遗传算法——耐心看完-你就掌握了遗传算法【精品毕业设计】(完整版)
遗传算法解决TSP问题【精品毕业设计】(完整版)

GA(Fitness,Fitness_threshold,p,r,m)
Fitness:适应度评分函数,为给定假设赋予一个评估分数
Fitness_threshold:指定终止判据的阈值
p:群体中包含的假设数量
r:每一步中通过交叉取代群体成员的比例
m:变异率
初始化群体:P←随机产生的p个假设
在本程序的TSP问题中一共有20个城市,也就是在图模型中有20个顶点,因此一个染色体的长度为20。
3.3适应函数f(i)
对具有n个顶点的图,已知各顶点之间( , )的边长度d( , ),把 到 间的一条通路的路径长度定义为适应函数:
对该最优化问题,就是要寻找解 ,使f( )值最小。
3.4选择操作
选择作为交叉的双亲,是根据前代染色体的适应函数值所确定的,质量好的个体,即从起点到终点路径长度短的个体被选中的概率较大。
(2)交叉(Crossover):对于选中进行繁殖的两个染色体X,Y,以X,Y为双亲作交叉操作,从而产生两个后代X1,Y1.
(3)变异(Mutation):对于选中的群体中的个体(染色体),随机选取某一位进行取反运算,即将该染色体码翻转。
用遗传算法求解的过程是根据待解决问题的参数集进行编码,随机产生一个种群,计算适应函数和选择率,进行选择、交叉、变异操作。如果满足收敛条件,此种群为最好个体,否则,对产生的新一代群体重新进行选择、交叉、变异操作,循环往复直到满足条件。
3.变异:使用均匀的概率从Ps中选择m%的成员.对于选出的每个成员,在它表示中随机选择一个为取反
4.更新:P←Ps
5.评估:对于P中的每个h计算Fitness(h)
从P中返回适应度最高的假设
3.
3.1 TSP问题的图论描述
本科毕业论文-基于遗传算法的测试用例生成方法【精品毕业设计】(完整版)

摘要软件测试是保证软件质量和可靠性重要手段,在这方面发挥着其它方法不可替代的作用。
然而,软件测试是一个复杂的过程,需要耗费巨大的人力、物力和时间,约占整个软件开发成本的40%~50%。
因此,提高软件测试工具的自动化程度对于确保软件开发质量、降低软件开发成本非常重要。
而提高测试用例生成的自动化程度又是提高测试工具乃至整个测试过程自动化程度的关键所在,本文主要针对这一问题进行了研究和设计。
本文在分析软件测试和遗传算法基本概念的基础上,提出软件测试用例的设计是软件测试的难点之一。
论文提出了基于遗传算法的测试用例生成的内含是应用遗传算法来求解一组优化的测试用例,其框架包括了测试环境构造、遗传算法及测试运行环境三部分,论文给出了基于遗传算法的测试用例生成的模型。
最后以三角形分类程序为例应用遗传算法进行测试用例生成的模拟,结果显示,应用遗传算法进行测试用例生成可行。
关键词:软件测试测试用例遗传算法ABSTRACTSoftware test is the important means that guarantee software quality and reliability,and in this respect,it plays the role that other method cannot replace. However software test is a complex process , it needs to consume huge manpower,material resources and time,which takes the 40%~50% of entire software development cost approximately . Therefore,raising the automation level of software test tool is very important for ensure software development quality and reduction software development cost . And then,the most important is raising the automation level of the test case generation for raising the automation level of test tool and even entire test process,so this paper study and design mainly according to this problem.Based on the analysis of basic concepts of software testing and genetic algorithm, this article proposes that software test case design is one of the difficulties of software testing. Paper presents the inherent in software test case designing based on genetic algorithm is using genetic algorithm to solve a set of optimization test cases, and the framework includes three parts which are test environment construction, genetic algorithm and the environment for test . Paper presents the model of software test case generation based on genetic algorithm. Finally, we take the triangle categorizer as an example, simulate software test case generation based on genetic algorithm. The results display that software test case generation basing on genetic algorithm is possible.KEY WORDS: software test , test case , genetic algorithm目录摘要 (1)ABSTRACT (2)目录 (3)第一章绪论 (5)1.1 问题的提出 (5)1.2 国内外研究现状 (6)1.3 论文研究内容 (8)第二章软件测试及遗传算法基本概念 (9)2.1 软件测试基本概念 (9)2.1.1 软件测试的目的 (9)2.1.2 软件测试的原则 (9)2.2 软件测试的难点 (10)2.3 遗传算法 (11)2.3.1 遗传算法的思想及流程 (11)2.3.2 遗传算法的特点 (13)2.4本章小结 (14)第三章基于遗传算法的测试用例生成 (15)3.1基于遗传算法的测试用例生成基本内涵 (15)3.1.1 软件测试用例的基本内涵 (15)3.1.2 基于遗传算法的测试用例生成的基本内涵 (16)3.2 基于遗传算法的测试用例生成框架 (16)3.3 基于遗传算法的测试用例生成算法实现 (18)3.3.1 编码策略 (18)3.3.2 适应度函数及程序插桩 (19)3.3.3 遗传策略 (20)3.3.4 参数控制 (21)3.4 本章小结 (22)第四章实验及结果分析 (23)4.1 待测程序分析 (23)4.1.1 待测程序引入 (23)4.1.2 程序流程分析 (23)4.1.3 路径分析 (24)4.2 程序插桩 (24)4.3 参数设定及程序实现 (25)4.3.1 参数设定 (25)4.3.2 部分程序实现 (26)4.4 结果分析 (28)4.5 本章小结 (30)第五章总结与展望 (31)致谢语 (32)参考文献 (33)第一章绪论1.1 问题的提出在信息化普及的今天,计算机在人们的生活和工作中占据着重要地位,使人们的工作效率提高,也使生活更丰富多彩。
遗传算法解释及代码(一看就懂)【精品毕业设计】(完整版)

遗传算法( GA , Genetic Algorithm ) ,也称进化算法。
遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。
因此在介绍遗传算法前有必要简单的介绍生物进化知识。
一.进化论知识作为遗传算法生物背景的介绍,下面内容了解即可:种群(Population):生物的进化以群体的形式进行,这样的一个群体称为种群。
个体:组成种群的单个生物。
基因 ( Gene ) :一个遗传因子。
染色体 ( Chromosome ):包含一组的基因。
生存竞争,适者生存:对环境适应度高的、牛B的个体参与繁殖的机会比较多,后代就会越来越多。
适应度低的个体参与繁殖的机会比较少,后代就会越来越少。
遗传与变异:新个体会遗传父母双方各一部分的基因,同时有一定的概率发生基因变异。
简单说来就是:繁殖过程,会发生基因交叉( Crossover ) ,基因突变( Mutation ) ,适应度( Fitness )低的个体会被逐步淘汰,而适应度高的个体会越来越多。
那么经过N代的自然选择后,保存下来的个体都是适应度很高的,其中很可能包含史上产生的适应度最高的那个个体。
二.遗传算法思想借鉴生物进化论,遗传算法将要解决的问题模拟成一个生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。
这样进化N代后就很有可能会进化出适应度函数值很高的个体。
举个例子,使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可以编码为一串0-1字符串(0:不取,1:取);首先,随机产生M个0-1字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而且较优的解被选中的概率要比较高。
这样经过G代的进化后就可能会产生出0-1背包问题的一个“近似最优解”。
编码:需要将问题的解编码成字符串的形式才能使用遗传算法。
(完整版)遗传算法简介及代码详解

遗传算法简述及代码详解声明:本文内容整理自网络,认为原作者同意转载,如有冒犯请联系我。
遗传算法基本内容遗传算法为群体优化算法,也就是从多个初始解开始进行优化,每个解称为一个染色体,各染色体之间通过竞争、合作、单独变异,不断进化。
遗传学与遗传算法中的基础术语比较染色体:又可以叫做基因型个体(individuals)群体/种群(population):一定数量的个体组成,及一定数量的染色体组成,群体中个体的数量叫做群体大小。
初始群体:若干染色体的集合,即解的规模,如30,50等,认为是随机选取的数据集合。
适应度(fitness):各个个体对环境的适应程度优化时先要将实际问题转换到遗传空间,就是把实际问题的解用染色体表示,称为编码,反过程为解码/译码,因为优化后要进行评价(此时得到的解是否较之前解优越),所以要返回问题空间,故要进行解码。
SGA采用二进制编码,染色体就是二进制位串,每一位可称为一个基因;如果直接生成二进制初始种群,则不必有编码过程,但要求解码时将染色体解码到问题可行域内。
遗传算法的准备工作:1) 数据转换操作,包括表现型到基因型的转换和基因型到表现型的转换。
前者是把求解空间中的参数转化成遗传空间中的染色体或者个体(encoding),后者是它的逆操作(decoding)2) 确定适应度计算函数,可以将个体值经过该函数转换为该个体的适应度,该适应度的高低要能充分反映该个体对于解得优秀程度。
非常重要的过程。
遗传算法基本过程为:1) 编码,创建初始群体2) 群体中个体适应度计算3) 评估适应度4) 根据适应度选择个体5) 被选择个体进行交叉繁殖6) 在繁殖的过程中引入变异机制7) 繁殖出新的群体,回到第二步实例一:(建议先看实例二)求 []30,0∈x 范围内的()210-=x y 的最小值1) 编码算法选择为"将x 转化为2进制的串",串的长度为5位(串的长度根据解的精度设 定,串长度越长解得精度越高)。
自然计算遗传算法【精品毕业设计】(完整版)

自然计算大作业一.二进制编码在遗传算法中,首先要将数据进行编码,这里采用二进制的方式进行编码。
第一步,我们根据题目的介绍可以得知该函数含有两个变量,以及各自的定义域。
在二进制编码中,我们首先要先计算它的编码长度。
计算公式如下: $${2^{{m_j} - 1}} < ({b_j} - {a_j})*precision \le {2^{{m_j}}} - 1$$其中precision为精度,如小数点后5位,则precision=10^5,mj为编码长度,${x_j} \in [{a_j},{b_j}]$二.二进制解码解码即编码的逆过程:$${x_j} = {a_j} + {\rm{decimal}}(substrin{g_j}) \times \frac{{{b_j} - {a_j}}}{{{2^{{m_j}}} - 1}}$$三.种群初始化编码完成后,开始对种群初始化,为了简便采用随机地方式进行初始化。
初始群体的生成:随机产生N个初始串结构数据,每个串结构数据称为一个个体,N个个体构成了一个群体。
GA以这N个串结构数据作为初始点开始进化。
def rand_init(self):for i in range(self.code_x1_length):self.code_x1 += str(random.randint(0, 1))for i in range(self.code_x2_length):self.code_x2 += str(random.randint(0, 1))四.适应度评估适应度表明个体或解的优劣性。
不同的问题,适应度函数的定义方式也不同。
def decoding(self, code_x1, code_x2):self.x1 = self.bounds[0][0] + int(code_x1, 2) * (self.bounds[0][1] - self.bounds[0][0]) / (2 ** self.code_x1_length - 1)self.x2 = self.bounds[1][0] + int(code_x2, 2) * (self.bounds[1][1] - self.bounds[1][0]) / (2 ** self.code_x2_length - 1)五.选择选择的目的是为了从当前群体中选出优良的个体,使它们有机会作为父代为下一代繁殖子孙。
基于遗传算法的自动排课系统毕业设计【精品毕业设计】(完整版)

随着人工智能的发展,特别是在计算智能领域的拓展,借鉴于生物界进化思想和遗传算法,由于其超强的并行搜索能力,以及在解决优化问题中表现出来的高度鲁棒性,它已经被广泛应用于各个领域。目前,很多研究人员已使用遗传算法来求解排课问题,如文献[20]使用遗传算法优化教室的合理利用,文献[21]的用自适应的遗传算法求解大学课表安排问题,文献[22]的基于遗传算法排课系统的设计与实现等等。这些应用说明,使用遗传算法来解决排课问题,其结果还是令人较为满意的。
1.
回溯算法也叫试探法.它是一种系统地搜索问题的解的方法,可以被认为是一个有过剪枝的DFS(深度优先搜索)过程。它按优先条件向前搜索,以达到目标,但当搜索到某一步时.发现原先的选择并不优或达不到目标。就退回一步重新选择。而满足回溯条件的某个状态点称之为回溯点。具体到计算机智能排课系统中,选优条件即为排课数学模型中的约束条件群(需求集中的元素特征与资源集中的元素特征相互作用形成的数学关系)若不满足约束条件群,该选择即为不优或达不到目标当遍历该步骤的所有可能仍未满足约束条件群.则该状态满足了回溯条件,该状态点即为回溯点。
关键词:遗传算法、自动排课、Java。
Abstract
Along with science technical and community information technical increases continuously,calculator science is gradually mature, its mighty function has behaved deep cognition, and it has entered the human social each realm erupts to flick the more and more important function, bringing our life biggest of convenience.Curriculum arrangement is an important and complicated workinginschool,so solving the problem is of great importance for teaching programming.Investigatedand studied the algorithm existed,determinethatadoptgenetic algorithm.ThroughDesign ImplementationtheAutoCourseArrangementManagementSystemBaseonGeneticAlgorithm,researched theapplicationofgenetic algorithmin theCourseArrangementManagementSystem.
R语言GA遗传算法【精品毕业设计】(完整版)

GA包遗传算法最大化使用遗传算法的适应度函数。
默认求最大值。
用法:ga(type = c("binary", "real-valued", "permutation"), fitness, ..., min, max, nBits, population = gaControl(type)population,<br/>selection=gaControl(type)selection, crossover = gaControl(type)crossover,<br/> mutation=gaControl(type)mutation, popSize = 50, pcrossover = 0.8, pmutation = 0.1, elitism = base::max(1, round(popSize*0.05)), maxiter = 100, run = maxiter, maxfitness = Inf, names = NULL, suggestions = NULL, keepBest = FALSE, parallel = FALSE, monitor = gaMonitor, seed = NULL)参数说明•type: 解得编码类型–binary :二进制编码–real-valued:实数浮点编码–permutation:问题涉及到重新排序的列表,字符串编码。
可求解TSP 问题•fitness:适应度函数•min:解得下界(多元变量为一个向量)•max:解得上界(多元变量为一个向量)•nBits:一个种群用二进制编码的长度是多少(长度越大代表精度越高) •population:初始种群•selection:选择•crossover: 交叉•crossover:变异•popsize:种群大小•pcrossover: 交叉概率(默认0.8)•pmutation:变异概率(默认0.1)•elitism: 代沟(默认情况下,前5%个体将在每个迭代中保留)•maxiter:最大迭代次数(默认100)•maxfitness:适应度函数的上界,GA搜索后中断•keepBest:是否保留每一代的最优解•parallel:是否采用并行运算•monitor:绘图用的,监控遗传算法的运行状况•seed:一个整数值包含随机数发生器的状态。
遗传算法及其应用实例【精品毕业设计】(完整版)

遗传算法及其应用实例遗传算法(Genetic Algorithm)是由美国Michigan大学的Holland 教授(1969)提出,后经由De Jong(1975),Goldberg(1989)等归纳总结所形成的一类模拟进化算法。
遗传算法搜索最优解的方法是模仿生物的进化过程,即通过选择与染色体之间的交叉和变异来完成的。
遗传算法主要使用选择算子、交叉算子与变异算子来模拟生物进化,从而产生一代又一代的种群X (t )。
(1)选择算子:是模拟自然选择的操作,反映“优胜劣汰”原理。
它根据每一个个体的适应度,按照一定规则或方法,从t代种群X (t )中选择出一些优良的个体(或作为母体,或让其遗传到下一代种群X (t 1))。
(2)交叉算子:是模拟有性繁殖的基因重组操作,它将从种群X (t )所选择的每一对母体,以一定的交叉概率交换它们之间的部分基因。
(3)变异算子:是模拟基因突变的遗传操作,它对种群X (t )中的每一个个体,以一定的变异概率改变某一个或某一些基因座上的基因值为其他的等位基因。
交叉算子与变异算子的作用都在于重组染色体基因,以生成新的个体。
遗传算法的运算过程如下:步1(初始化)确定种群规模N,交叉概率P c,变异概率P m和终止进化准则;随机生成N个个体作为初始种群X (0);置t ← 0。
步2(个体评价)计算评估X (t )中各个体的适应度。
步3(种群进化)3.1.选择(母体)从X (t )中运用选择算子选择出M / 2对母体(M ≥ N)。
3.2.交叉对所选择的M / 2对母体,以概率P c执行交叉,形成M 个中间个体。
3.3.变异对M个中间个体分别独立以概率P m执行变异,形成M 个候选个体。
3.4.选择(子代)从上述所形成的M个候选个体中依据适应度选择出N个个体组成新一代种群X (t +1)。
步4(终止检验)如已满足终止准则,则输出X (t +1)中具有最大适应度的个体作为最优解,终止计算,否则置t ← t +1并转步2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
遗传算法入门到掌握读完这个讲义,你将基本掌握遗传算法,要有耐心看完。
想了很久,应该用一个怎么样的例子带领大家走进遗传算法的神奇世界呢?遗传算法的有趣应用很多,诸如寻路问题,8数码问题,囚犯困境,动作控制,找圆心问题(这是一个国外网友的建议:在一个不规则的多边形中,寻找一个包含在该多边形内的最大圆圈的圆心。
),TSP问题(在以后的章节里面将做详细介绍。
),生产调度问题,人工生命模拟等。
直到最后看到一个非常有趣的比喻,觉得由此引出的袋鼠跳问题(暂且这么叫它吧),既有趣直观又直达遗传算法的本质,确实非常适合作为初学者入门的例子。
这一章将告诉读者,我们怎么让袋鼠跳到珠穆朗玛峰上去(如果它没有过早被冻坏的话)。
问题的提出与解决方案让我们先来考虑考虑下面这个问题的解决办法。
已知一元函数:图2-1现在要求在既定的区间内找出函数的最大值。
函数图像如图2-1所示。
极大值、最大值、局部最优解、全局最优解在解决上面提出的问题之前我们有必要先澄清几个以后将常常会碰到的概念:极大值、最大值、局部最优解、全局最优解。
学过高中数学的人都知道极大值在一个小邻域里面左边的函数值递增,右边的函数值递减,在图2.1里面的表现就是一个“山峰”。
当然,在图上有很多个“山峰”,所以这个函数有很多个极大值。
而对于一个函数来说,最大值就是在所有极大值当中,最大的那个。
所以极大值具有局部性,而最大值则具有全局性。
因为遗传算法中每一条染色体,对应着遗传算法的一个解决方案,一般我们用适应性函数(fitness function)来衡量这个解决方案的优劣。
所以从一个基因组到其解的适应度形成一个映射。
所以也可以把遗传算法的过程看作是一个在多元函数里面求最优解的过程。
在这个多维曲面里面也有数不清的“山峰”,而这些最优解所对应的就是局部最优解。
而其中也会有一个“山峰”的海拔最高的,那么这个就是全局最优解。
而遗传算法的任务就是尽量爬到最高峰,而不是陷落在一些小山峰。
(另外,值得注意的是遗传算法不一定要找“最高的山峰”,如果问题的适应度评价越小越好的话,那么全局最优解就是函数的最小值,对应的,遗传算法所要找的就是“最深的谷底”)如果至今你还不太理解的话,那么你先往下看。
本章的示例程序将会非常形象的表现出这个情景。
“袋鼠跳”问题既然我们把函数曲线理解成一个一个山峰和山谷组成的山脉。
那么我们可以设想所得到的每一个解就是一只袋鼠,我们希望它们不断的向着更高处跳去,直到跳到最高的山峰(尽管袋鼠本身不见得愿意那么做)。
所以求最大值的过程就转化成一个“袋鼠跳”的过程。
下面介绍介绍“袋鼠跳”的几种方式。
爬山法、模拟退火和遗传算法解决寻找最大值问题的几种常见的算法:1. 爬山法(最速上升爬山法):从搜索空间中随机产生邻近的点,从中选择对应解最优的个体,替换原来的个体,不断重复上述过程。
因为只对“邻近”的点作比较,所以目光比较“短浅”,常常只能收敛到离开初始位置比较近的局部最优解上面。
对于存在很多局部最优点的问题,通过一个简单的迭代找出全局最优解的机会非常渺茫。
(在爬山法中,袋鼠最有希望到达最靠近它出发点的山顶,但不能保证该山顶是珠穆朗玛峰,或者是一个非常高的山峰。
因为一路上它只顾上坡,没有下坡。
)2. 模拟退火:这个方法来自金属热加工过程的启发。
在金属热加工过程中,当金属的温度超过它的熔点(Melting Point)时,原子就会激烈地随机运动。
与所有的其它的物理系统相类似,原子的这种运动趋向于寻找其能量的极小状态。
在这个能量的变迁过程中,开始时。
温度非常高,使得原子具有很高的能量。
随着温度不断降低,金属逐渐冷却,金属中的原子的能量就越来越小,最后达到所有可能的最低点。
利用模拟退火的时候,让算法从较大的跳跃开始,使到它有足够的“能量”逃离可能“路过”的局部最优解而不至于限制在其中,当它停在全局最优解附近的时候,逐渐的减小跳跃量,以便使其“落脚”到全局最优解上。
(在模拟退火中,袋鼠喝醉了,而且随机地大跳跃了很长时间。
运气好的话,它从一个山峰跳过山谷,到了另外一个更高的山峰上。
但最后,它渐渐清醒了并朝着它所在的峰顶跳去。
)3. 遗传算法:模拟物竞天择的生物进化过程,通过维护一个潜在解的群体执行了多方向的搜索,并支持这些方向上的信息构成和交换。
以面为单位的搜索,比以点为单位的搜索,更能发现全局最优解。
(在遗传算法中,有很多袋鼠,它们降落到喜玛拉雅山脉的任意地方。
这些袋鼠并不知道它们的任务是寻找珠穆朗玛峰。
但每过几年,就在一些海拔高度较低的地方射杀一些袋鼠,并希望存活下来的袋鼠是多产的,在它们所处的地方生儿育女。
)(后来,一个叫天行健的网游给我想了一个更恰切的故事:从前,有一大群袋鼠,它们被莫名其妙的零散地遗弃于喜马拉雅山脉。
于是只好在那里艰苦的生活。
海拔低的地方弥漫着一种无色无味的毒气,海拔越高毒气越稀薄。
可是可怜的袋鼠们对此全然不觉,还是习惯于活蹦乱跳。
于是,不断有袋鼠死于海拔较低的地方,而越是在海拔高的袋鼠越是能活得更久,也越有机会生儿育女。
就这样经过许多年,这些袋鼠们竟然都不自觉地聚拢到了一个个的山峰上,可是在所有的袋鼠中,只有聚拢到珠穆朗玛峰的袋鼠被带回了美丽的澳洲。
)下面主要介绍介绍遗传算法实现的过程。
遗传算法的实现过程遗传算法的实现过程实际上就像自然界的进化过程那样。
首先寻找一种对问题潜在解进行“数字化”编码的方案。
(建立表现型和基因型的映射关系。
)然后用随机数初始化一个种群(那么第一批袋鼠就被随意地分散在山脉上。
),种群里面的个体就是这些数字化的编码。
接下来,通过适当的解码过程之后,(得到袋鼠的位置坐标。
)用适应性函数对每一个基因个体作一次适应度评估。
(袋鼠爬得越高,越是受我们的喜爱,所以适应度相应越高。
)用选择函数按照某种规定择优选择。
(我们要每隔一段时间,在山上射杀一些所在海拔较低的袋鼠,以保证袋鼠总体数目持平。
)让个体基因交叉变异。
(让袋鼠随机地跳一跳)然后产生子代。
(希望存活下来的袋鼠是多产的,并在那里生儿育女。
)遗传算法并不保证你能获得问题的最优解,但是使用遗传算法的最大优点在于你不必去了解和操心如何去“找”最优解。
(你不必去指导袋鼠向那边跳,跳多远。
)而只要简单的“否定”一些表现不好的个体就行了。
(把那些总是爱走下坡路的袋鼠射杀。
)以后你会慢慢理解这句话,这是遗传算法的精粹!题外话:这里想提一提一个非主流的进化论观点:拉马克主义的进化论。
法国学者拉马克(Jean-Baptiste de Lamarck,1744~1891)的进化论观点表述在他的《动物学哲学》(1809)一书中。
该书提出生物自身存在一种是结构更加复杂化的“内驱力”,这种内驱力是与生俱来的,在动物中表现为“动物体新器官的产生来自它不断感觉到的新需要。
”不过具体的生物能否变化,向什么方向变化,则要受环境的影响。
拉马克称其环境机制为“获得性遗传”,这一机制分为两个阶段:一是动物器官的用与不用(即“用进废退”:在环境的作用下,某一器官越用越发达,不使用就会退化,甚至消失。
);二是在环境作用下,动物用与不用导致的后天变异通过繁殖传给后代(即“获得性遗传”)。
德国动物学家魏斯曼(August Weismann,1834~1914)对获得性遗传提出坚决的质疑。
他用老鼠做了一个著名的“去尾实验”,他切去老鼠的尾巴,并使之适应了短尾的生活。
用这样的老鼠进行繁殖,下一代老鼠再切去尾巴,一连切了22代老鼠的尾巴,第23代老鼠仍然长出正常的尾巴。
由此魏斯曼认为后天后天获得性不能遗传。
(择自《怀疑----科学探索的起点》)我举出这个例子,一方面希望初学者能够更加了解正统的进化论思想,能够分辨进化论与伪进化论的区别。
另一方面想让读者知道的是,遗传算法虽然是一种仿生的算法,但我们不需要局限于仿生本身。
大自然是非常智慧的,但不代表某些细节上人不能比她更智慧。
另外,具体地说,大自然要解决的问题,毕竟不是我们要解决的问题,所以解决方法上的偏差是非常正常和在所难免的。
(下一章,读者就会看到一些非仿生而有效的算法改进。
)譬如上面这个“获得性遗传”我们先不管它在自然界存不存在,但是对于遗传算法的本身,有非常大的利用价值。
即变异不一定发生在产生子代的过程中,而且变异方向不一定是随机性的。
变异可以发生在适应性评估的过程当中,而且可以是有方向性的。
(当然,进一步的研究有待进行。
)所以我们总结出遗传算法的一般步骤:开始循环直至找到满意的解。
1.评估每条染色体所对应个体的适应度。
2.遵照适应度越高,选择概率越大的原则,从种群中选择两个个体作为父方和母方。
3.抽取父母双方的染色体,进行交叉,产生子代。
4.对子代的染色体进行变异。
5.重复2,3,4步骤,直到新种群的产生。
结束循环。
接下来,我们将详细地剖析遗传算法过程的每一个细节。
编制袋鼠的染色体----基因的编码方式通过前一章的学习,读者已经了解到人类染色体的编码符号集,由4种碱基的两种配合组成。
共有4种情况,相当于2 bit的信息量。
这是人类基因的编码方式,那么我们使用遗传算法的时候编码又该如何处理呢?受到人类染色体结构的启发,我们可以设想一下,假设目前只有“0”,“1”两种碱基,我们也用一条链条把他们有序的串连在一起,因为每一个单位都能表现出 1 bit的信息量,所以一条足够长的染色体就能为我们勾勒出一个个体的所有特征。
这就是二进制编码法,染色体大致如下:010010011011011110111110上面的编码方式虽然简单直观,但明显地,当个体特征比较复杂的时候,需要大量的编码才能精确地描述,相应的解码过程(类似于生物学中的DNA翻译过程,就是把基因型映射到表现型的过程。
)将过份繁复,为改善遗传算法的计算复杂性、提高运算效率,提出了浮点数编码。
染色体大致如下:1.2 – 3.3 –2.0 – 5.4 – 2.7 – 4.3那么我们如何利用这两种编码方式来为袋鼠的染色体编码呢?因为编码的目的是建立表现型到基因型的映射关系,而表现型一般就被理解为个体的特征。
比如人的基因型是46条染色体所描述的(总长度两米的纸条?),却能解码成一个个眼,耳,口,鼻等特征各不相同的活生生的人。
所以我们要想为“袋鼠”的染色体编码,我们必须先来考虑“袋鼠”的“个体特征”是什么。
也许有的人会说,袋鼠的特征很多,比如性别,身长,体重,也许它喜欢吃什么也能算作其中一个特征。
但具体在解决这个问题的情况下,我们应该进一步思考:无论这只袋鼠是长短,肥瘦,只要它在低海拔就会被射杀,同时也没有规定身长的袋鼠能跳得远一些,身短的袋鼠跳得近一些。
当然它爱吃什么就更不相关了。
我们由始至终都只关心一件事情:袋鼠在哪里。
因为只要我们知道袋鼠在那里,我们就能做两件必须去做的事情:(1)通过查阅喜玛拉雅山脉的地图来得知袋鼠所在的海拔高度(通过自变量求函数值。