1. 将试验液体注入填料塔中,使其充满整个填料层。
2. 开始实验,记录进料液体和出料液体的流量和浓度。
3. 在实验过程中,保持填料塔的稳定工况,确保液体和气体的接触充分。
4. 定期取样,测量出料液体的浓度。
5. 根据浓度差异,计算出传质系数。
在填料塔吸收传质系数的测定中,需要注意以下几点:1. 实验条件的选择:实验条件包括温度、压力、流量等,需要根据具体情况进行选择。
实验条件的选择应尽可能接近实际工况,以保证实验结果的可靠性。
2. 填料的选择:填料的选择对传质性能有着重要影响。
不同的填料具有不同的表面积和孔隙结构,会影响到气液接触的充分程度和传质效果。
因此,在实验中应选择合适的填料,以保证实验结果的准确性。
3. 数据处理和分析:在实验结束后,需要对实验数据进行处理和分析。
通过计算和比较不同试验条件下的传质系数,可以评估填料塔的传质性能,并进行优化和改进。
实验十二吸收塔的操作及吸收传质系数的测定

YY 1Y 2XX 1X 2图12-1 吸收操作线和平衡线操作线22()LY X X Y G=-+ 平衡线Y=mX实验十二 填料吸收塔的操作及吸收传质系数的测定一、实验目的1、了解填料吸收塔的结构和流程。
2、了解吸收剂进口条件的变化对吸收操作结果的影响。
3、掌握吸收总体积传质系数a K y 和a K x 的测定方法。
二、基本原理1、测气相总体积传质系数的原理气相总体积传质系数由填料层高度公式决定12Y mY Y VZ K a Y -=⋅Ω∆ (12-1) **1122*11*22()()()ln ()m Y Y Y Y Y Y Y Y Y ---∆=-- (12-2) 式中y K 气相总传质系数,mol/m 2·h ;m Y ∆塔顶、塔底气相平均推动力;a 填料的有效比表面积,m 2/m 3;a K y 气相总体积吸收传质系数,mol/m 3·h 。
(1)Z ――填料层高度m ,根据所装填料的高度直接测量。
(2)Ω――塔截面积m 2,24D πΩ=,而D 塔径为已知。
(3)V ――情性气体摩尔流量(空气)mol/ h ,根据理想气体状态方程可知:vpq V RT =,p――压力Pa ,压力表测量空气压力;q v ――体积流量m 3/h ,转子流量计测量(注意读数为实验条件20℃、1atm 下的,可直接利用公式进行计算,如果用操作条件则需要进行换算,其依据为'v v q q =;T ――空气温度K ,温度计测量。
(4)Y 1――1111y Y y =-,稳定操作后(各仪表读数恒定5min )测量气体进口浓度(丙酮的摩尔分率),取样后采用气相色谱仪分析,测得的是丙酮的质量分率。
(5)Y 2――2221y Y y =-,稳定操作后(各仪表读数恒定5min )测量气体出口浓度(丙酮的摩尔分率),取样后采用气相色谱仪分析,测得的是丙酮的质量分率。
(6)气相平均推动力m Y ∆将吸收操作线和平衡线在坐标纸上作图,如图12-1所示在平衡线为直线或近似为直线时,操作线与平衡线之间的垂直距离即为塔顶与塔底气相推动力。
填料吸收塔操作及吸收传质系数的测定

填料精馏塔的操作与塔效率的测定金世成2014301040177实验数据处理装置编号:塔型:浆叶式搅拌萃取塔塔内径:37mm 溶质:A :苯甲酸稀释剂B :煤油萃取剂S :水连续相:水分散相:煤油重相密度:997.5kg·m -3轻相密度:800kg·m -3流量计转子密度ρf :7900kg·m -3塔的有效高度:0.75m 塔内温度t =23.6℃多次测得的数据取平均值,得如下表格1、重相水的密度:ρH2O =-0.0055×23.62+0.0228×23.6+999.99=997.5kg·m -32、轻相煤油的密度:800kg·m -33、塔底重相质量m 1:m 1=ρH2O ×V H2O =0.9975×25g =24.94g4、塔底轻相质量m 2:m 2=ρ煤油×V 煤油=0.8×10g =8g5、根据X Rb =(C NaOH ×V NaOH ×M NaOH )/(m 2+C NaOH ×V NaOH ×M NaOH ),可依次得到实验序号为1,2,3的X Rb 值6、根据X Rt =(C NaOH ×V NaOH ×M NaOH )/(m 2+C NaOH ×V NaOH ×M NaOH ),可依次得到实验序号为1,项目\实验序号123桨叶转速转/分200258296水转子流量计读数L ·h -14煤油转子流量计读数L ·h -16校正得到的煤油实际流量L ·h -14.53浓度分析NaOH 溶液浓度mol ·L -10.01052塔底轻相X Rb样品体积mL 101010NaOH 体积mL 6.73 6.60 6.67塔顶轻相X Rt 样品体积mL 101010NaOH 体积mL 4.15 3.30 2.50塔底重相Y Eb样品体积mL 102525NaOH 体积mL 0.200.874.21计算及实验结果塔底轻相浓度X RbkgA/kgB 3.539×10-4 3.470×10-4 3.507×10-4塔顶轻相浓度X Rt kgA/kgB 2.182×10-4 1.735×10-4 1.315×10-4塔底重相浓度Y Eb kgA/kgB 8.436×10-61.468×10-57.103×10-5水流量S kgS ·h -1 3.99煤油流量B kgB ·h -14.8传质单元数N OE 0.0304350.0594940.35448传质单元高度H OE 24.6426812.60631 2.11578体积总传质系数Y E a[m ·h ·(kgA/kgS)]150.5884294.36871753.922,3的X Rt值7、Y Eb=(C NaOH×V NaOH×M NaOH)/(m1+C NaOH×V NaOH×M NaOH),可依次得到实验序号为1,2,3的Y Ebt值9、作操作线,操作线方程B(X Rb-X Rt)=S(Y Eb-Y Et),由操作线上取一系列X R值,再由平衡曲线找出一系列对应的Y E*值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
序号:40化工原理实验报告实验名称:填料吸收传质系数的测定学院:化学工程学院专业:化学工程与工艺1、熟悉填料塔的构造与操作。
2、观察填料塔流体力学状况,测定压降与气速的关系曲线。
3、掌握总传质系数K x a 的测定方法并分析影响因素。
4、学习气液连续接触式填料塔,利用船只速率方程处理传质问题的办法。
一、 实验原理本装置先用吸收柱讲将水吸收纯氧形成富氧水后(并流操作),送入解吸塔顶再用空气进行解吸,实验需测定不同液量和气量下的解吸总传质系数a x K ,并进行关联,得到b a V AL K ⋅=a x 的关联式,同时对四种不同填料的传质效果及流体力学性能进行比较。
本实验引入了计算机在线数据采集技术,加快了数据记录与处理的速度。
1、填料塔流体力学特性气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。
在双对数坐标系中,此压降对气速作图可得一斜率为1.8~2的直线(图中aa 线)。
当有喷淋量时,在低气速下(c 点以前)压降也正比于气速的1.8~2次幂,但大于同一气速下干填料的压降(图中bc 段)。
随气速的增加,出现载点(图1中c 点),持液量开始增大,压降-气速线向上弯,斜率变陡(图中cd 段)。
到液泛点(图中d 点)后,在几乎不变的气速下,压降急剧上升。
图一 填料层压降-空塔气速关系示意图2、传质实验填料塔与板式塔气液两相接触情况不同。
在填料塔中,两相传质主要是在填料有效湿表面上进行,需要计算完成一定吸收任务所需填料高度,其计算方法有:传质系数法、传质单元法和等板高度法。
本实验是对富氧水进行解吸。
由于富氧水浓度很小,可认为气液两相的平衡关系服从亨利定律,即平衡线为直线,操作线也是直线,因此可以用对数平均浓度差计算填料层传质平均推动力。
整理得到相应的传质速率方式为:m p x A x V a K G ∆••=m p A x x V G a K ∆•=其中 22112211ln)()(e e e e m x x x x x x x x x -----=∆()21x x L G A -= Ω•=Z V p相关的填料层高度的基本计算式为:OL OL x x e x N H xx dxa K L Z •=-Ω•=⎰12 即 OL OL N Z H /=其中 mx x e OL x x x x x dxN ∆-=-=⎰2112, Ω•=a K L H x OL式中:G A —单位时间内氧的解吸量[Kmol/h] K x a —总体积传质系数[Kmol/m 3•h•Δx] V P —填料层体积[m 3] Δx m —液相对数平均浓度差 x 1 —液相进塔时的摩尔分率(塔顶)x e1 —与出塔气相y 1平衡的液相摩尔分率(塔顶) x 2 —液相出塔的摩尔分率(塔底)x e2 —与进塔气相y 2平衡的液相摩尔分率(塔底) Z —填料层高度[m] Ω —塔截面积[m 2] L —解吸液流量[Kmol/h]H OL —以液相为推动力的传质单元高度 N OL —以液相为推动力的传质单元数由于氧气为难溶气体,在水中的溶解度很小,因此传质阻力几乎全部集中于液膜中,即K x =k x , 由于属液膜控制过程,所以要提高总传质系数K x a ,应增大液相的湍动程度。
在y —x 图中,解吸过程的操作线在平衡线下方,本实验中还是一条平行于横坐标的水平线(因氧在水中浓度很小)。
备注:本实验在计算时,气液相浓度的单位用摩尔分率而不用摩尔比,这是因为在y —x 图中,平衡线为直线,操作线也是直线,计算比较简单。
图二氧气吸收与解吸实验流程图1、氧气钢瓶9、吸收塔17、空气转子流量计2、氧减压阀10、水流量调节阀18、解吸塔3、氧压力表11、水转子流量计19、液位平衡罐4、氧缓冲罐12、富氧水取样阀20、贫氧水取样阀5、氧压力表13、风机21、温度计6、安全阀14、空气缓冲罐22、压差计7、氧气流量调节阀15、温度计23、流量计前表压计8、氧转子流量计16、空气流量调节阀24、防水倒灌阀二、实验步骤1、实验流程图二是氧气吸收解吸装置流程图。
氧气由氧气钢瓶供给,经减压阀2进入氧气缓冲罐4,稳压在0.03~0.04[Mpa],为确保安全,缓冲罐上装有安全阀6,由阀7调节氧气流量,并经转子流量计8计量,进入吸收塔9中,与水并流吸收。
含富氧水经管道在解吸塔的顶部喷淋。
空气由风机13供给,经缓冲罐14,由阀16调节流量经转子流量计17计量,通入解吸塔底部解吸富氧水,解吸后的尾气从塔顶排出,贫氧水从塔底经平衡罐19排出。
自来水经调节阀10,由转子流量计17计量后进入吸收柱。
由于气体流量与气体状态有关,所以每个气体流量计前均有表压计和温度计。
空气流量计前装有计前表压计23。
为了测量填料层压降,解吸塔装有压差计22。
在解吸塔入口设有入口采出阀12,用于采集入口水样,出口水样在塔底排液平衡罐上采出阀20取样。
两水样液相氧浓度由9070型测氧仪测得。
2、操作要点(1)、流体力学性能测定①、测定干填料降压时,塔内填料务必实现吹干②、测定湿填料压降A、测定前要进行预液泛,使填料表面充分润湿B、实验接近液泛时,进塔气体的增加量要减少,否者图中泛点不容易找到。
密切观察填料表面气液接触状况,并注意填料层压降变化幅度,务必让各参数稳定后再读数据,液泛后填料层降在几乎不变气速下明显上升,务必要掌握这个特点。
稍微增加气量,再取一。
二个点即可。
注意不是要使气速过分超过泛点,避免冲破和冲跑填料。
③、注意空气转子流量计的调节阀要缓慢开启和关闭,以免撞玻璃管。
(2)、传质实验①、氧气减压后进入缓冲罐,罐内压力保持0.03~0.04[MPa],不要过高,并注意减压阀使用方法。
为防止水倒灌进入氧气转子流量计中,开水前要关闭防倒灌阀24,或先通入氧气后通水。
②、传质实验操作条件选取水喷淋密度取10~15m3/m2.h,空塔气速0.5~0.8m/s氧气入塔流量为0.01~0.02m3/h,适当调节氧气流量,使吸收后的富氧水浓度控制在19.9ppm。
③、塔顶和塔底液相氧浓度测定分别从塔顶与塔底取出富氧水和贫氧水,用测氧仪分析各自氧的含量。
实验完毕,关闭氧气时,务必先关氧气钢瓶总阀,然后才能关闭减压阀2及调节阀8。
检查总电源。
总水阀及各管路阀门,确实安全后方可离开。
三、原始实验数据(附页)四、数据处理1、流体力学性能测定空气流速(h/m3) 8 12 15 18 20 22 24 28 吸收塔压降(Pa) 50 90 130 170 210 230 270 440 空气缓冲罐压降(Pa) 1170 1300 1440 1610 1760 1950 2080 2470 空气缓冲罐温度(℃)42.5 43 43.5 44 44.5 45 46 46.5图三填料层压降—空塔气速关系图2、实验数据处理公式:①使用状态下的空气流量V2V2=V1*P1*T2/(P2*T1)V1—空气转子流量计示值〔m3/h〕T1、P1—标定状态下空气的温度和压强〔K〕〔KPa〕T2、P2—使用状态下空气的温度和压强〔K〕〔KPa〕②V2=1/4×π×d2×u d=0.1m③Δp=ρgΔh④T1=22℃,p1=101.3KPa,T2=40℃,p2=Δp可求得:x 1=(19÷1000÷32)/(19÷1000÷32+1000÷18)= 1.069×10-5 x 2=(10÷1000÷32)/(10÷1000÷32+1000÷18)= 5.62×10-6 1、单位时间氧解吸量G AL=200 L/h=200×1000÷18×(1-1.061×10-5) =11.11Kmol/hG A =L (x 1-x 2)=11.11×(1.069×10-5-5.62×10-6)=5.633×10-5 Kmol/h2、对数平均浓度差ΔX m =[(x 1-xe 1)-(x 2-xe 2)]/ln[(x 1-xe 1)/( x 2-xe 2)] 氧气在不同温度下的亨利系数E 可用下式求取: E=〔-8.5694×10-5t 2+0.07714t+2.56〕×106=〔-8.5694×10-5×293.152+0.07714×293.15+2.56〕×106 = 1.781×107KPaP=大气压+1/2(填料层压差)=101.3+1/2×0.118=101.359KPa m=E/P=1.781×107/101.359=1.757×105 进塔气相浓度y 2,出塔气相浓度y 1 y 1=y 2=0.21xe 1= y 1/m=xe 2= y 2/m=0.21/ 1.757×105 =1.195×10-6 前面已求得:x 1= 1.069×10-5x 2=5.620×10-6因此,代入各数据可得:ΔX m =3.87×10-63、液相总体积传质系数Kxa= G A /(V p ×ΔX m )= GA/(1/4×π×d2×H ×ΔXm )=5.633×10-5/(0.25×3.14×0.12×0.8×3.87×10-6)= 2317.76Kmol/(m 3·h)4、液相总传质单元高度H Lo =*x L a K =11.11/(2317.76×0.25×3.14×0.12)=0.67m五、结果分析与讨论1.由图可知,我们的实验比较不成功,在测定干填料压降时得到的数据比较大,实验仪器和操作比较粗糙,但趋势是正确的,在测定湿填料压降时,由于控制空气流速的间隙太小,使实验的图像趋势不明显。
2.从实验仪器可以大致知道液相总传质单元高度大约在1米左右,与实验计算结果相差较大。
3.欲提高传质系数,可通过增加液体的流速,以加强液相的湍流程度来提高传质系数。
4. 水喷淋密度取10 ~15(m3/m2.h),空塔气速则维持在0.5~0.8(m/s),氧气流0.01~0.02(m3/s)。
5.直径一定的塔,可供气、液两相自由流动的截面是有限的。
二者之一的流量若增大到某个限度,降液管内的液体便不能顺畅地流下;当管内的液体满到上层板的溢流堰顶时,便要漫到上层板,产生不正常积液,最后可导致两层板之间被泡沫液充满。