椭圆中焦点三角形的性质(含答案)

合集下载

椭圆中焦点三角形的性质(含答案)

椭圆中焦点三角形的性质(含答案)

焦点三角形习题性质一:过椭圆焦点的所有弦中通径(垂直于焦点的弦)最短,通径为ab 22性质二:已知椭圆方程为),0(12222>>=+b a by a x 两焦点分别为,,21F F 设焦点三角形21F PF 中,21θ=∠PF F 则2tan221θb S PF F =∆.证明:记2211||,||r PF r PF ==,由椭圆的第一定义得.4)(,2222121a r r a r r =+∴=+在△21PF F 中,由余弦定理得:.)2(cos 22212221c r r r r =-+θ配方得:.4cos 22)(22121221c r r r r r r =--+θ 即.4)cos 1(242212c r r a =+-θ.cos 12cos 1)(222221θθ+=+-=∴b c a r r由任意三角形的面积公式得:2tan 2cos 22cos2sin2cos 1sin sin 2122222121θθθθθθθ⋅=⋅=+⋅==∆b b b r r S PF F ..2tan 221θb S PF F =∴∆同理可证,在椭圆12222=+bx a y (a >b >0)中,公式仍然成立.性质三:已知椭圆方程为),0(12222>>=+b a b y a x 两焦点分别为,,21F F 设焦点三角形21F PF 中,21θ=∠PF F 则.21cos 2e -≥θ性质三证明:设,,2211r PF r PF ==则在21PF F ∆中,由余弦定理得:1222242)(2cos 212221221221212212221--=--+=-+=r r c a r r c r r r r r r F F r r θ.2112221)2(222222222122e a c a r r c a -=--=-+-≥ 命题得证。

例1. 若P 是椭圆16410022=+y x 上的一点,1F 、2F 是其焦点,且︒=∠6021PF F , 求△21PF F 的面积.例1.解法一:在椭圆16410022=+y x 中,,6,8,10===c b a 而.60︒=θ 记.||,||2211r PF r PF ==点P 在椭圆上,∴由椭圆的第一定义得:.20221==+a r r在△21PF F 中,由余弦定理得:.)2(cos 22212221c r r r r =-+θ配方,得:.1443)(21221=-+r r r r.144340021=-∴r r 从而.325621=r r .336423325621sin 212121=⨯⨯==∆θr r S PF F 解法二:在椭圆16410022=+y x 中,642=b ,而.60︒=θ.336430tan 642tan221=︒==∴∆θb S PF F 例2.已知P 是椭圆192522=+y x 上的点,1F 、2F 分别是椭圆的左、右焦点,212121=,则△21PF F 的面积为( ) A. 33 B. 32 C. 3 D.33 解:设θ=∠21PF F ,则21cos 2121==θ,.60︒=∴θ .3330tan 92tan221=︒==∴∆θb S PF F 故选答案A.例3.已知椭圆191622=+y x 的左、右焦点分别是1F 、2F ,点P 在椭圆上. 若P 、1F 、2F 是一个直角三角形的三个顶点,则点P 到x 轴的距离为( ) A.59 B. 779 C. 49 D. 49或779解:若1F 或2F 是直角顶点,则点P 到x 轴的距离为半通径的长492=a b ;若P 是直角顶点,设点P到x 轴的距离为h ,则945tan 92tan221=︒==∆θb S PF F ,又,7)2(2121h h c S PF F =⋅⋅=∆ 97=∴h ,.779=h 故选D. 1. 椭圆1244922=+x y 上一点P 与椭圆两个焦点1F 、2F 的连线互相垂直,则△21PF F 的面积为( )A. 20B. 22C. 28D. 24 解:24,90221=︒==∠b PF F θ,∴2445tan 242tan221=︒==∆θb S PF F .故选D.2. 椭圆1422=+y x 的左右焦点为1F 、2F , P 是椭圆上一点,当△21PF F 的面积为1时,21PF PF ⋅的值为( )A. 0B. 1C. 3D. 6 解:设θ=∠21PF F , 12tan2tan221===∆θθb S PF F ,∴︒=︒=90,452θθ,021=⋅PF PF .故选A.3. 椭圆1422=+y x 的左右焦点为1F 、2F , P 是椭圆上一点,当△21PF F 的面积最大时,21PF PF ⋅的值为( )A. 0B. 2C. 4D. 2- 解:3,1,2===c b a ,设θ=∠21PF F , 2tan 2tan 221θθ==∆b S PF F ,∴当△21PF F 的面积最大时,θ为最大,这时点P 为椭圆短轴的端点,︒=120θ, ∴2120cos cos ||||22121-=︒=⋅=⋅a PF PF PF PF θ.故答案选D. 4.已知椭圆1222=+y ax (a >1)的两个焦点为1F 、2F ,P 为椭圆上一点,且︒=∠6021PF F ,则||||21PF PF ⋅的值为( )A .1B .31C .34D .32 解:︒==∠6021θPF F ,1=b ,3330tan 2tan221=︒==∆θb S PF F , 又 ||||43sin ||||21212121PF PF PF PF S PF F ⋅=⋅=∆θ, ∴33||||4321=⋅PF PF ,从而34||||21=⋅PF PF . 故答案选C.5. 已知椭圆的中心在原点,对称轴为坐标轴,1F 、2F 为焦点,点P 在椭圆上,直线1PF 与2PF 倾斜角的差为︒=∠9021PF F ,△21PF F 的面积是20,且c/a=√5/3, 求椭圆的标准方程.解:设θ=∠21PF F ,则︒=90θ. 2045tan 2tan 22221==︒==∆b b b S PF F θ,又 3522=-==a b a ace , ∴95122=-ab ,即952012=-a .解得:452=a .∴所求椭圆的标准方程为1204522=+y x 或1204522=+x y .专题2:离心率求法:1.若椭圆的两个焦点与它的短轴的两个端点是一个 正方形的四个顶点,则椭圆的离心率为( )A.22B.32C.53D.631.解析:选A.如图所示,四边形B 1F 2B 2F 1为正方形,则△B 2OF 2为等腰直角三角形, ∴c a =22. 2.若一个椭圆长轴的长度、短轴的长度和焦距 成等差数列,则该椭圆的离心率是( ) A.45 B.35 C.25 D.152.解析:选B.由题意知2b =a +c ,又b 2=a 2-c 2,∴4(a 2-c 2)=a 2+c 2+2ac .∴3a 2-2ac -5c 2=0.∴5c 2+2ac -3a 2=0.∴5e 2+2e -3=0.∴e =35或e =-1(舍去).3.若椭圆的短轴长为6,焦点到长轴的一个端点的最近距离是1,则椭圆的离心率为________. 3.解析:依题意,得b =3,a -c =1.又a 2=b 2+c 2,解得a =5,c =4,∴椭圆的离心率为e =c a =45. 答案:454.已知A 为椭圆x 2a 2+y 2b2=1(a >b >0)上的一个动点,直线AB 、AC 分别过焦点F 1、 F 2,且与椭圆交于B 、C 两点,若当AC 垂直于x 轴时,恰好有|AF 1|∶|AF 2|=3∶1,求该椭圆的离心率.4.解:设|AF 2|=m ,则|AF 1|=3m ,∴2a =|AF 1|+|AF 2|=4m . 又在Rt△AF 1F 2中,|F 1F 2|=|AF 1|2-|AF 2|2=22m .∴e =2c 2a =|F 1F 2|2a =22m 4m =22.5.如图所示,F 1、F 2分别为椭圆的左、右焦点,椭圆上点M 的横坐标等于右焦点的横坐标,其纵坐标等于短半轴长的23,求椭圆的离心率.5. 解:法一:设椭圆的长半轴、短半轴、半焦距长分别为a 、b 、c .则焦点为F 1(-c,0),F 2(c,0),M 点的坐标为(c ,23b ),则△MF 1F 2为直角三角形. 在Rt△MF 1F 2中,|F 1F 2|2+|MF 2|2=|MF 1|2,即4c 2+49b 2=|MF 1|2.而|MF 1|+|MF 2|=4c 2+49b 2+23b =2a ,整理得3c 2=3a 2-2ab .又c 2=a 2-b 2,所以3b =2a .所以b 2a 2=49.∴e 2=c 2a 2=a 2-b 2a 2=1-b 2a 2=59, ∴e =53.法二:设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),则M (c ,23b ).代入椭圆方程,得c 2a 2+4b29b2=1,所以c 2a 2=59,所以c a =53,即e =53.椭圆中焦点三角形的性质及应用(答案)性质二离心率求法:。

椭圆的性质二 焦点三角形的性质

椭圆的性质二    焦点三角形的性质

||PF|2 |PF|1
a
ex
(a
ex)
2ex
2
4 5
x

5
x
0

∴0<|F2N|<8,∴0<|OM|<4.
若 P 在椭圆的右半部分时,同样可得出 0<|OM|<4,故选:B.
方法二 极限法,当 P 在左端点时,|OM|=4,在 P 上顶点时,|OM|=0,∴0<|OM|<4.
三 课后练习:
1.(2019·郑州第二次质量预测)已知椭圆 C:ax22+by22=1(a>b>0)的左、右焦点分别为 F1,F2,离心率为23,
x2
令椭圆方程为
a2
y2 b2
1(a b 0)
则由椭圆的定义有 | PF1 | | PF2 | 2a , | F1F2 | 2c ,

| PF1 | | PF2 |
| F1F2 | 2c
sin PF2F1 sin PF1F2 sin F1PF2
又 ∵ PF1F2 5PF2F1 , ∴ PF1F2 750 , PF2F1 150 ,
4.(2019
南昌模拟)P
为椭圆 x2 +y2=1 25 9
上一点,F1,F2
分别是椭圆的左、右焦点,过
P
点作
PH⊥F1F2

点 H,若 PF1⊥PF2,则|PH|=( )
A.25
B.8
4
3
C.8
D.9
4
解析:选 D 由椭圆 x2 +y2=1 得 a2=25,b2=9, 25 9
则 c= a2-b2= 25-9=4,∴|F1F2|=2c=8.由椭圆的定义可得|PF1|+|PF2|=2a=10,
A. (0, 3 ] 2

椭圆综合应用专题3焦点三角形性质及应用1(1)

椭圆综合应用专题3焦点三角形性质及应用1(1)

对椭圆两焦点所成张角中最大的角.

P n
cosθ = PF1 2 + PF2 2 - F1F2 2 = m2 +n2 - 4c2
2 PF1 PF2
2mn
F1
F2
= (m+n)2 -2mn- 4c2 = 4a2 -2mn- 4c2 = 4b2 -2mn = 2b2 -1
2mn
2mn
2mn mn

2b2 (m+n)2
PF1
2 + PF2 2 - F1F2 2 PF1 PF2
2
=
m2
+n2 - 4c2 2mn
P
= (m+n)2 - 2mn- 4c2 = 2b2 -1
2mn
mn
mn= 2b2
F1
F2
1+cosθ
如图此时θ取最大,此时cosθ最小为 - 275,mn最大为: 25
知识小结
椭圆特征焦点三角形的顶角是椭圆上所有的点
P1F =| P7F1 |
y
P1P2
P3
P4 P5 P6 P7
A
B
FO
x
P4F +| P4F |= 2a
∴ P1F + P2F +…… P7F = 7a
跟踪练习3
已知F1、F2是椭圆
x2 + 25
y2 9
=1的左
,
右焦点
,
点P在椭圆上运动
,
则 PF1 PF2 的最大值是_______
解析:cosθ =
2mn
2mn
2mn mn

2b2 (m+n)2
-1

椭圆中的“焦点三角形”性质及应用

椭圆中的“焦点三角形”性质及应用

椭圆中的“焦点三角形”性质及应用
作者:章显军
来源:《中学教学参考·中旬》 2013年第5期
浙江苍南县钱库高级中学(325804)章显军
“焦点三角形”问题是考试中比较常见的考题.椭圆“焦点三角形”的定义为:椭圆上的任意一点(除长轴端点外)与两个焦点构成的三角形.通常“焦点三角形”的问题都有意地考查了椭圆的定义、三角形中的正弦、余弦定理、三角形的面积、内角大小等知识,现笔者就椭圆“焦点三角形”的性质及应用举例分析如下.
综上对椭圆“焦点三角形”性质及其应用的分析,我们可以总结出:学生的学习只有通过自身的操作活动和创造性地做才可能是有效的.教师应通过引发创新思维的问题,让学生学会自主学习,培养他们独立思考的能力,这是培养创造能力的重要手段.学生具有这种能力,就会不断获取新知识,创造也就有了根基.
(责任编辑黄春香)。

椭圆中焦点三角形的性质及应用

椭圆中焦点三角形的性质及应用

椭圆中焦点三角形的性质及应用
又,故满足:故为直角三角形、说明:考查定义、利用已知、发挥联想,从而解题成功、性质一:已知椭圆方程为两焦点分别为设焦点三角形中则。

性质二:已知椭圆方程为左右两焦点分别为设焦点三角形,若最大,则点P为椭圆短轴的端点。

证明:设,由焦半径公式可知:,在中, = 性质三:过椭圆焦点的所有弦中通径(垂直于焦点的弦)最短,通径为性质四:已知椭圆方程为两焦点分别为设焦点三角形中则证明:设则在中,由余弦定理得:
命题得证。

(2000年高考题)已知椭圆的两焦点分别为若椭圆上存在一点使得求椭圆的离心率的取值范围。

简解:由椭圆焦点三角形性质可知即 ,于是得到的取值范围是性质五:已知椭圆方程为两焦点分别为设焦点三角形,则椭圆的离心率。

由正弦定理得:由等比定理得:而,∴。

已知椭圆的焦点是F1(-1,0)、F2(1,0),P为椭圆上一点,且|F1F2|是|PF1|和|PF2|的等差中项.(1)求椭圆的方程;(2)若点P在第三象限,且∠PF1F2=120,求tanF1PF2.解:(1)由题设2|F1F2|=|PF1|+|PF2|∴2a=4,又2c=2,∴b=∴椭圆的方程为=1.(2)设∠F1PF2=θ,则∠PF2F1=60-θ椭圆的离心率则,整理得:5sinθ=(1+cosθ)∴故,tanF1PF2=tanθ=.
第 1 页共 1 页。

椭圆的焦点三角形公式

椭圆的焦点三角形公式

椭圆的焦点三角形公式椭圆是我们在数学学习中经常会碰到的一个重要图形,而椭圆的焦点三角形则有着一些独特的公式和有趣的性质。

先来说说啥是椭圆的焦点三角形。

想象一下,椭圆上有一个点 P,然后连接椭圆的两个焦点 F₁和 F₂,这样就形成了一个三角形,这个三角形就叫做焦点三角形。

在焦点三角形中,有几个重要的公式。

比如说,焦点三角形的周长公式是 2a + 2c ,其中 a 是椭圆的长半轴,c 是椭圆的半焦距。

还有一个特别常用的公式是在焦点三角形 PF₁F₂中,设∠F₁PF₂ = θ,那么三角形的面积 S = b² × tan(θ/2) ,这里的 b 是椭圆的短半轴。

那这些公式到底有啥用呢?我给您讲个事儿您就明白了。

记得有一次我给学生们上课,讲完这些公式后,我出了一道题让他们做。

题目是这样的:已知椭圆方程为 x²/25 + y²/16 = 1 ,点 P 在椭圆上,∠F₁PF₂ = 60°,求焦点三角形 PF₁F₂的面积。

大多数同学看到题目就开始埋头苦算,又是设坐标,又是用距离公式的,算得那叫一个费劲。

但有个聪明的同学就不一样啦,他马上想到了我们刚讲的面积公式S = b² × tan(θ/2) 。

这个椭圆里,b² = 16 ,θ = 60°,所以tan(θ/2) = √3/3 ,那面积 S 一下子就算出来是16√3/3 。

这时候其他同学都恍然大悟,原来用对了公式能这么轻松地解决问题。

从那以后,同学们对这些公式的印象可深刻了,遇到类似的题目也不再害怕。

咱们再回到焦点三角形的公式上来。

这些公式的推导其实也挺有意思的。

就拿面积公式来说吧,它是通过余弦定理和一些巧妙的代数变形得到的。

在学习和运用这些公式的时候,一定要注意理解每个字母代表的含义,还要多做一些练习题来巩固。

比如说,给您一个椭圆方程,让您求焦点三角形的周长或者面积,您就得能迅速判断出要用哪个公式,然后准确地代入数值计算。

焦点三角形的性质(经典!必看)

焦点三角形的性质(经典!必看)
F2=120°,求tanF1PF2.
(1)由题设2|F
F2|=|PF1|+|PF2|
2a=4,又2c=2,∴b=3
422yx=1.
设∠F
PF2=θ,则∠PF2F1=60°-θ
1e
60sin(
3sin)60sin(120sin)180sin(21oooo,
5sinθ=3(1+cosθ)
1bbPFPFSPFF
),0(1
222ba
yax左右两焦点分别为,,21FF设焦点三角
1FPF,若21PFF最大,则点P为椭圆短轴的端点。
),(
oyxP,由焦半径公式可知:oexaPF1,oexaPF1
1PFF中,
122121212cosPFPFFFPFPF21221221242)(PFPFcPFPFPFPF
(余)弦定理、内角和定理、面积公式等.
1 椭圆上一点P到焦点
1,FF的距离之差为2,试判断21FPF的形状.
:由1
1622yx椭圆定义:
||,5||.2||||,8|||
12121PFPFPFPFPFPF.
又4||
1FF,故满足:,||||||2122122PFFFPF故21FPF为直角三角形.
sin)180sin(1221PFPFFFo
sin)sin(2121PFPFFF
sin(2)sin(21cFF,sinsin2sinsin21aPFPF
sin)sin(ace。
F
(-1,0)、F2(1,0),P为椭圆上一点,且|F1F2|是|PF1|和|PF2|
求椭圆的方程;
若点P在第三象限,且∠PF
.
),0(1
222ba

椭圆中的焦点三角形问题

椭圆中的焦点三角形问题
x
2.焦点三角形的面积问题
. y P
.
.
F1 0
F2

2、已知
P
在椭圆
C:x2
25
y2 9
1 上,F1 和
F2 是椭圆的两个焦点,
且 F1PF2 900 ,求△F1PF2 的面积 x
2.焦点三角形的面积问题
. y P
.
.
F1 0
F2
变式、已知
P
在椭圆
C:x2
25
y2 9
1 上,F1 和
F2 是椭圆的两个焦点,
且 F1PF2 600 ,求△F1PF2 的面积 x
2.焦点三角形的面积问题
. y P
.
.
F1 0
F2

2、已知
P
在椭圆
C:x2
25
y2 9
1 上,F1 和
F2 是椭圆的两个焦点,
且 F1PF2 900 ,求△F1PF2 的面积 x
答案为9
变式、已知
P
在椭圆
C:x2
25
y2 9
1 上,F1 和
F2
是椭圆的两个焦点,
答案为 3 3 且 F1PF2 600 ,求△F1PF2 的面积
猜想:已知
P
在椭圆
C:x2
25
y2 9
1 上,F1 和
F2
是椭圆的两个焦点,
且 F1PF2 ,则△F1PF2 的面积为多少?
此问题可以推广到一般情况为:

P
是椭圆
C:
x2 a2
y2 b2
1( a
b
0 )上一点,
.
变式2:F1, F2是椭圆C :
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

焦点三角形习题性质一:过椭圆焦点的所有弦中通径(垂直于焦点的弦)最短,通径为ab 22性质二:已知椭圆方程为),0(12222>>=+b a b y a x 两焦点分别为,,21F F 设焦点三角形21F PF 中,21θ=∠PF F 则2tan221θb S PF F =∆.证明:记2211||,||r PF r PF ==,由椭圆的第一定义得.4)(,2222121a r r a r r =+∴=+在△21PF F 中,由余弦定理得:.)2(cos 22212221c r r r r =-+θ配方得:.4cos 22)(22121221c r r r r r r =--+θ 即.4)cos 1(242212c r r a =+-θ.cos 12cos 1)(222221θθ+=+-=∴b c a r r由任意三角形的面积公式得:2tan 2cos 22cos2sin2cos 1sin sin 2122222121θθθθθθθ⋅=⋅=+⋅==∆b b b r r S PF F ..2tan 221θb S PF F =∴∆同理可证,在椭圆12222=+bx a y (a >b >0)中,公式仍然成立.性质三:已知椭圆方程为),0(12222>>=+b a by a x 两焦点分别为,,21F F 设焦点三角形21F PF 中,21θ=∠PF F 则.21cos 2e -≥θ性质三证明:设,,2211r PF r PF ==则在21PF F ∆中,由余弦定理得:1222242)(2cos 212221221221212212221--=--+=-+=r r c a r r c r r r r r r F F r r θ.2112221)2(222222222122e a c a r r c a -=--=-+-≥ 命题得证。

例1. 若P 是椭圆16410022=+y x 上的一点,1F 、2F 是其焦点,且︒=∠6021PF F , 求△21PF F 的面积.例1.解法一:在椭圆16410022=+y x 中,,6,8,10===c b a 而.60︒=θ 记.||,||2211r PF r PF ==点P 在椭圆上,∴由椭圆的第一定义得:.20221==+a r r在△21PF F 中,由余弦定理得:.)2(cos 22212221c r r r r =-+θ配方,得:.1443)(21221=-+r r r r.144340021=-∴r r 从而.325621=r r .336423325621sin 212121=⨯⨯==∆θr r S PF F 解法二:在椭圆16410022=+y x 中,642=b ,而.60︒=θ.336430tan 642tan221=︒==∴∆θb S PF F例2.已知P 是椭圆192522=+y x 上的点,1F 、2F 分别是椭圆的左、右焦点,212121=,则△21PF F 的面积为( ) A. 33 B. 32 C. 3 D.33 解:设θ=∠21PF F ,则21cos 2121==θ,.60︒=∴θ .3330tan 92tan221=︒==∴∆θb S PF F 故选答案A.例3.已知椭圆191622=+y x 的左、右焦点分别是1F 、2F ,点P 在椭圆上. 若P 、1F 、2F 是一个直角三角形的三个顶点,则点P 到x 轴的距离为( ) A.59 B. 779 C. 49 D. 49或779解:若1F 或2F 是直角顶点,则点P 到x 轴的距离为半通径的长492=a b ;若P 是直角顶点,设点P 到x 轴的距离为h ,则945tan 92tan221=︒==∆θb S PF F ,又,7)2(2121h h c S PF F =⋅⋅=∆ 97=∴h ,.779=h 故选D.1. 椭圆1244922=+x y 上一点P 与椭圆两个焦点1F 、2F 的连线互相垂直,则△21PF F 的面积为( )A. 20B. 22C. 28D. 24 解:24,90221=︒==∠b PF F θ,∴2445tan 242tan 221=︒==∆θb S PF F .故选D.2. 椭圆1422=+y x 的左右焦点为1F 、2F , P 是椭圆上一点,当△21PF F 的面积为1时,21PF PF ⋅的值为( )A. 0B. 1C. 3D. 6 解:设θ=∠21PF F , 12tan2tan221===∆θθb S PF F ,∴︒=︒=90,452θθ,021=⋅PF PF .故选A.3. 椭圆1422=+y x 的左右焦点为1F 、2F , P 是椭圆上一点,当△21PF F 的面积最大时,21PF PF ⋅的值为( )A. 0B. 2C. 4D. 2- 解:3,1,2===c b a ,设θ=∠21PF F , 2tan 2tan 221θθ==∆b S PF F ,∴当△21PF F 的面积最大时,θ为最大,这时点P 为椭圆短轴的端点,︒=120θ, ∴2120cos cos ||||22121-=︒=⋅=⋅a PF PF PF PF θ.故答案选D. 4.已知椭圆1222=+y ax (a >1)的两个焦点为1F 、2F ,P 为椭圆上一点,且︒=∠6021PF F ,则||||21PF PF ⋅的值为( )A .1B .31C .34D .32 解:︒==∠6021θPF F ,1=b ,3330tan 2tan221=︒==∆θb S PF F , 又 ||||43sin ||||21212121PF PF PF PF S PF F ⋅=⋅=∆θ, ∴33||||4321=⋅PF PF ,从而34||||21=⋅PF PF . 故答案选C.5. 已知椭圆的中心在原点,对称轴为坐标轴,1F 、2F 为焦点,点P 在椭圆上, 直线1PF 与2PF 倾斜角的差为︒=∠9021PF F ,△21PF F 的面积是20,且c/a=√5/3, 求椭圆的标准方程.解:设θ=∠21PF F ,则︒=90θ. 2045tan 2tan 22221==︒==∆b b b S PF F θ,又 3522=-==a b a ace , ∴95122=-ab ,即952012=-a .解得:452=a .∴所求椭圆的标准方程为1204522=+y x 或1204522=+x y .专题2:离心率求法:1.若椭圆的两个焦点与它的短轴的两个端点是一个 正方形的四个顶点,则椭圆的离心率为( )A.22B.32C.53D.631.解析:选A.如图所示,四边形B 1F 2B 2F 1为正方形,则△B 2OF 2为等腰直角三角形, ∴c a =22.2.若一个椭圆长轴的长度、短轴的长度和焦距 成等差数列,则该椭圆的离心率是( ) A.45 B.35 C.25 D.15 2.解析:选B.由题意知2b =a +c ,又b 2=a 2-c 2, ∴4(a 2-c 2)=a 2+c 2+2ac .∴3a 2-2ac -5c 2=0.∴5c 2+2ac -3a 2=0.∴5e 2+2e -3=0.∴e =35或e =-1(舍去).3.若椭圆的短轴长为6,焦点到长轴的一个端点的最近距离是1,则椭圆的离心率为________.3.解析:依题意,得b =3,a -c =1. 又a 2=b 2+c 2,解得a =5,c =4,∴椭圆的离心率为e =c a =45. 答案:454.已知A 为椭圆x 2a 2+y 2b2=1(a >b >0)上的一个动点,直线AB 、AC 分别过焦点F 1、 F 2,且与椭圆交于B 、C 两点,若当AC 垂直于x 轴时,恰好有|AF 1|∶|AF 2|=3∶1, 求该椭圆的离心率.4.解:设|AF 2|=m ,则|AF 1|=3m ,∴2a =|AF 1|+|AF 2|=4m . 又在Rt △AF 1F 2中,|F 1F 2|=|AF 1|2-|AF 2|2=22m .∴e =2c 2a =|F 1F 2|2a =22m 4m =22.5.如图所示,F 1、F 2分别为椭圆的左、右焦点,椭圆上点M 的横坐标等于右焦点的横坐标,其纵坐标等于短半轴长的23,求椭圆的离心率.5. 解:法一:设椭圆的长半轴、短半轴、半焦距长分别为a 、b 、c .则焦点为F 1(-c,0),F 2(c,0),M 点的坐标为(c ,23b ),则△MF 1F 2为直角三角形. 在Rt △MF 1F 2中,|F 1F 2|2+|MF 2|2=|MF 1|2,即4c 2+49b 2=|MF 1|2.而|MF 1|+|MF 2|=4c 2+49b 2+23b =2a ,整理得3c 2=3a 2-2ab .又c 2=a 2-b 2,所以3b =2a .所以b 2a 2=49.∴e 2=c 2a 2=a 2-b 2a 2=1-b 2a 2=59, ∴e =53.法二:设椭圆方程为x 2a 2+y 2b 2=1(a >b >0), 则M (c ,23b ).代入椭圆方程,得c 2a 2+4b 29b 2=1,所以c 2a 2=59,所以c a =53,即e =53.椭圆中焦点三角形的性质及应用(答案)性质二离心率求法:(注:文档可能无法思考全面,请浏览后下载,供参考。

可复制、编制,期待你的好评与关注!)。

相关文档
最新文档