低温压力容器设计要点
低温压力容器注意要点

低温压力容器注意要点1.材质的选择:低温压力容器所承受的温度和压力较高,因此选用合适的材质非常重要。
常见的低温容器材质包括碳钢、不锈钢和合金钢。
这些材质具有良好的耐低温性能,能够承受低温下的冷脆和热胀冷缩等问题。
2.设计压力和温度:在设计和制造低温压力容器时,需要充分考虑低温工况下的压力和温度。
通常情况下,低温液体和气体的膨胀系数较大,容器内部会受到较大的热胀冷缩影响,因此在计算容器的设计压力和温度时需要考虑这些因素,并采取相应的安全措施。
3.良好的绝热性能:低温容器需要具备良好的绝热性能,以保证容器内介质的温度能够长时间保持恒定。
对于液态介质,通常会在容器外部设置绝热层,如保温棉或保温板等,以减少热量的传递。
对于气体介质,通常需要采用双壁结构,并使用真空作为绝热层,以降低介质的热传导。
4.密封性能的保证:低温容器的密封性能对于避免介质泄漏至关重要。
由于低温环境会降低材质的弹性模量,容器的密封性能可能受到一定的影响。
因此,需要在设计和制造过程中采取相应的措施,如增加密封垫,采用特殊的密封结构等,以保证容器的良好密封性。
5.排放系统的设计:低温压力容器在运行过程中会产生一定的废气,这些废气需要经过合理的处理和排放。
通常情况下,废气会包含有害物质和大量的水蒸气,如果废气排放不当,可能会对环境产生一定的污染。
因此,在使用低温压力容器时需要设计和配置相应的废气处理系统,以保护环境和提高工作场所的安全性。
总之,低温压力容器在使用过程中需要特别注意材质的选择、设计压力和温度、绝热和密封性能的保证、以及废气排放系统的设计等要点。
只有充分考虑和满足这些要求,才能确保低温容器的安全运行和介质的正常贮存。
低温压力容器设计要点综述及注意事项

低温压力容器设计要点综述及注意事项1.材料选择:低温环境下,材料的韧性和抗裂纹扩展能力变差,因此需要选择具有良好韧性和抗裂纹能力的材料。
常用的低温材料包括低温碳钢、不锈钢和合金钢等。
2.壁厚计算:低温环境下容器的壁厚要比常温情况下的要大,因为材料的强度和刚度在低温下降低。
根据管道和容器设计规范进行壁厚计算,并考虑到温度梯度对壁厚的影响。
3.焊接和焊缝设计:焊接是低温容器制造中重要的连接方式。
在低温条件下,焊接合金的力学性能和韧性降低,容易产生焊接缺陷。
因此,需要采用合适的焊接工艺和焊接材料,并对焊缝进行非破坏性检测和超声波探伤等检测方法。
4.密封设计:低温容器的密封设计要符合严格的要求,以确保容器在低温环境下不发生泄漏。
需要采用适当的密封材料和密封结构,同时对容器进行泄露试验以保证其安全可靠。
5.附件选择:低温容器的附件如阀门、仪表等也需要选择适用于低温环境的材料和设计。
特别是阀门,在低温环境下易发生密封不良和结冰等问题,因此需要选择低温阀门并进行密封性能测试。
6.冻结防止措施:低温容器在长期运行中易受冻结影响,冻结会导致容器变形、扩展和密封失效等问题。
需要采取合适的冻结防止措施,如加热系统和隔热材料等。
7.安全性考虑:低温容器设计必须符合相关的安全规范和标准,如ASME等。
特别需要考虑容器在低温环境下可能发生的脆性断裂、泄漏、压力失控等安全问题,并采取相应的安全措施。
8.考虑工艺需求:低温容器的设计还需要考虑工艺需求,如低温液体的进出口、排放、循环和控制等。
容器的流动性能和控制能力对工艺操作的影响需要充分考虑。
总之,低温压力容器的设计要点和注意事项包括材料选择、壁厚计算、焊接和焊缝设计、密封设计、附件选择、冻结防止措施、安全性考虑和工艺需求等方面。
在设计过程中,需要充分考虑低温环境对容器和其附件的影响,并确保设计符合相关的安全要求。
浅析低温下压力容器设计需注意的问题

浅析低温下压力容器设计需注意的问题浅析低温下压力容器设计需注意的问题【摘要】一般情况下设计温度在-20℃以下的压力容器,由于压力容器存在的缺陷、残余应力、应力集中等因素容易引起较高局部应力造成容器发生塑性变形,引起发生脆性破裂,甚至发生严重的事故。
因此,本文分析了在低温下设计压力容器时在材料、结构等方面应注意的问题,力求压力容器设计的稳定。
【关键词】压力容器制造注意问题低温技术作为工业装置,不仅在气、液体生产、存储及运输中起到很大的作用,更促使了低温压力容器的广泛应用。
然而,此压力容器工作温度通常较低,这将导致容器金属的脆性相应的增加。
当温度低于一定的水平,将会产生脆性破坏,然而,低温压力容器通常不会出现局部性的小塑性变形,而是直接发生脆性破裂,这样出人意外的破坏就是导致事故发生的罪魁祸首。
1 确定设计温度低温压力容器设计中确定设计温度尤为重要,根据《压力容器(GB150.3-2011)》中的规定,再确认设计温度的同时还要顾及介质温度及环境温度等条件,任何方面都要考虑到。
金属韧性受到温度的影响会产生变化,所以在进行确定设计温度的同时应考虑全面。
例如:温度方面要考虑南方北方温度的不同。
北方气温较低,将容器放置在没有取暖设备的厂房中应充分考虑气温的问题。
因此,设计温度高于或低于-20 ℃,对压力容器的设计及制造的要求都有所不同。
2 材料的选择由于低温压力容器的质量主要取决于所采用的材料在低温工况中的机械性能,因此我们必须采用低温下韧性较好的金属材料。
金属材料在低温工况下容易发生脆性断裂,从而产生失效,对此,我们要采取措施来改变金属材料本身的韧性。
比如,在炼制钢材时可以加入镍,镍的加入可以改变位错运动,避免产生较大的应力集中,以此提高钢材的韧性。
另外,我们可以将低温用钢经过正火处理,以此细化晶粒,减少由于终轧温度和冷却速率不同而造成的显微组织不均匀。
根据金属材料的不同使用温度,低温压力容器用钢可分为以下三类:(一)设计温度低于-20℃,高于-40℃时,材料多选用低碳锰钢;(二)设计温度低于-40℃,高于-196℃时,材料可选用中镍钢;(三)设计温度低于-196 摄氏度,高于-273℃时,材料可选用铬镍奥式体高合金钢。
低温压力容器技术要求汇总

低温压力容器技术要求汇总1.材料选择:低温压力容器的材料需要具有良好的低温强度、塑性和韧性。
常见的材料包括低温钢、不锈钢和铝合金等。
在选择材料时需要考虑介质的特性以及运行条件等因素。
2.结构设计:低温压力容器的结构设计需要满足强度和稳定性的要求。
在低温环境下,材料的强度和刚度会减小,因此需要合理设计结构,增强容器的抗弯刚度和稳定性。
3.焊接工艺:低温压力容器的焊接工艺需要选择合适的焊接材料和焊接方法,确保焊接接头的质量和可靠性。
在低温环境下,焊接接头容易产生冷裂纹和焊接残余应力,需要采取相应的预热和后热处理措施。
4.密封性能:低温压力容器的密封性要求非常高,以确保介质不泄漏和外界不进入容器。
需要采用高性能的密封材料和密封结构,并进行严格的密封性能测试。
5.热绝缘和保温:低温压力容器需要采取有效的热绝缘和保温措施,以减少介质热量的传导和散失。
常见的保温材料包括气体绝热材料、真空层和多层隔热结构等。
6.安全防护:低温压力容器需要具备良好的安全性能和可靠的防护措施。
需要设计安全阀、爆破片和泄漏报警装置等安全装置,以防止容器内部压力超过安全范围或发生泄漏事故。
7.检验和监测:低温压力容器需要进行严格的检验和监测,以确保容器的安全运行。
需要进行外观检查、尺寸检验、无损检测和压力测试等各项检验工作,并建立完善的监测系统进行容器的实时监测和故障预警。
8.缺陷评定:低温压力容器的缺陷评定需要参考相关标准和规范,对容器的缺陷进行定性和定量评定,并制定相应的修复方案。
9.记录和档案:低温压力容器需要建立完善的记录和档案,包括容器的设计、制造、检验和维护等各个环节的相关资料,以便于追溯和管理。
总之,低温压力容器技术要求极高,需要在材料选择、结构设计、焊接工艺、密封性能、热绝缘和保温、安全防护、检验和监测、缺陷评定以及记录和档案等方面进行全面考虑和实施,以确保容器在低温环境下的安全运行和可靠性。
低温压力容器的设计分析

低温压力容器的设计分析低温压力容器是指在低于零度的环境中工作的容器,通常用于存储和运输液态气体,液氮、液氧、液氩等均为常见的低温液体。
由于低温环境下物质的特性会发生变化,因此低温压力容器的设计必须考虑到这些因素,以确保容器在安全可靠地工作。
本文将对低温压力容器的设计要点和分析进行探讨。
一、设计要点1.材料选用2.结构设计3.绝热设计由于低温液体的蒸发潜热较高,容器内的温度会迅速下降,导致容器表面结霜。
为了减少热量的散失,提高容器的绝热性能是必要的。
可以采取增加绝热层厚度、使用保温材料等措施来提高容器的绝热性能。
4.安全阀设计低温液体具有较大的蒸气压,一旦容器内压力过高,就会导致容器爆炸。
因此,在设计中必须考虑安全阀的设置,确保在容器内压力超过设定值时能够及时安全地排放压力。
5.排水设计由于低温液体的存在,容器内部会有凝露水和结冰现象。
这些水汽会降低容器的强度和耐腐蚀性,因此必须设计合理的排水系统,定期排除容器内的凝露水和结冰。
6.储罐涂层为了保护容器免受腐蚀和低温影响,可以在容器表面涂上特殊的防腐涂层。
这些涂层能够增强容器的抗腐蚀性能,延长容器的使用寿命。
二、设计分析针对低温压力容器的设计,需要进行结构分析和性能测试,以验证容器的强度和安全性。
1.结构分析在设计初期,需要进行有限元分析等结构分析,评估容器的受力和变形情况。
通过模拟不同工况下的受力情况,确定容器的最大受力位置和最大应力值,以确保容器在工作过程中不会发生结构破坏。
2.强度测试设计完成后,需要进行强度测试,验证容器的最大承载能力是否符合设计要求。
常见的测试方法包括液压试验、氢氦试验、抗冲击测试等。
通过这些测试,可以验证容器的强度和安全性,确保容器在工作中不会发生泄漏或爆炸等情况。
3.低温性能测试设计完成后,还需要进行低温性能测试,评估容器在低温环境下的工作性能。
通过模拟低温环境下的工作情况,测试容器在不同温度下的性能表现,验证容器的低温抗裂性能和绝热性能。
低温压力容器的设计

采用的金属材料
3.5Ni钢 06MnNb钢
5.5Ni钢、9Ni钢 铝合金 36%Ni钢
9Ni钢、铜 铝合金
0Cr18Ni9Ti 20Mn23Al
铝合金、铜 铜、0Cr18Ni9Ti
容器结构 双壁
真空型绝热 真空型绝热 11
第11页,本讲稿共19页
低温钢制压力容器(标准规范)
国内:
1 GB150-1998《钢制压力容器》; 2《压力容器安全技术监察规程》; 3 JB4732《钢制压力容器分析设计标准》。
2022/11//33
图1 15L杜瓦容器
3
第3页,本讲稿共19页
低温压力容器和管道的典型结构⑵
⑴ 液氧、液氮和液氩压力容器
1、仪表箱;2、液氧蒸发器;3、抽真空管;4、盖板
2022/11//33
图2 CF-100000液氧储槽
4
第4页,本讲稿共19页
低温压力容器和管道的典型结构⑶
⑴ 液氧、液氮和液氩压力容器
2022/11//33
图6 100L多屏绝热液氦容器
8
第8页,本讲稿共19页
低温压力容器和管道的典型结构⑺
⑶ 液化天然气储存容器
2022/1//33 图7 东京煤气公司130000 M3地下液化天然气储罐
9
第9页,本讲稿共19页
低温压力容器和管道的典型结构⑻
⑷ 低温液体输送压力管道及设备
2022/1/3
国外:
1 美国ASME锅炉压力容器规范Ⅷ-1、Ⅷ-2; 2 英国BS5500-1997《非直接受火熔焊压力容器规范》; 3 德国AD《压力容器规范》; 4 日本JISB8270-1993《压力容器基础标准》; 5 日本JISB8240-1993《制冷用压力容器结构》; 6 法国CODAP-1995《压力容器构造》。
低温压力容器设计要点

低温压力容器设计要点低温压力容器是指在低温环境下工作的压力容器,通常用于储存和输送液态或气态的低温介质,如液氧、液氮、液氢等。
由于低温介质对材料和容器的设计和性能提出了严格的要求,因此低温压力容器的设计需要考虑以下关键要点:1.材料选择:低温容器的材料选择是非常重要的。
一般情况下,常用的材料有不锈钢、铝合金、铜以及特殊合金如镍基合金。
这些材料应具有良好的低温韧性和耐蚀性,以确保容器在低温下的工作稳定性。
2.结构设计:低温压力容器的结构应具备足够的强度和刚度。
特别是对于液态低温介质的容器,由于介质的自身重力会引起应力,因此容器的顶部和底部应设计为圆弧形来分散应力。
此外,还应考虑容器的热胀冷缩问题,以及在低温下容器材料的收缩和变形。
3.绝热设计:低温压力容器需要具备良好的绝热性能,以减少介质的热量损失和外界热量对容器的影响。
绝热层通常采用多层结构,并使用低导热系数的材料,如碳纤维、泡沫塑料等。
此外,还应在绝热层与内壁之间设置避免冷桥和减少热传导。
4.安全阀和泄压装置:低温压力容器应配置安全阀和泄压装置,以确保在压力超过设计限制时能够快速泄压,避免容器的破裂和爆炸。
这些装置应根据介质和工作条件的不同,选择适当的泄压压力和速度。
5.泄漏和检测:低温容器的泄漏对安全和环保都带来很大的风险。
因此,容器设计应考虑泄漏的预防和检测。
可以采用密封性能好的接口和密封件,并配置泄漏检测装置,如压力传感器和泄漏探测器,及时发现和处理潜在的泄漏问题。
6.工作温度调节:低温容器在不同的工作条件下需要能够进行温度的调节和控制。
可以采用液体循环或蒸汽加热系统来控制容器内介质的温度,避免温度过高或过低导致容器破裂。
7.安全性设计:低温压力容器应满足相关的安全规范和标准,如ASME(美国机械工程师协会)的规定。
容器的强度和可靠性应经过充分的验证和测试,并且需要进行定期的检查和维护,以确保其安全可靠的运行。
总之,低温压力容器的设计涉及材料选择、结构设计、绝热性能、安全阀和泄压装置、泄漏和检测、工作温度调节以及安全性设计等多个方面。
低温压力容器设计要点综述及注意事项

低温压力容器设计要点综述及注意事项摘要:我国低温技术的发展扩大了低温压力容器的使用范围,低温钢制压力容器是指在设计温度-20℃以下工作的压力容器,在我国的冷冻设备、低温工程以及石油化工领域得到广泛应用。
只有深入贯彻低温压力容器运行的特点,掌握运行当中可能存在的风险隐患,落实焊接过程,保证整个焊接流程能够遵照焊接流程进行,全面掌握焊接制造过程需要注意的事项,以此来保证低温压力容器的焊接质量。
本文讨论了低温压力容器设计的要点和注意事项。
另外,低温压力容器的生产成本也被大大降低,这就提高了企业的经济效益。
关键词:低温;压力容器;设计;焊接;措施1导言低温压力容器通常是指使用温度在-20℃以下,-196℃以上的压力容器,一般用来存储液化天然气、液氮、液化乙烯等极易汽化的具有危险性的化学物品。
运输当中,为保证整个运输环节的安全运行,避免运输当中出现泄露的情况,就要从根本上出发,保证低温压力容器的制作质量,尤其针对其中涉及的焊接工艺,有严格进行管控,落实工艺流程,保证焊接质量,促使低温压力容器更好地发挥效用。
2低温压力容器低温压力容器中,最主要的一个使用材料就是铁素体钢材料。
低温压力容器中有一种脆性转变温度,所谓的脆性转变温度就是刚韧性会在材料能够承受最低温度的情况下不断减小。
如果低温压力容器在长期的钢材料冷脆变化下,只要存在一些应力集中或者残余应力,就很有可能导致低温压力容器产生破坏或者变形,因为低温压力容器破坏或者变形而导致的安全事故很多,所以在选择低温压力容器材料时候一定要认真仔细。
3压力容器设计的可靠性要求3.1运行可靠性在压力容器设计中,必须从其运行环境出发,确保容器能够承受高温和高压的影响,提升其对于腐蚀性物质的抵抗能力,在保证容器封闭性能和使用效果的情况下,运用合理的措施和手段,对压力容器中的能量进行处理,尽可能减少对容器的破坏性。
3.2经济实用性在压力容器设计环节,需要在严格保证其安全性的同时,对设计结构进行简化,降低生产成本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
低温压力容器目前我国没有专门的低温压力容器标准,JB4732都不划分低温与常温的温度界限。
★低温管壳式换热器见GB151-1999附录A★低温压力容器见GB150.3-2011附录E(老版150为附录C)●为什么低温压力容器需要关注:温度低,材料的韧性降低,会产生低温脆性破坏,而低温脆性破坏前应力远未到达材料的屈服极限(或许用应力),破坏时没有明显的征兆,所以低温压力容器的设计、选材、制造和检验等各个环节要求都有不同程度的提高。
●低温压力容器的定义设计温度为<-20℃(新标准GB150-2011第3.1.15条定义,老标准为≤-20℃)的碳素钢、低合金钢、双相不锈钢和铁素体不锈钢制容器,以及设计温度低于-196℃的奥氏体不锈钢制容器。
相关两个定义●最低设计金属温度(MDMT)GB150.1-2011第4.3.4d条:在确定最低设计金属温度时,应当充分考虑在运行过程中,大气环境低温条件对容器金属温度的影响。
大气环境低温条件系指历年来月平均最低气温(指当月各天的最低气温值之和除以当月天数)的最低值。
●低温低应力工况GB150.3-2011附录E第E1.4条:低温低应力工况系指壳体或其受压元件的设计温度虽然低于-20℃,但设计应力(在该设计条件下,容器元件实际承受的最大一次总体薄膜和弯曲应力)小于或等于钢材标准常温屈服强度的1/6,且不大于50Mpa时的工况。
(注:一次应力为平衡压力与其他机械载荷所必须的法向应力或且应力)这个定义与老标准有差别,设计应力与环向应力的区别,用设计应力更严谨。
新标准明确了在进行容器的“低温低应力工况”判定时,除了对壳体元件进行一次总体薄膜应力的核定外,还应对承受一次弯曲应力的容器元件进行考查,如平封头、管板、法兰等。
●关于低温低应力工况下,选材按照设计温度加50℃(或者,加40℃)的规定GB150.3-2011附录E第E2.2条:当壳体或受压元件使用在“低温低应力工况”下,可以按设计温度加50℃(对于不要求焊后热处理的设备,加40℃)后的温度值选择材料,但不适用于:a) Q235系列钢材;b) 标准抗拉强度下限值Rm≥540Mpa的钢材;c) 螺栓材料。
新标准规定对于不要求焊后热处理的设备,加40℃,这是与老标准最大的不同。
在同样的设计、选材、制造和检验条件下,对低温容器进行焊后热处理可以大大减少接头范围内的焊接残余应力,从而提高了材料和接头的韧性、降低了容器在低温条件下的脆断倾向。
因此新标准规定对于不要求焊后热处理的设备,只加40℃(所以最好PWHT,即使根据“低温低应力工况”判断容器不是低温容器,则设计者根据容器的具体条件或者工程经验仍然可以按照低温容器的要求进行设计,仅仅材料不是低温钢材而已)。
●设计温度的确定由于-20℃是判断是否低温容器的关键指标,所以设计温度的确定特别重要。
设计温度的确定的原则按照GB150.1-2011第4.3.4条的规定。
对于0℃以下的金属温度,设计温度不得高于元件金属可能达到的最低设计温度。
a)根据传热计算求得的金属温度,是平均值;b)在已经使用的同类容器上测定金属温度;c)根据容器内部介质温度并结合外部条件求得金属温度;如有可靠的保温或保冷措施,则金属温度直接取介质温度。
d)对于露天或无采暖厂房内放置的容器,则要考虑环境气候条件,即MDMT,尤其是储存容器。
●低温容器的选材一般压力容器常用的铁素体钢在温度降低到某一温度时,钢的韧性将急剧下降,而显得很脆,通常称这一温度为脆性转变温度。
压力容器在低于转变温度的条件下使用时,容器中如存在因缺陷、残余应力、应力集中等因素引起的较高局部应力,容器就可能在没有出现明显塑性变形的情况下发生脆性破裂而酿成灾难性事故。
对于低温压力容器首先要选用合适的材料,这些材料在使用温度下应具有良好的韧性。
经细化晶粒处理的低合金钢可用到-30℃到-70℃,调质高强钢可用到-20℃到-50℃,3.5%镍钢可用到-100℃,9%镍钢可用到-196℃。
低于-196℃时可选用奥氏体不锈钢和铝合金等。
GB150.2-2011第3.7.2条规定使用温度不低于-196℃的奥氏体不锈钢,可以免除冲击试验,低于-196℃至-253℃,则由设计文件规定冲击试验要求,标准不做具体规定。
GB150.2-2011第3.5条规定使用温度低于-20℃的低温钢板和锻件应当采用炉外精炼工艺。
GB150.2-2011第4.1.7条规定设计温度<-40℃)增加落锤试验要求,用于检测无塑性转变温度(NDT)。
GB150.2-2011第4.1.8条规定低温钢板(>20mm)的超声检测(逐张)质量等级由Ⅲ级升为Ⅱ级。
GB150.2-2011中表4规定了钢板的使用温度下限,包含低温用钢板。
GB150.2-2011第5.1.1条规定使用温度低于-20℃的碳素钢和低合金钢管其正火交货的状态不允许用终轧温度符合正火温度的热轧来代替。
GB150.2-2011第5.1.2条规定设计温度低于-40℃的钢管用钢应当采用炉外精炼工艺。
GB150.2-2011第6.1.2条规定使用温度低于-20℃的低温钢锻件应当由经炉外精炼的钢锻制而成(NB/T47009)。
GB150.2-2011第6.1.3条规定使用温度低于-20℃且公称厚度大于200mm的低温钢锻件应选用III级或IV级。
GB150.2-2011第6.2.3条规定了高合金锻件的使用温度:a) 铁素体型S11306钢锻件为0℃;b) 奥氏体-铁素体型钢锻件为-20℃;c) 奥氏体型见GB150.2-2011第3.7.2条规定。
GB150.2-2011第7.1.4条规定了使用温度低于-20℃的低合金螺柱的使用限制。
GB150.2-2011第7.2.3条规定了高合金螺柱的使用温度限制。
为了避免在低温压力容器上产生过高的局部应力,在设计容器时应避免有过高的应力集中和附加应力;在制造容器时应严格检验,以防止容器中存在危险的缺陷。
对于因焊接而引起的过大残余应力,应在焊后进行消除焊接残余应力处理。
低温容器的材料标准板材标准板材:GB3531-2008《低温压力容器用低合金钢板》有4个钢号(标准为3个,第一号修改单又增加了15MnNiNbDR)16MnDR:t≤60,-40℃,47J60<t≤120,-30℃,47J15MnNiDR:t≤60,-45℃,60J15MnNiNbDR:10-60,-50℃,60J09MnNiDR:t≤36,-70℃,47J36<t≤120,-70℃,60J板材:GB19189-2011《压力容器用调质高强度钢板》有4个钢号07MnMoVR:10≤t≤60,-20℃,80J12MnNiVR:10≤t≤60,-20℃,80J07MnNiVDR:10≤t≤60,-40℃,80J07MnNiMoDR:10≤t≤50,-50℃,80J板材:GB24511-2009《承压设备用不锈钢钢板和钢带》有17个钢号,其中奥氏体不锈钢11个(-196℃),双相钢3个(-20℃),铁素体不锈钢3个(0℃)。
板材:《低温压力容器用9%Ni钢板》(GB24510-2009)本标准适用于制造液化天然气(LNG)储罐、液化天然气(LNG)船舶等低温压力容器用厚度不大于50mm 的9%Ni钢板。
GB150.2-2011附录A增加了3个低温钢板15MnNiNbDR同GB3531;08Ni3DR,6-100mm,-100℃,47J(该材料没有专项标准)06Ni9DR,6-40mm,-196℃,100J(要求比GB24510-2009严格)另外:JB/T4734《铝制焊接容器》是内容完整(包括设计、选材、制造和检验)的铝制压力容器标准。
包括了压力容器和常压容器。
也包含了全铝和衬铝两种焊制容器。
设计压力≤8MPa,使用温度下限为-269℃。
JB/T4755《铜制压力容器》,标准的重点为材料和制造,由于铜制压力容器的结构形式、强度计算与钢相似,该部分内容均参照GB150。
其焊接工艺评定和产品焊接试板部分均引用有关规定和标准只对铜材的特殊要求作出补充规定。
该标准适用于设计压力≤35MPa,设计温度按铜材及其复合钢板允许的使用温度确定。
通常使用温度不低于-198℃时对铜材及焊接接头没有特殊要求,当使用温度低于-198℃(一般不低于-268℃)时应保证仍具有良好的拉伸断后伸长率。
JB/T4756《镍及镍合金制压力容器镍及镍合金制压力容器》,标准的重点为材料和制造,由于镍及镍合金制压力容器的结构形式、强度计算与钢相似,该部分内容均参照GB150。
其焊接工艺评定和产品焊接试板部分均引用有关规定和标准只对镍材的特殊要求作出补充规定。
该标准适用于设计压力≤35MPa,设计温度按铜材及其复合钢板允许的使用温度确定。
通常使用温度不低于-198℃时对镍及镍合金材料及焊接接头没有特殊要求,当使用温度低于-198℃(一般不低于-268℃)时应保证仍具有良好拉伸断后伸长率。
锻件标准NB/T47009 低温承压设备用低合金钢锻件(代替JB/T4727)有6个钢号:16MnD:t≤100,-45℃,47J100<t≤300,-40℃,47J20MnMoD:t≤300,-40℃,47J300<t≤700,-30℃,47J08MnNiMoVD:t≤300,-40℃,60J10Ni3MoVD:t≤300,-50℃,80J09MnNiD:t≤300,-70℃,60J08Ni3D:t≤300,-100℃,47JNB/T47010承压设备用不锈钢和耐热钢锻件(代替JB/T4728)共有16个钢号钢管标准GB9948-2006 石油裂化用无缝钢管其中10号钢管在外径不小于70mm,壁厚不小于6.5mm时可以用于-20℃,31J(GB150.2-2011第5.1.4条);GB6479 高压化肥设备用无缝钢管其中20号钢管在外径不小于70mm,壁厚不小于6.5mm时可以用于-20℃,31J(GB150.2-2011第5.1.5条);16Mn钢管在壁厚不大于40mm时可以用于-40℃,34J(附加杂质含量控制,P≤0.025,P≤0.012);GB150.2-2011附录A增加了2个低合金钢管09MnD t≤8,-50℃,47J09MnNiD t≤8,-70℃,47JGB150引用的不锈钢钢管标准GB 13296-2007 锅炉、热交换器用不锈钢无缝钢管GBT 14976-2012 流体输送用不锈钢无缝钢管(不得用于换热管)GBT 21833-2008 奥氏体-铁素体型双相不锈钢无缝钢管(用于换热管时,应采用冷拔或冷轧钢管,尺寸精度采用高级精度)GBT 12771-2008 流体输送用不锈钢焊接钢管(不得用于换热管,使用限制见GB150.2第5.2.4条)GBT 24593-2009 锅炉和热交换器用奥氏体不锈钢焊接钢管(使用限制见GB150.2第5.2.5条)GBT 21832-2008 奥氏体-铁素体型双相不锈钢焊接钢管(不得用于换热管,使用限制见GB150.2第5.2.6,7,8条)●对低温容器材料的原则性要求a) 所有受压元件必须经过炉外精炼;b) 符合相关低温材料标准;c) 一些材料不能用,如Q235系列钢材以及标准抗拉强度下限值Rm≥540Mpa的钢材;d) 焊接材料也有要求:应与母材的性能,尤其韧性方面相当。