单片机控制直流电机调速
单片机控制电机的方式

单片机控制电机的方式单片机作为嵌入式系统的核心,广泛应用于各种控制领域。
其中,单片机控制电机是一个重要的应用领域。
本文将介绍单片机控制电机的方式,包括直流电机、步进电机、伺服电机三个方面。
一、直流电机控制1.1 单极性控制单极性控制是最简单的直流电机控制方式,它的电源和直流电机连接在一起,通过改变电源正负极之间的电压大小和方向来改变直流电机的转速和转向。
1.2 双极性控制双极性控制是一种更加高级的直流电机控制方式,它可以使直流电机实现正反转和调速。
1.3 PWM控制PWM控制是一种数字控制方式,它可以调节电源电压的有效值,从而改变直流电机的转速和转向。
PWM控制的理论基础是调制原理,通过改变PWM波的占空比来改变电机的输出功率,从而实现电机的调速和正反转。
二、步进电机控制步进电机是一种特殊的电机,它的转动是以步进的形式进行的,每一步的功率相等,稳定性和精度较高,被广泛应用于各种需要精密控制的领域。
步进电机的控制方式有以下几种:2.1 单相双极控制单相双极控制是最简单的步进电机控制方式,它可以使步进电机实现一定程度的正反转和调速,但是功率低,精度不高,适用于一些比较简单的应用场合。
2.2 双相驱动控制双相驱动控制是一种更加高级的步进电机控制方式,它分为单向驱动和双向驱动。
双向驱动比单向驱动更加灵活,可以实现更加复杂的控制功能。
2.3 微步驱动控制微步驱动控制是一种针对步进电机控制的高级技术,通过改变步进电机的每一步数来实现更加精确的控制。
目前,微步驱动控制已经被广泛应用于各种需要高精度控制的领域。
三、伺服电机控制伺服电机是一种在工业自动化中经常使用的电机,它具有速度反馈、位置反馈和转矩反馈等功能,可以实现高效、高精度的控制。
伺服电机的控制方式有以下几种:3.1 位置控制位置控制是一种使用最为广泛的伺服电机控制方式,它通过电机位置传感器反馈电机当前位置信息,从而实现定位和精确位置控制。
3.2 速度控制速度控制是伺服电机的另一种重要控制方式,它通过电机速度传感器反馈电机当前速度信息,从而实现高效的速度控制。
基于stm32单片机的直流电机调速系统设计

基于stm32单片机的直流电机调速系统设计
本文介绍一种基于STM32单片机的直流电机调速系统设计,主要包括硬件电路设计和软件程序设计两部分。
硬件电路设计:
该电机调速系统的主要硬件电路包括电源模块、STM32单片机控制电路、直流电机驱动电路和反馈电路。
1. 电源模块
电源模块包括AC/DC变换模块和稳压模块,用于将输入的AC电压转换为适宜单片机和电机工作的DC电压。
2. STM32单片机控制电路
STM32单片机控制电路包括主控芯片STM32单片机、晶振、复位电路和下载程序电路等。
3. 直流电机驱动电路
直流电机驱动电路包括电机驱动芯片(如L298N)和电机,用于控制电机的转
速和方向。
4. 反馈电路
反馈电路包括编码器和光电传感器等,用于实现电机转速的反馈和闭环控制。
软件程序设计:
该电机调速系统的软件程序采用C语言编写,主要包括定时器计数、PWM输出控制、编码器读取、PID算法控制等模块。
1. 定时器计数
通过STM32单片机内部定时器计数来实现电机转速的测量和控制。
2. PWM输出控制
采用STM32单片机内部PWM输出控制模块控制电机的转速,并实现电机方向的控制。
3. 编码器读取
通过编码器读取电机的转速信息,并反馈到单片机进行控制和显示。
4. PID算法控制
采用PID(比例、积分、微分)算法控制电机的转速,实现闭环控制,提高控制精度。
总之,基于STM32单片机的直流电机调速系统设计,既可以提高电机运行的效率和精度,又可以简化电路结构和减小系统成本,具有较好的应用前景。
单片机电机控制

单片机电机控制引言:单片机作为一种集成电路芯片,广泛应用于各个领域,尤其在电机控制方面发挥着重要作用。
本文将介绍单片机在电机控制中的应用及相关知识,以及常见的控制方法和技术。
一、单片机在电机控制中的应用单片机在电机控制中的应用广泛,包括直流电机控制、步进电机控制、交流电机控制等。
通过单片机的控制,可以实现电机的启停、速度调节、方向控制等功能。
1. 直流电机控制:直流电机是一种常见的电机类型,广泛应用于各个领域。
单片机可以通过PWM信号控制直流电机的转速和方向。
通过改变PWM信号的占空比,可以控制直流电机的速度,通过改变PWM信号的正负脉冲,可以控制直流电机的正转和反转。
2. 步进电机控制:步进电机是一种精密控制的电机,常用于需要准确定位的应用中。
单片机可以通过控制步进电机驱动器的信号,实现步进电机的精确控制。
通过改变驱动器信号的频率和脉冲数,可以控制步进电机的转速和步距。
3. 交流电机控制:交流电机是一种常见的电机类型,广泛应用于各个领域。
单片机可以通过外部电路和传感器,获取交流电机的相关信号,从而实现对交流电机的控制。
常见的控制方法包括矢量控制、电流控制和速度控制等。
二、电机控制的常见方法和技术在单片机电机控制中,常见的方法和技术有PWM调速、PID控制、闭环控制等。
1. PWM调速:PWM调速是一种通过改变PWM信号的占空比来调节电机转速的方法。
通过改变占空比,可以改变电机的平均电压和平均功率,从而实现电机的调速功能。
PWM调速具有调速范围广、控制精度高的优点,在电机控制中被广泛应用。
2. PID控制:PID控制是一种比例、积分和微分控制的方法,常用于对电机速度和位置的控制。
通过测量电机的反馈信号和设定值,PID控制可以根据误差的大小来调整控制器的输出,从而实现电机的精确控制。
3. 闭环控制:闭环控制是一种通过反馈信号来调节电机控制器输出的方法。
通过测量电机的反馈信号,可以实时调整控制器的输出,从而实现对电机的精确控制。
基于单片机控制的直流电机调速系统设计

基于单片机控制的直流电机调速系统设计一、引言直流电机在工业自动化领域中广泛应用,其调速系统的设计是实现自动控制的关键。
本文将介绍一种基于单片机控制的直流电机调速系统设计方案,主要包括电机原理、硬件设计、软件设计以及实验结果与分析等内容。
二、电机原理直流电机是一种将直流电能转换为机械能的装置,其原理基于电磁感应和安培定律。
电机由定子和转子两部分组成,定子上绕有恒定电流,产生磁场,而转子上带有电流,与定子的磁场互相作用,产生力矩使电机旋转。
三、硬件设计1.单片机选择在本设计中,选择了一款功能强大、性能稳定的单片机作为控制核心,例如使用ST C89C51单片机。
该单片机具有丰富的GP IO口和定时器/计数器等外设,适合进行电机控制。
2.电机驱动电路设计电机驱动电路主要包括功率电源、运放电路和驱动电路。
其中,功率电源为电机提供稳定的直流电源,运放电路用于信号放大和滤波,驱动电路则根据控制信号控制电机的转速。
3.速度测量电路设计为了实时监测电机的转速,需要设计速度测量电路。
常见的速度测量电路包括光电编码器、霍尔传感器等,通过测量转子上感应物体的变化来获得电机的转速信息。
四、软件设计1.程序框架软件设计的目标是实现对电机转速的控制和监测。
基于单片机的软件设计主要包括主程序的编写、中断服务程序的编写以及定时器的配置等。
2.控制算法常见的直流电机调速算法包括电压调速法、P WM调速法等。
根据实际需求选择合适的算法,并根据测量到的转速信号进行反馈控制,实现对电机转速的精确控制。
五、实验结果与分析设计完成后,进行实验验证。
通过设置不同的转速需求,观察电机的实际转速与设定转速的误差,并分析误差原因。
同时还可以测试电机在不同负载下的转速性能,以评估系统的稳定性和鲁棒性。
六、总结基于单片机控制的直流电机调速系统设计是实现自动控制的重要应用。
本文介绍了该系统的硬件设计和软件设计方案,并展示了实验结果。
通过系统实现电机转速的精确控制,可以广泛应用于工业自动化领域。
单片机控制直流电机PWM脉宽调制

用单片机控制直流电机摘要本设计以AT89C51单片机为核心,以4*4矩阵键盘做为输入达到控制直流电机的启停、速度和方向,完成了基本要求和发挥部分的要求.在设计中,采用了PWM技术对电机进行控制,通过对占空比的计算达到精确调速的目的。
一、设计方案比较与分析:1、电机调速控制模块:方案一:采用电阻网络或数字电位器调整电动机的分压,从而达到调速的目的。
但是电阻网络只能实现有级调速,而数字电阻的元器件价格比较昂贵。
更主要的问题在于一般电动机的电阻很小,但电流很大;分压不仅会降低效率,而且实现很困难。
方案二:采用继电器对电动机的开或关进行控制,通过开关的切换对小车的速度进行调整。
这个方案的优点是电路较为简单,缺点是继电器的响应时间慢、机械结构易损坏、寿命较短、可靠性不高.方案三:采用由达林顿管组成的H型PWM电路.用单片机控制达林顿管使之工作在占空比可调的开关状态,精确调整电动机转速。
这种电路由于工作在管子的饱和截止模式下,效率非常高;H型电路保证了可以简单地实现转速和方向的控制;电子开关的速度很快,稳定性也极佳,是一种广泛采用的PWM调速技术。
兼于方案三调速特性优良、调整平滑、调速范围广、过载能力大,因此本设计采用方案三.2、PWM调速工作方式:方案一:双极性工作制。
双极性工作制是在一个脉冲周期内,单片机两控制口各输出一个控制信号,两信号高低电平相反,两信号的高电平时差决定电动机的转向和转速.方案二:单极性工作制。
单极性工作制是单片机控制口一端置低电平,另一端输出PWM信号,两口的输出切换和对PWM的占空比调节决定电动机的转向和转速。
由于单极性工作制电压波开中的交流成分比双极性工作制的小,其电流的最大波动也比双极性工作制的小,所以我们采用了单极性工作制。
3、PWM调脉宽方式:调脉宽的方式有三种:定频调宽、定宽调频和调宽调频。
我们采用了定频调宽方式,因为采用这种方式,电动机在运转时比较稳定;并且在采用单片机产生PWM脉冲的软件实现上比较方便。
51单片机控制直流电机PWM调速

51单片机控制直流电机PWM调速
实验目的
1.掌握脉宽调制(PWM) 的方法。
2.用程序实现脉宽调制,并对直流电机进行调速控制。
实验设备
PC 机一台,单片机最小系统,驱动板、直流电机,连接导线等
实验原理
1.PWM (Pulse Width Modulation) 简称脉宽调制。
即,通过改变输出脉冲
的占空比,实现对直流电机进行调压调速控制。
2.实验线路图:
实验内容:
1. 利用实验室提供的单片机应用系统及直流电机驱动电路板,编制控制程序,实现直流电机PWM调速控制。
实验思考题
本实验中是通过改变脉冲的占空比,周期T 不变的方法来改变电机转速的,还有什么办法能改变电机的转速,应该怎么实现?
附件:
L298简介:
L298N 为SGS-THOMSON Microelectronics 所出产的双全桥步进电机专用驱动芯片( Dual Full-Bridge Driver ) ,内部包含4信道逻辑驱动电路,是一种二相和四相步进电机的专用驱动器,可同时驱动2个二相或1个四相步进电机,内含二个H-Bridge 的高电压、大电流双全桥式驱动器,接收标准TTL逻辑准位信号,可驱动46V、2A以下的步进电机,且可以直接透过电源来调节输出电压;此芯片可直接由单片机的IO端口来提供模拟时序信号。
单片机产生PWM信号控制直流电机调速的源代码

单片机产生PWM信号控制直流电机调速的源代码本例程利用2051的T0产生双路PWM信号,推动L293D或L298N为直流电机调速,程序已通过调试。
接L298N时相应的管脚上最好接上10K的上拉电阻。
有什么不对的地方欢迎大家批评指正!/* =======直流电机的PWM速度控制程序======== *//* 晶振采用11.0592M,产生的PWM的频率约为91Hz */#include<reg51.h>#include<math.h>#define uchar unsigned char#define uint unsigned intsbit en1=P1^0; /* L298的Enable A */sbit en2=P1^1; /* L298的Enable B */sbit s1=P1^2; /* L298的Input 1 */sbit s2=P1^3; /* L298的Input 2 */sbit s3=P1^4; /* L298的Input 3 */sbit s4=P1^5; /* L298的Input 4 */uchar t=0; /* 中断计数器*/uchar m1=0; /* 电机1速度值*/uchar m2=0; /* 电机2速度值*/uchar tmp1,tmp2; /* 电机当前速度值*//* 电机控制函数index-电机号(1,2); speed-电机速度(-100—100) */void motor(uchar index, char speed){if(speed>=-100 && speed<=100){if(index==1) /* 电机1的处理*/{m1=abs(speed); /* 取速度的绝对值*/if(speed<0) /* 速度值为负则反转*/{s1=0;s2=1;}else /* 不为负数则正转*/{s1=1;s2=0;}}if(index==2) /* 电机2的处理*/{m2=abs(speed); /* 电机2的速度控制*/if(speed<0) /* 电机2的方向控制*/{s3=0;s4=1;}else{s3=1;s4=0;}}}}void delay(uint j) /* 简易延时函数*/{for(j;j>0;j--);}void main(){uchar i;TMOD=0x02; /* 设定T0的工作模式为2 */ TH0=0x9B; /* 装入定时器的初值*/TL0=0x9B;EA=1; /* 开中断*/ET0=1; /* 定时器0允许中断*/TR0=1; /* 启动定时器0 */while(1) /* 电机实际控制演示*/{for(i=0;i<=100;i++) /* 正转加速*/{motor(1,i);motor(2,i);delay(5000);}for(i=100;i>0;i--) /* 正转减速*/{motor(1,i);motor(2,i);delay(5000);}for(i=0;i<=100;i++) /* 反转加速*/{motor(1,-i);motor(2,-i);delay(5000);}for(i=100;i>0;i--) /* 反转减速*/{motor(1,-i);motor(2,-i);delay(5000);}}}void timer0() interrupt 1 /* T0中断服务程序*/{if(t==0) /* 1个PWM周期完成后才会接受新数值*/{tmp1=m1;tmp2=m2;}if(t<tmp1) en1=1; else en1=0; /* 产生电机1的PWM信号*/ if(t<tmp2) en2=1; else en2=0; /* 产生电机2的PWM信号*/ t++;if(t>=100) t=0; /* 1个PWM信号由100次中断产生*///4级速度可调:0、1、2、3;对应占空比:0、1/4、2/4、3/4#include<reg52.h>sbit key=P3^6;sbit motor=P2^4;unsigned char key_scan(void);void motor_set(unsigned char v) ;void motor_init(void);unsigned char PWM_H=0,n=0,i=0;void main(){motor_init();while(1){if (key_scan() == 1){motor_set(i%4);}}}//电机转动void motor_run() interrupt 3{if(n<PWM_H) motor=1;else motor=0;n++;if(n>=4) n=0;}//速度控制,4级速度可调:0、1、2、3;对应占空比:0、1/4、2/4、3/4 void motor_set(unsigned char v){if (v>3) v=3;if (v == 0) TR1 = 0;else{TR1 = 1;PWM_H = v;}}//电机初始化void motor_init(void){EA=1;ET1=1;TMOD=TMOD & 0X0F | 0x20;}//扫描按键unsigned char key_scan(void){unsigned char on = 0,i;while(1){if(key==0) //判断是否按下{for(i=0;i<100;i++); //软件延时if(key==0) //再次判断是否按下{on = 1;break; //跳出循环}}}while(key==0);return 1;}}。
基于STM32的直流电机PID调速系统设计

基于STM32的直流电机PID调速系统设计一、引言直流电机调速系统是现代工业自动化系统中最常用的电机调速方式之一、它具有调速范围广、响应快、控制精度高等优点,被广泛应用于电力、机械、石化、轻工等领域。
本文将介绍基于STM32单片机的直流电机PID调速系统的设计。
二、系统设计直流电机PID调速系统主要由STM32单片机、直流电机、编码器、输入和输出接口电路等组成。
系统的设计流程如下:1.采集反馈信号设计中应通过编码器等方式采集到反馈信号,反应电机的转速。
采集到的脉冲信号经过处理后输入给STM32单片机。
2.设计PID算法PID调节器是一种经典的控制算法,由比例(P)、积分(I)和微分(D)三个部分组成,可以根据实际情况调整各个参数的大小。
PID算法的目标是根据反馈信号使电机达到期望的转速。
3.控制电机速度根据PID算法计算出的偏差值,通过调节电机的占空比,实现对电机速度的控制。
当偏差较大时,增大占空比以加速电机;当偏差较小时,减小占空比以减速电机。
4.界面设计与控制设计一个人机交互界面,通过该界面可以设置电机的期望转速以及其他参数。
通过输入接口电路将相应的信号输入给STM32单片机,实现对电机的远程控制。
5.系统保护在电机工作过程中,需要保护电机,防止出现过流、超速等问题。
设计一个保护系统,能够监测电机的工作状态,在出现异常情况时及时停止电机工作,避免损坏。
6.调试与优化对系统进行调试,通过实验和测试优化PID参数,以获得更好的控制效果。
三、系统实现系统实现时,首先需要进行硬件设计,包括STM32单片机的选型与外围电路设计,以及输入输出接口电路的设计。
根据实际情况选择合适的编码器和直流电机。
接着,编写相应的软件代码。
根据系统设计流程中所述,编写STM32单片机的控制程序,包括采集反馈信号、PID算法实现、控制电机速度等。
最后,进行系统调试与优化。
根据系统的实际情况,调试PID参数,通过实验和测试验证系统的性能,并进行优化,以实现较好的控制效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/2/8
目录
一,任务与要求说明 二,硬、软件电路设计说明 三,程序设计和安装调试 四,项目总结
一,任务与要 求
在实际的生活当中我们所运用到很多的直流电机来驱动一些负载,而在 有的时候当我们人为需要直流电动机的转速高或低时,我们可以调节相 应的按键来实现电动机调速,并要显示出当前电动机的实时转数,满足人 们的需求。使得电器达到更加的人性化、智能化、科学化。
能够显示直流电动机实时的转数。 能够使用单片机学习板上的按键调整电动机转数。 设计并焊接出可行的驱动电路与单片机联合应用。 了解调速(PWM)的原理及直流电动机的原理及应用。 了解单片机的编程流程和程序编写。 了解电子线路设计的一些规律性和重要性。
二,硬、软件电路设计
此设计以AT89S51单片机为核心控制单元器件,以 LCD1602液晶显示芯片显示直流电动机的实时转数( 直接插到P0口和P2口),运用两级三极管电路加外围 元器件电路来驱动负载(直流电动机). 利用红外 对管来检测电动机的实时转数,并经过由555集成电 路构成的施密特触发电路(转换电路)将红外对管 检测到的电动机转数信号以高低电平的形势直接输 入单片机的C/T P3.4口进行计数。
RS R/W
操作
2. 读状态
0
3. 写显示数据
4. 读显示数据
0
RS:数据和指令选择控制端,RS=0:命 令/状态;RS=1:数据
1
R/W:读写控制线,R/W=0:写操作;
R/W=1:读操作
E:数据读写操作控制位,E线向LCD
1
模块发送一个脉冲,LCD模块与单片机
之间将进行一次数据交换
0 写命令操作(初 始化、光标定位 等)
工作方式设置 显示状态设置
00001DCB—设整体显示开关D、光标开关C、光标位的字符闪耀B D=1:开显示;C=0:不显示光标;B=0:光标位字符不闪烁 例:00001100B(0CH)打开LCD显示,光标不显示,光标位字符不闪烁
清屏 输入方式设置
返回
清屏命令字01H,将光标设置为第一行第一列
000001 I/D S—设光标移动方向并确定整体显示是否移动 I/D=1:增量方式右移、I/D=0:减量方式左移 S=1:移位、S=0:不移位 例:00000110B(06H)设置光标增量方式右移,显示字符不移动
VSS VDD VO RS R/W E DB0 DB1 DB2 DB3 DB4 DB5 DB6 DB7 A K
DB0~DB7:数据线,可以用8位连接,
A:背光控制正电源
也可以只用高4位连接,这里采用8位
K:背光控制地
单片机与LCD模块之间状态
• 单片机与LCD模块之间 有四种基本操作:
1. 写命令
•
(8)128×8位内部RAM。
•
(9)32条可编程I/O线。
•
(10)两个16位定时器/计数器。
•
(11)中断结构具有5个中断源和2个优先级。
•
(12)可编程全双工串行通道。
• (13)空闲状态维持低功耗和掉电状态保存存储内容。
红外对管测速
• 红外线发射管 • 简介:红外线发射管也称红外线发射二极管,属于二极管类。它是可以将电能直接转
•
(1)与MCS-51微控制器产品系列兼容。
•
(2)片内有4KB可在线重复编程的快闪擦写存储器(Flash Memory
)。
•
(3)存储器可循环写入/擦除1000次。
•
(4)存储数据保存时间为10年。
•
(5)宽工作电压范围:Vcc可为2.7V~6V。
•
(6)全静态工作:可从0Hz至16MHz。
•
(7)程序存储器具有3级加密保护。
1 读状态操作(读 忙标志)
0 写数据操作(要 显示的内容)
1 读数据操作(可 以把显示存储区 中的数据反读出
来)
2020/2/8
初始化操作
LCD初始
001DL N F * *—设置单片机与LCD接口数据位数DL、显示行数N、字型F DL=1:8位、DL=0:4位; N=1:2行、N=0:1行 F=1:5×10、F=0:5×7 例:00111000B(38H)设置数据位数8位,2行显示,5×7点阵字符
FPEROM结合在一个芯片上,为很多嵌入式控制应用提供了非常灵活而又价格 适宜的方案,其性能价格比较高。
EA:访问程序存储控制信号(一般接+5V)
ALE:地址锁存控制信号
PSEN:外部ROM读选通信号(低电平有效)
AT89S51单片机控制单元特点
• 1. 89S51性能及特点
•
89S51的主要性能包括:
写数据操作
光标位置与相应命令字
列
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
行
1 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
2 C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF
直接利用单片机上的按键来控制电动机的转速上升或 下降。
该电路有设计简单,思路明确,价格便宜,牵涉的知识 面广,应用广泛但电路的灵敏度不高、误差大、调速 不稳定、调速范围小等缺点,只适用于要求不高的 场合。
1,硬件设计电路说明
(1)LCD1602液晶显示器。 (2)AT89S51单片机。 (3)红外对管测速。 (4)硬件电路图工作原理。
注:表中命令字以十六进制形式给出,该命令字就是与 LCD显示位置相对应的DDRAM地址。
AT89S51介绍
AT89S51是一种低功耗、高性能的片内含有4KB快闪可编程/擦除只读存储器 (FPEROM-Flash Programmable and Erasable Read Only Memory) 8位 CMOS微控制器,使用高密度、非易失存储技术制造,并且与80C51引脚和 指令系统完全兼容。芯片上的FPEROM允许在线编程或采用通用的非易失存 储编程器对程序存储器重复编程。AT89S51(以下简称 89C51)将具有多种 功能的8位 CPU与
2,软件设计说明
(1)程序流程方框图。 (2)项目程序。 (3)程序调试。
LCD1602液晶显示器
LCD1602的引角图43;5V电源管脚(Vcc) VDD: 地管脚(GND)
Vo: 液晶显示驱动电源(0V~5V
4 5 6 7 8 9 10 11 12 13 14 15 16