正弦信号发生器
正弦信号发生器

正弦信号发生器信号发生器是一种不需要外加输入信号,依据自激振荡的原理,产生具有肯定幅度的周期性输出信号的装置。
它广泛应用于测量、自动掌握、通信、广播电视以及金属的熔炼、淬火、焊接等工程技术领域中。
1.自激振荡的产生条件正弦信号发生器是通过放大器引入合适的正反馈而构成的。
产生自激振荡必需满意两个条件:(1)振幅条件反馈电压的幅度要与原输入电压的幅度相等,就是说要有足够的反馈量,表达式为(2)相位条件反馈电压与原输入电压必需同相位,就是说必需满意正反馈的要求。
总之,相位条件保证了起振,振幅条件维持了等幅振荡。
2.RC桥式正弦信号发生器RC桥式正弦信号发生器又称文式电桥(Wienbridge)振荡器,其原理电路如图所示。
这个电路由两部分组成,即放大器和选频网络。
前者为由集成运放和电阻Rf 、Rl 所组成的电压串联负反馈放大器,取其输入电阻高和输出电阻低的特点。
后者由Z1 和Z2 组成,同时构成正反馈连接。
由图可见,Z1、Z2和Rl、Rf 正好形成一个四臂电桥,电桥的对角线顶点接到放大器的两个输入端,桥式振荡器由此而得名。
关于推导运算放大器的各种运算关系的总结:分析运算关系的前提,是运算放大器应工作于线性工作区(从电路结构上应有负反馈存在)。
当认清运放工作于线性工作区之后,通常采纳如下三种方式:(1)对于由多个运算放大器组成的运算放大电路,要擅长化整为零,分割成若干个基本单元运算电路(反相比例、同相比例,求和、差动、积分、微分等)。
再利用这些基本单元运算电路的基本关系式,进行推导运算关系。
(2)对于往往是由一个运算放大器构成的运算电路,但又不和基本单元运算电路的电路结构一样。
只能仿照书中基本单元运算电路的推导过程,利用虚断、虚短、虚地来推导。
(即使用ii=if 或u+=u-把输入量ui 与输出量uo 联系起来,形成一个关系式)。
【例】在右图所示的电路中,试写出通过负载电阻RL 的电流iL 与输入信号ui 之间的关系式。
正弦波发生器的工作过程

正弦波发生器的工作过程正弦波发生器是一种电子设备,主要用于产生正弦波信号。
正弦波是一种周期性的波形,具有恒定的频率和幅度。
在电子工程中,正弦波信号被广泛应用于各种电子设备和系统中,如通信系统、音频设备、测量仪器等。
正弦波发生器的工作原理和过程可以通过以下几个方面进行描述。
一、基本原理正弦波发生器的基本原理是利用振荡电路产生稳定的正弦波信号。
振荡电路是一种能够自我激励并产生振荡的电路,其中包括一个放大元件和反馈网络。
通过适当的设计和调节,振荡电路可以产生稳定的正弦波信号。
二、主要组成部分正弦波发生器通常由以下几个主要组成部分构成:1.放大器:放大器是整个正弦波发生器的核心部分,它负责放大振荡电路中的信号。
常见的放大器包括运放(操作放大器)和晶体管等。
2.反馈网络:反馈网络将一部分输出信号反馈到输入端,起到稳定振荡的作用。
常见的反馈网络包括RC网络(电阻-电容网络)和LC 网络(电感-电容网络)等。
3.频率控制电路:频率控制电路可以调节正弦波的频率。
常见的频率控制电路包括电容器和电感器等。
4.幅度控制电路:幅度控制电路可以调节正弦波的幅度。
常见的幅度控制电路包括电阻、变阻器和放大器增益控制等。
三、工作过程正弦波发生器的工作过程可以分为以下几个步骤:1.初始条件设置:根据需要,设置正弦波的频率和幅度。
通过调节频率控制电路和幅度控制电路,可以实现对正弦波的精确控制。
2.放大器放大:放大器将输入信号进行放大,增加信号的幅度。
放大后的信号经过反馈网络返回到输入端,形成闭环反馈。
3.反馈作用:反馈网络将一部分输出信号反馈到输入端,与输入信号进行叠加。
这种反馈作用会引起振荡电路中的振荡,从而产生正弦波信号。
4.输出正弦波:经过放大和反馈作用后,正弦波信号被输出到外部电路或设备中。
输出信号可以通过电阻、电容等元件进行进一步处理和调节。
四、应用领域正弦波发生器在各个领域都有广泛的应用,其中包括但不限于以下几个方面:1.通信系统:正弦波发生器用于产生调制信号、载波信号和时钟信号等,用于无线通信、有线通信和光纤通信等系统中。
正弦波信号发生器实验报告

正弦波信号发生器实验报告
实验名称:正弦波信号发生器实验
实验目的:了解正弦波的基本属性,掌握正弦波信号的发生方法,对正弦波信号进行基本的测量和分析。
实验器材:函数发生器、示波器、万用表。
实验原理:正弦波(Sine Wave)是最常见的一种周期波形,其特点是正弦曲线的波形,具有完全的周期性和对称性。
在电路和信号处理系统中,正弦波信号非常常见,在很多实际应用中具有重要的作用。
函数发生器是一种能够产生各种各样波形的仪器,包括正弦波、方波、三角波等等。
而在产生正弦波信号的过程中,函数发生器利用一个内部的振荡器电路来产生振荡信号,再将其经过信号调制映射到正弦波的形式。
实验步骤:
1.将函数发生器的输出端口连接到示波器的输入端口,并将函数发生器的频率设定在1kHz左右。
2.打开示波器,选择一个适合的纵向和横向刻度,并将其垂直和水平方向校准至
合适位置,以显示正弦波的波形。
3.选择函数发生器的正弦波输出模式,调整幅度与频率,以获得所需的正弦波信号,可使用万用表对其进行精确测量。
实验结果:经过实验,我们成功产生了一路1kHz左右的正弦波信号,并使用示波器和万用表进行了基本的测量和分析,包括正弦波的频率、幅度、相位等基本特性。
实验结论:通过本次实验,我们深入了解了正弦波的特性及用途,掌握了正弦波信号发生器的基本使用方法,熟悉了正弦波信号的测量和分析方法,并在实践中获得了相应的实验数据。
这些知识和经验对我们今后的学习和工作将有非常重要的作用。
第7章正弦信号发生器

••
AF 1
vo不再增大,自激振荡建立
自激振荡建立过程可用 下面的特性曲线来说明
vo
vi A vo
vo
vf F
F(反馈特性)
vvoo43
vo2 vo1
vi1’ vf1 vf2 vf3 vf4 vi2’ vi3’ vi4’ vi5’
A(放大特性)
vi’(vf)
若F不同时 F太小 F合适
F太大
返回
正弦振荡器——自激振荡产生单一频率的 正弦信号的电路。
2、自激振荡的平衡条件
• 设想:
vi vi
v’i A
vo
vo
vf F
要保证vo不变,则必有:
vf = vi 又:vf = F vO vi = vO /A
11-1振荡条件动画
vf = vi 即
返回
••
AF 1 ——自激振荡的平衡条件
2020/6/20
1
2RC
•
f=f0时,
•
F
•
F
1
max 3
0 • f=f0时, • 即:vf和vo同相
F
2020/6/20
返回
7.2.2 RC文氏桥振荡电路
1 对放大器的要求 2 分立元件RC文氏桥振荡电路 3 集成运放组成的RC文氏桥振荡电路
2020/6/20
返回
1 对放大器的要求
由起振条件知:
幅值条件:A•
7.1.2 自激振荡的建立过程及其起振条件
在电源接通的一瞬间,有很小的电扰
动信号(电冲击信号),由于这种电扰 vi A vo 动的不规则性,它包含着频率范围很宽
vo
的各次谐波。
vf F
若vf>vi’,则vo会越来越大。由于三极管的非线性
可调相位的正弦信号发生器原理

可调相位的正弦信号发生器原理正弦信号在电子领域中有着广泛的应用,可调相位的正弦信号发生器是一种能够产生可调节相位的正弦信号的电路或设备。
它在通信、测量、音频处理等领域中发挥着重要作用。
本文将介绍可调相位的正弦信号发生器的原理和工作方式。
一、可调相位的正弦信号发生器的基本原理可调相位的正弦信号发生器的基本原理是利用相位调制技术,通过改变信号的相位来实现相位的调节。
相位调制是一种将信号的相位进行调整的技术,通过改变信号的相位可以改变信号的波形和频谱特性。
在可调相位的正弦信号发生器中,通常使用电压控制振荡器(VCO)来产生正弦信号,并通过控制电压来调节信号的相位。
二、可调相位的正弦信号发生器的工作方式可调相位的正弦信号发生器的工作方式通常分为两个步骤:产生基准信号和调节相位。
1. 产生基准信号:可调相位的正弦信号发生器通常使用VCO来产生基准信号。
VCO是一种电路或器件,可以根据输入的控制电压来产生相应频率的正弦信号。
当输入的控制电压变化时,VCO的输出频率也会相应改变。
基准信号一般为固定频率的正弦波信号。
2. 调节相位:通过改变VCO的控制电压来调节信号的相位。
控制电压的改变会引起VCO输出信号相位的变化,从而实现对信号相位的调节。
通常使用电压控制电路来控制VCO的控制电压,通过改变电压控制电路的控制电压,可以实现对信号相位的精确调节。
三、可调相位的正弦信号发生器的应用可调相位的正弦信号发生器在许多领域中都有着广泛的应用。
1. 通信领域:可调相位的正弦信号发生器可以用于调制解调器、调频广播、调幅广播等通信设备中。
通过调节信号的相位,可以实现信号的频谱扩展、相位编码和解码等功能。
2. 测量领域:可调相位的正弦信号发生器可以用于频率响应测试、相位测量、相位校准等测量应用中。
通过调节信号的相位,可以实现对被测系统的频率响应和相位特性进行测试和校准。
3. 音频处理领域:可调相位的正弦信号发生器可以用于音频信号的合成、变调、混音等应用中。
基于DSP的正弦信号发生器

基于DSP的正弦信号发生器1.正弦信号在各种科学和工程领域中广泛应用,如通信系统、音频处理、医学诊断等。
因此,制作一个能够生成正弦信号的设备是非常必要的。
传统的方法是使用模拟电路,但这种方法需要用到很多电子元器件,难以控制和调整。
同时,传统的模拟电路还容易受到电磁干扰、温度等环境因素的影响,导致输出的信号失真。
因此,数字信号处理(DSP)技术逐渐成为生成正弦波信号的常见方法,能够实现高精度、低失真的输出。
2. 设计概述本文介绍一种基于DSP的正弦信号发生器的设计。
该设计采用TMS320C5505数字信号处理芯片和信号解调电路,通过软件和硬件设计,实现了一个高精度、低失真的正弦信号发生器。
2.1 硬件设计本设计采用了TMS320C5505数字信号处理器集成电路作为主控芯片。
该芯片具有低功耗、高性能、灵活性和易于开发等优点。
除此之外,还需要电源模块、时钟模块、信号解调模块等。
2.2 软件设计本设计采用了C语言进行程序设计。
使用Code Composer Studio作为开发环境,将程序编译后烧录到芯片中。
代码的主要实现过程为:1.生成一个只包含一周期正弦波形的信号2.将该信号送入DA(Digital to Analog)转换器,使其变为模拟信号3.经过信号解调器后输出到外部接口信号的生成采用的是Taylor级数展开,可以实现高精度的波形生成。
信号解调电路主要是由低通滤波器、防干扰电路和放大电路等模块组成。
3. 实验结果经过实验测试,本设计输出的正弦波信号的频率可以在0~10kHz范围内任意设定。
信号的失真率小于0.1%。
同时,本设计还支持正弦波的相位调节和幅度调节等功能。
通过外部的控制,可以实现信号的精准控制和调节。
4.本文介绍了一种基于DSP的正弦信号发生器的设计,通过使用数字信号处理技术,实现了高精度、低失真的正弦波信号的生成。
该设计具有灵活性和可扩展性,可以为各种科学和工程领域提供高精度的正弦信号源。
正弦信号发生器
应用领域
通信领域
用于调制解调、无线通信等,提供稳定的载波信 号。
音频领域
用于音频设备测试、音响系统调校等,提供纯净 的正弦波信号。
科学实验
用于各种物理、化学、生物实验中,模拟各种波 形信号。
重要性
稳定性高
正弦信号发生器产生的信号稳定度高,频率、幅度等参数可精确 控制。
应用广泛
正弦信号发生器在各个领域都有广泛应用,为科学研究和技术开发 提供重要支持。
问题3
无法正常开机:解决方案 - 检查电源 连接和设备故障,如有需要请联系专 业维修人员。
问题4
输出不稳定:解决方案 - 重新启动设 备,检查连接线是否牢固,如问题持 续存在,可能需要校准设备。
05
正弦信号发生器的未来发展
技术发展趋势
数字化
正弦信号发生器将进一步向数字 化发展,实现更精确的信号控制
正弦信号发生器
• 正弦信号发生器概述 • 正弦信号发生器的种类 • 正弦信号发生器的性能指标 • 正弦信号发生器的使用方法 • 正弦信号发生器的未来发展
01
正弦信号发生器概述
定义与工作原理
定义
正弦信号发生器是一种能够产生 正弦波信号的电子设备。
工作原理
正弦信号发生器通过振荡电路产 生正弦波,并通过调节频率、幅 度等参数,输出所需信号。
数字信号发生器
数字信号发生器采用数字技术来产生正弦波,具 有较高的频率范围和精度。
数字信号发生器通常具有更好的稳定性和可靠性, 能够产生更高质量的信号。
数字信号发生器广泛应用于通信、雷达、电子战 和测试等领域。
合成信号发生器
1
合成信号发生器采用数字合成技术来产生正弦波, 具有非常高的频率范围和精度。
正弦信号发生器实验报告
正弦信号发生器实验报告引言本实验旨在设计并构建一个正弦信号发生器,用于产生具有特定频率和振幅的正弦波信号。
正弦信号在电子工程中具有广泛的应用,如通信系统、音频设备和信号处理等。
本实验将介绍设计思路、所需材料和步骤,以及实验结果和讨论。
设计思路为了设计一个正弦信号发生器,我们需要以下主要组件:1.振荡电路:产生正弦波信号的核心部分。
2.振幅调节电路:用于控制输出信号的振幅。
3.频率调节电路:用于控制输出信号的频率。
我们将使用基本的集成电路和电子元件来实现这些功能。
接下来,我们将逐步说明每个组件的设计和实现。
所需材料在开始实验之前,我们需要准备以下材料和工具:1.集成电路:例如操作放大器(Op-amp)。
2.电容器和电阻器:用于构建振荡电路和调节电路。
3.面包板:用于连接电子元件。
4.电源:为电路提供所需的电能。
5.示波器:用于测量信号的振幅和频率。
实验步骤1.第一步:振荡电路设计和构建–选择一个合适的振荡电路拓扑,如RC振荡电路。
–计算并选择所需的电容器和电阻器数值。
–使用面包板将电容器、电阻器和集成电路连接起来。
2.第二步:振幅调节电路设计和构建–选择一个合适的振幅调节电路拓扑,如非反相放大器。
–根据需要的振幅范围计算并选择所需的电阻器数值。
–使用面包板将电阻器和集成电路连接起来。
3.第三步:频率调节电路设计和构建–选择一个合适的频率调节电路拓扑,如电阻-电容调谐电路。
–根据需要的频率范围计算并选择所需的电容器和电阻器数值。
–使用面包板将电容器、电阻器和集成电路连接起来。
4.第四步:电源和示波器连接–将电源连接到电路以提供所需的电能。
–将示波器连接到电路以测量输出信号的振幅和频率。
5.第五步:实验验证和调试–打开电源,并使用示波器观察输出信号。
–调节振幅和频率调节电路,验证是否可以在所需范围内调节信号的振幅和频率。
实验结果和讨论经过实验验证和调试,我们成功设计和构建了一个正弦信号发生器。
该信号发生器能够在所需的频率范围内产生具有可调节振幅的正弦波信号。
正弦信号发生器原理
正弦信号发生器原理
正弦信号发生器主要由振荡电路、放大电路和输出电路三部分组成。
振荡电路是实现正弦信号的关键部分,通过在电路中引入反馈机制,产生自激振荡。
其中,通常采用的是RC振荡电路或LC振荡电路。
在RC振荡电路中,通过调节电容和电阻的数值,可以调整正弦信号的频率。
而在LC振荡电路中,则通过调节电感和电容的数值来控制频率。
振荡电路输出的信号较小,需要经过放大电路进行放大。
放大电路通常采用集成运算放大器(OP-AMP)作为基础组件,通过调整电阻、电容的数值和配置方式,可以进一步增大振荡电路输出的信号幅度。
最后,正弦信号经过输出电路进行整形,使其具有合适的输出特性。
输出电路中通常包括滤波电路,用来去除掉信号中的高频杂散成分,以及输出阻抗匹配电路,使其能够与外部设备连接。
总结起来,正弦信号发生器通过振荡电路产生基准信号,经过放大电路增大信号幅度,最后经过输出电路整形并输出。
通过调节振荡电路的参数,可以得到不同频率的正弦信号。
信号发生器的分类
信号发生器的分类信号发生器也称信号源,是用来产生振荡信号的一种仪器,为使用者提供需要的稳定、可信的参考信号,并且信号的特征参数完全可控。
所谓可控信号特征,主要是指输出信号的频率、幅度、波形、占空比、调制形式等参数都可以人为地控制设定。
信号发生器的分类1、正弦信号发生器正弦信号主要用于测量电路和系统的频率特性、非线性失真、增益及灵敏度等。
按频率覆盖范围分为低频信号发生器、高频信号发生器和微波信号发生器;按输出电平可调节范围和稳定度分为简易信号发生器(即信号源)、标准信号发生器(输出功率能准确地衰减到-100分贝毫瓦以下)和功率信号发生器(输出功率达数十毫瓦以上);按频率改变的方式分为调谐式信号发生器、扫频式信号发生器、程控式信号发生器和频率合成式信号发生器等。
2、低频信号发生器包括音频(200~20000赫)和视频(1赫~10兆赫)范围的正弦波发生器。
主振级一般用RC式振荡器,也可用差频振荡器。
为便于测试系统的频率特性,要求输出幅频特性平和波形失真小。
3、高频信号发生器频率为100千赫~30兆赫的高频、30~300兆赫的甚高频信号发生器,一般采用LC调谐式振荡器,频率可由调谐电容器的度盘刻度读出,主要用途是测量各种接收机的技术指标,输出信号可用内部或外加的低频正弦信号调幅或调频,使输出载频电压能够衰减到1微伏以下,高频信号发生器的输出信号电平能准确读数,所加的调幅度或频偏也能用电表读出。
此外,仪器还有防止信号泄漏的良好屏蔽。
4、微波信号发生器从分米波直到毫米波波段的信号发生器,信号通常由带分布参数谐振腔的超高频三极管和反射速调管产生,但有逐渐被微波晶体管、场效应管和耿氏二极管等固体器件取代的趋势,仪器一般靠机械调谐腔体来改变频率,每台可覆盖一个倍频程左右,由腔体耦合出的信号功率一般可达10毫瓦以上,简易信号源只要求能加1000赫方波调幅,而标准信号发生器则能将输出基准电平调节到1毫瓦,再从后随衰减器读出信号电平的分贝毫瓦值;还必须有内部或外加矩形脉冲调幅,以便测试雷达等接收机。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
范例分析
• 范例1: • 见“正弦信号发生器设计方案(FPGA).doc”
• 范例2: • 见“正弦信号发生器设计方案(凌阳).doc”
如何尽量减少错误?
• 基于软核Nios的宽谱正弦信号发生器设计 • eepw/article/12319.htm • 正弦信号发生器设计方案 • dzsc/data/html/2019-4-22/82794.html
是调制的反过程,解调也称为检波。
• 频率调制(FM)信号: • 将载波fc利用信号波(fs)加以变形。
• 幅度调制(AM)信号: •
二进制ASK信号: 二进制FSK信号: 二进制PSK信号:
正弦信号发生器方案
电子科技大学系统框图
AD9954---DDS电路
武汉大学 系统框图
AD603
集成电路查询网 datasheet5/ 电子网21ic 单片机网站
谢谢
调制与解调的基本概念
调 制
解调
示意图
使一个信号的幅度受另一个信号
幅度调制 幅度的控制,前者称为载波,一般是一 个等幅正弦波,后者称为调制信号。 幅度调制也称调幅,用AM表示。
频率调制
使一个信号的频率受另一个信号幅度的 控制;频率调制也称调频,用FM表示。
相位调制 使一个信号的相位受另一个信号幅度的 控制。相位调制也称调相,用PM表示。
4路12位D/ A转换芯片
12位DA转换芯片
** 由AD603组成的AGC(自动增益控制)见PDF
文件!
**幅度控制模块有 AD844+AD603+AD844+AD603组成,控制电压 有12位D/A MAX536提供
**功率放大器
幅度调 制(AM 模块)
FM模块
ASK模块
FSK模块
PSK模块