专题19立体几何中平行与垂直(解析版)

合集下载

(完整版)立体几何中平行与垂直证明方法归纳

(完整版)立体几何中平行与垂直证明方法归纳

c c ∥∥b a ba ∥⇒本文档系统总结归纳了立体几何中平行与垂直证明方法,特别适合于高三总复习时对学生构建知识网络、探求解题思路、归纳梳理解题方法。

是一份不可多得的好资料。

一、“平行关系”常见证明方法(一)直线与直线平行的证明1) 利用某些平面图形的特性:如平行四边形的对边互相平行 2) 利用三角形中位线性质3) 利用空间平行线的传递性(即公理4):平行于同一条直线的两条直线互相平行。

4)利用直线与平面平行的性质定理:如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

5) 利用平面与平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行.6) 利用直线与平面垂直的性质定理:垂直于同一个平面的两条直线互相平行。

abαβba a =⋂⊂βαβα∥ba ∥⇒b a b a ////⇒⎪⎭⎪⎬⎫==γβγαβα βα⊥⊥b a ba ∥⇒αab7) 利用平面内直线与直线垂直的性质:在同一个平面内,垂直于同一条直线的两条直线互相平行。

8) 利用定义:在同一个平面内且两条直线没有公共点(二)直线与平面平行的证明1) 利用直线与平面平行的判定定理:平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。

2) 利用平面与平面平行的性质推论:两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。

3) 利用定义:直线在平面外,且直线与平面没有公共点(三)平面与平面平行的证明常见证明方法:1) 利用平面与平面平行的判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

αbaβαaβαα∥⊂a β∥a ⇒ααββ////∩⊂⊂b a P b a b a =αβ//⇒αβbaPb∥a b a αα⊂⊄α∥a ⇒2)利用某些空间几何体的特性:如正方体的上下底面互相平行等3)利用定义:两个平面没有公共点二、“垂直关系”常见证明方法(一)直线与直线垂直的证明1)利用某些平面图形的特性:如直角三角形的两条直角边互相垂直等。

探索立体几何中的平行与垂直关系

探索立体几何中的平行与垂直关系

探索立体几何中的平行与垂直关系在立体几何中,平行与垂直是两种基本的关系。

平行是指两条直线或两个平面在空间中永远不相交,而垂直则是指两条直线或一个直线与一个平面之间的相互垂直关系。

这两种关系在几何学中有着广泛的应用和研究价值。

本文将探索立体几何中的平行与垂直关系,并讨论它们的性质和特点。

1. 平行关系在空间中,两条直线或两个平面如果永远不相交,我们就称它们为平行关系。

平行关系具有以下性质:- 平行关系是相对的:两个物体的平行关系与观察者的视角有关。

对于一个观察者来说,两条直线可能是平行的,而对于另一个观察者来说,这两条直线可能不平行。

- 平行关系保持不变:平行关系在空间中是始终保持不变的,无论两个物体在空间中如何移动、旋转或缩放,它们之间的平行关系都不会发生改变。

- 平行线的性质:如果一条直线与另外两条直线平行,那么这两条直线也是平行的。

此外,如果两条直线分别与第三条直线平行,则这两条直线也是平行的。

- 平行面的性质:如果两个平面相交于一条直线,并且与另外一个平面平行,那么这两个平面也是平行的。

同样,如果两个平面分别与第三个平面平行,则这两个平面也是平行的。

2. 垂直关系垂直关系是指在空间中,两条直线或一个直线与一个平面之间的相互垂直关系。

垂直关系具有以下性质:- 垂直关系是相对的:两个物体的垂直关系也与观察者的视角有关。

对于一个观察者来说,两条直线或一个直线与一个平面可能是垂直的,而对于另一个观察者来说,它们可能不垂直。

- 垂直关系保持不变:垂直关系在空间中是始终保持不变的,无论两个物体如何移动、旋转或缩放,它们之间的垂直关系都不会发生改变。

- 垂直线的性质:如果一条直线与另外两条直线垂直,那么这两条直线也是垂直的。

此外,如果两条直线分别与第三条直线垂直,则这两条直线也是垂直的。

- 垂直面的性质:如果一个平面与另外两个平面相交于一条直线,并且与另外一个平面垂直,那么这两个平面也是垂直的。

同样,如果两个平面分别与第三个平面垂直,则这两个平面也是垂直的。

空间几何的平行与垂直解析几何的基本性质

空间几何的平行与垂直解析几何的基本性质

空间几何的平行与垂直解析几何的基本性质几何学是数学的一个分支,研究空间中的各种形状、大小、相对位置以及与它们相关的性质。

空间几何是其中的一个重要分支,主要研究空间中的点、线、面以及它们之间的关系。

平行与垂直是空间几何中的重要概念,下面将介绍平行和垂直的解析几何的基本性质。

一、平行线的解析几何性质平行线是指在同一个平面上永不相交的两条直线。

在解析几何中,我们可以利用坐标系来描述平行线的性质。

1. 两直线平行的判定条件在平面直角坐标系中,两条直线平行的条件为斜率相等。

假设直线L1的斜率为k1,直线L2的斜率为k2,若k1=k2,则直线L1与直线L2平行。

2. 平行线的性质(1)平行线之间的距离相等:设直线L1和直线L2分别为y=k1x+b1和y=k2x+b2,斜率相等且截距不相等,则直线L1与直线L2平行。

设点P1(x1, y1)和点P2(x2, y2)分别在直线L1和直线L2上,则点P1到直线L2的距离等于点P2到直线L1的距离。

(2)平行线的夹角为0度:两条平行线之间的夹角为0度。

二、垂直线的解析几何性质垂直线是指两条直线相交时互相垂直的性质。

同样,在解析几何中,我们可以利用坐标系来描述垂直线的性质。

1. 两直线垂直的判定条件在平面直角坐标系中,两条直线垂直的条件为斜率的乘积为-1。

假设直线L1的斜率为k1,直线L2的斜率为k2,若k1*k2=-1,则直线L1与直线L2垂直。

2. 垂直线的性质(1)直线与其法线的斜率互为相反数:设直线L的斜率为k1,直线L的法线的斜率为k2,则k1*k2 = -1。

(2)两条垂直线之间的夹角为90度:两条垂直线之间的夹角为90度。

三、平行与垂直的应用平行和垂直的概念在几何学中有广泛的应用。

在建筑、工程、地理学和艺术等领域中,平行和垂直关系的运用非常常见。

以建筑为例,建筑设计师在绘制平面图时需要准确地描述建筑物之间的相对位置。

这时,平行和垂直的概念就派上了用场。

设计师可以利用解析几何的性质来判断各个建筑物之间的平行和垂直关系,从而保证建筑的结构稳定和美观。

立体几何基础平行与垂直的性质与判定

立体几何基础平行与垂直的性质与判定

立体几何基础平行与垂直的性质与判定立体几何基础——平行与垂直的性质与判定立体几何是数学中的一个重要分支,它研究的对象是在三维空间内的图形和物体。

在立体几何中,平行和垂直是两个基本概念,它们在判断和解决几何问题时起着重要的作用。

本文将介绍平行与垂直的性质和判定方法,帮助读者更好地理解立体几何的基础知识。

一、平行的性质与判定平行是指在同一平面内,两条直线永不相交的性质。

在立体几何中,我们常用平行性质来推导和证明定理。

以下是一些与平行相关的性质和判定方法。

1. 平行线性质:(1)平行线上的对应角相等:如果两条平行线被一条横截线所交,那么对应的角都是相等的。

(2)平行线上的内错角互补:如果两条平行线被一条横截线所交,那么内错角互补,即相互补充的角和为180度。

(3)平行线上的同旁内角相等:如果两条平行线被一条横截线所交,那么同旁内角相等,即相邻的内角相等。

2. 判定平行线的方法:(1)两条线段平行的充要条件是斜率相等:如果两条线段的斜率相等,那么它们是平行的。

(2)两个向量平行的充要条件是比值相等:如果两个向量的坐标分量比值相等,那么它们是平行的。

(3)两条直线互相垂直的充要条件是斜率乘积为-1:如果两条直线的斜率乘积为-1,那么它们互相垂直。

二、垂直的性质与判定垂直是指两条直线或线段在交点处互相成直角的性质。

垂直的性质在几何证明中经常被用到,下面是关于垂直的一些性质和判定方法。

1. 垂直线性质:(1)垂直线上的对应角互补:如果两条垂直线被一条横截线所交,那么对应的角互补,即相互补充的角和为90度。

(2)垂直线上的内角相等:如果两条垂直线被一条横截线所交,那么内角相等,即相邻的内角相等。

2. 判定垂直线的方法:(1)两条线段垂直的充要条件是斜率乘积为-1:如果两条线段的斜率乘积为-1,那么它们是垂直的。

(2)两个向量垂直的充要条件是内积为0:如果两个向量的内积为0,那么它们是垂直的。

三、平行和垂直在实际中的应用平行和垂直的性质在日常生活和工程实践中有广泛的应用。

立体几何中的平行与垂直

立体几何中的平行与垂直

立体几何中的平行与垂直1线面平行(1)定义直线与平面无交点.(2)判定定理如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.(3)性质定理一条直线与一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行.2 面面平行(1)定义α∩β=∅⟹α|| β.(2)判定定理如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面互相平行.(3)面面平行的性质(1) a⊂αα||β}⇒a||β (面面平行⇒线面平行)(2)α || βα∩γ=aβ∩ γ=b}⇒ a || b (面面平行⇒线线平行)(3) 夹在两个平行平面间的平行线段相等.3 线面垂直(1)定义若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面.符号表述:若任意a⊂α都有l⊥a,则 l⊥α.(2)判定定理如果一条直线与一个平面内的两条相交直线垂直,那么该直线与此平面垂直.(3)性质定理垂直同一平面的两直线平行4 面面垂直(1) 定义若二面角α−l−β的平面角为90∘,则 α⊥β;(2) 判定定理如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.(3) 性质定理两个平面垂直,如果一个平面内有一直线垂直于这两个平面的交线,那么这条直线与另一个平面垂直.【例1】如图,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是()A.CC1与B1E是异面直线 B.AC⊥平面ABB1A1C.AE,B1C1为异面直线,且AE⊥B1C1 D.A1C1∥平面AB1E练习.1.如图是一几何体的平面展开图,其中四边形ABCD为正方形,△PDC,△PBC,△PAB,△PDA为全等的等边三角形,E、F分别为PA、PD的中点,在此几何体中,下列结论中错误的为()A.直线BE与直线CF共面 B.直线BE与直线AF是异面直线C.平面BCE⊥平面PAD D.面PAD与面PBC的交线与BC平行【例2】如图1,在△ABC中,∠ABC=90°,D为AC中点,AE⊥BD于E,延长AE交BC于F.将△ABD沿BD折起,得到三棱锥A1﹣BCD,如图2所示.(Ⅰ)若M是A1C的中点,求证:DM∥平面A1EF;(Ⅱ)若平面A1BD⊥平面BCD,试判断直线A1B与直线CD能否垂直?并说明理由.练习 2.如图,四边形ABCD为矩形,AD⊥平面ABE,F为CE上的点,且BF⊥平面ACE (Ⅰ)求证:AE⊥BE(Ⅱ)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.【例3】.如图,已知菱形AECD的对角线AC,DE交于点F,点E为的AB中点.将三角形ADE 沿线段DE折起到PDE的位置,如图2所示.(Ⅰ)求证:DE⊥平面PCF;(Ⅱ)证明:平面PBC⊥平面PCF;(Ⅲ)在线段PD,BC上是否分别存在点M,N,使得平面CFM∥平面PEN?若存在,请指出点M,N的位置,并证明;若不存在,请说明理由.练习3 .如图,直角三角形ABC中,A=60°,沿斜边AC上的高BD,将△ABD折起到△PBD的位置,点E在线段CD上.(1)求证:PE⊥BD;(2)过点D作DM⊥BC交BC于点M,点N为PB中点,若PE∥平面DMN,的值.求DEDC立体几何中的平行与垂直1线面平行(1)定义直线与平面无交点.(2)判定定理如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.(3)性质定理一条直线与一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行.2 面面平行(1)定义α∩β=∅⟹α|| β.(2)判定定理如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面互相平行.(3)面面平行的性质(1) a⊂αα||β}⇒a||β (面面平行⇒线面平行)(2)α || βα∩γ=aβ∩ γ=b}⇒ a || b (面面平行⇒线线平行)(3) 夹在两个平行平面间的平行线段相等.3 线面垂直(1)定义若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面.符号表述:若任意a⊂α都有l⊥a,则 l⊥α.(2)判定定理如果一条直线与一个平面内的两条相交直线垂直,那么该直线与此平面垂直.(3)性质定理垂直同一平面的两直线平行4 面面垂直(1) 定义若二面角α−l−β的平面角为90∘,则 α⊥β;(2) 判定定理如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.(3) 性质定理两个平面垂直,如果一个平面内有一直线垂直于这两个平面的交线,那么这条直线与另一个平面垂直.【例1】如图,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是()A.CC1与B1E是异面直线 B.AC⊥平面ABB1A1C.AE,B1C1为异面直线,且AE⊥B1C1 D.A1C1∥平面AB1E解析 A不正确,因为CC1与B1E在同一个侧面中,故不是异面直线;B不正确,由题意知,上底面ABC是一个正三角形,故不可能存在AC⊥平面ABB1A1;C正确,因为AE,B1C1为在两个平行平面中且不平行的两条直线,故它们是异面直线;D不正确,因为A1C1所在的平面与平面AB1E相交,且A1C1与交线有公共点,故A1C1∥平面AB1E 不正确;故选:C.练习.1.如图是一几何体的平面展开图,其中四边形ABCD为正方形,△PDC,△PBC,△PAB,△PDA为全等的等边三角形,E、F分别为PA、PD的中点,在此几何体中,下列结论中错误的为()A.直线BE与直线CF共面 B.直线BE与直线AF是异面直线C.平面BCE⊥平面PAD D.面PAD与面PBC的交线与BC平行答案 C解析画出几何体的图形,如图,由题意可知,A,直线BE与直线CF共面,正确,因为E,F是PA与PD的中点,可知EF∥AD,所以EF∥BC,直线BE与直线CF是共面直线;B,直线BE与直线AF异面;满足异面直线的定义,正确.C,因为△PAB是等腰三角形,BE与PA的关系不能确定,所以平面BCE⊥平面PAD,不正确.D,∵AD∥BC,∴AD∥平面PBC,∴面PAD与面PBC的交线与BC平行,正确.故选:C.【例2】如图1,在△ABC中,∠ABC=90°,D为AC中点,AE⊥BD于E,延长AE交BC于F.将△ABD沿BD折起,得到三棱锥A1﹣BCD,如图2所示.(Ⅰ)若M是A1C的中点,求证:DM∥平面A1EF;(Ⅱ)若平面A1BD⊥平面BCD,试判断直线A1B与直线CD能否垂直?并说明理由.证明:(Ⅰ)取FC中点N.在图1中,由D,N分别为AC,FC中点,所以DN∥EF.在图2中,由M,N分别为A1C,FC中点,所以MN∥A1F,所以平面DMN∥平面A1EF,(5分)所以DM∥平面A1EF.解:(Ⅱ)直线A1B与直线CD不可能垂直.因为平面A1BD⊥平面BCD,EF⊂平面BCD,EF⊥BD,所以EF⊥平面A1BD,(8分)所以A1B⊥EF.假设有A1B⊥CD,注意到CD与EF是平面BCD内的两条相交直线,则有A1B⊥平面BCD.(1)(10分)又因为平面A1BD⊥平面BCD,A1E⊂平面A1BD,A1E⊥BD,所以A1E⊥平面BCD.(2)而(1),(2)同时成立,这显然与“过一点和已知平面垂直的直线只有一条”相矛盾,所以直线A1B与直线CD不可能垂直.练习 2.如图,四边形ABCD为矩形,AD⊥平面ABE,F为CE上的点,且BF⊥平面ACE (Ⅰ)求证:AE⊥BE(Ⅱ)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.证明:(Ⅰ)∵AD⊥平面ABE,AD∥BC,∴BC⊥平面ABE,∵AE⊂平面ABE,∴AE⊥BC,又∵BF⊥平面ACE,AE⊂平面ACE,∴AE⊥BF,∵BC∩BF=B,∴AE⊥平面BCE,又BE⊂平面BCE,∴AE⊥BE.(6分)解:(Ⅱ)在三角形ABE中过M点作MG∥AE交BE于G点,CE,在三角形BEC中过G点作GN∥BC交EC于N点,连MN,则由比例关系得CN=13∵MG∥AE MG⊄平面ADE,AE⊂平面ADE,∴MG∥平面ADE,同理,GN∥平面ADE,∴平面MGN∥平面ADE,又MN⊂平面MGN,∴MN∥平面ADE,∴N点为线段CE上靠近C点的一个三等分点.(12分)【例3】.如图,已知菱形AECD的对角线AC,DE交于点F,点E为的AB中点.将三角形ADE 沿线段DE折起到PDE的位置,如图2所示.(Ⅰ)求证:DE ⊥平面PCF ;(Ⅱ)证明:平面PBC ⊥平面PCF ;(Ⅲ)在线段PD ,BC 上是否分别存在点M ,N ,使得平面CFM ∥平面PEN ?若存在,请指出点M ,N 的位置,并证明;若不存在,请说明理由.【解答】证明:(Ⅰ)折叠前,因为四边形AECD 为菱形,所以AC ⊥DE ;所以折叠后,DE ⊥PF ,DE ⊥CF ,又PF∩CF=F,PF ,CF ⊂平面PCF ,所以DE ⊥平面PCF(Ⅱ)因为四边形AECD 为菱形,所以DC ∥AE ,DC=AE .又点E 为AB 的中点,所以DC ∥EB ,DC=EB .所以四边形DEBC 为平行四边形.所以CB ∥DE .又由(Ⅰ)得,DE ⊥平面PCF ,所以CB ⊥平面PCF .因为CB ⊂平面PBC ,所以平面PBC ⊥平面PCF .解:(Ⅲ)存在满足条件的点M ,N ,且M ,N 分别是PD 和BC 的中点.如图,分别取PD 和BC 的中点M ,N .连接EN ,PN ,MF ,CM .因为四边形DEBC 为平行四边形,所以EF ∥CN ,EF =12BC =CN .所以四边形ENCF 为平行四边形.所以FC ∥EN .在△PDE 中,M ,F 分别为PD ,DE 中点,所以MF ∥PE .又EN ,PE ⊂平面PEN ,PE∩EN=E,MF ,CF ⊂平面CFM ,所以平面CFM ∥平面PEN .练习3 .如图,直角三角形ABC 中,A=60°,沿斜边AC 上的高BD ,将△ABD 折起到△PBD 的位置,点E 在线段CD 上.(1)求证:PE ⊥BD ;(2)过点D 作DM ⊥BC 交BC 于点M ,点N 为PB 中点,若PE ∥平面DMN ,求DE DC 的值.解析 (1)∵BD 是AC 边上的高,∴BD ⊥CD ,BD ⊥PD ,又PD∩CD=D,∴BD ⊥平面PCD ,又PE ⊂平面PCD 中,∴BD ⊥PE ,即PE ⊥BD ;(2)如图所示,连接BE ,交DM 与点F ,∵PE ∥平面DMN ,∴PE ∥NF ,又点N 为PB 中点,∴点F 为BE 的中点;∴DF=12BE=EF ;又∠BCD=90°﹣60°=30°,∴△DEF 是等边三角形,设DE=a ,则BD=√3a ,DC=√3BD=3a ;∴DE DC =a 3a =13.。

立体几何中的平行与垂直关系

立体几何中的平行与垂直关系

立体几何中的平行与垂直关系在立体几何中,平行和垂直关系是非常基本且重要的概念。

通过理解和应用这些关系,我们可以更好地解决与立体图形相关的问题。

本文将介绍平行和垂直关系的定义和性质,并通过实例进行说明,以帮助读者更好地理解和运用这些概念。

一、平行关系在立体几何中,当两个线、面或者空间图形之间的相对位置满足特定条件时,我们可以说它们是平行的。

具体而言,以下是平行关系的定义和性质:1. 定义:如果两条直线在同一平面内,且在平面内没有交点,那么这两条直线被称为平行线。

用简单的符号表示为"//"。

2. 性质:平行线具有以下重要性质:a) 平行线之间的距离始终相等。

也就是说,如果有一条直线与一组平行线相交,那么从这条直线到任意一条平行线的距离都相等。

b) 平行线夹角与其对应的第三条平行线夹角相等。

也就是说,如果有两组平行线相交,那么相交的两对对应线之间的夹角相等。

二、垂直关系垂直关系是平行关系的一种特殊情况。

当两条直线、面或者空间图形之间的相对位置形成直角时,我们可以说它们是垂直的。

具体而言,以下是垂直关系的定义和性质:1. 定义:如果两条直线或者平面相交时,相交的两条直线或者平面的交角为90°,那么它们被称为垂直的。

2. 性质:垂直关系具有以下重要性质:a) 垂直线之间的夹角是直角,即为90°。

b) 垂直平面之间的夹角也是直角。

通过理解和应用平行和垂直关系,我们可以在解决立体几何问题时更加便捷和准确。

以下是一些实例,用以说明如何运用平行和垂直关系:实例1:矩形的性质考虑一个矩形ABCD,其中AB平行于CD,AD平行于BC。

根据平行关系的性质,我们可以得出以下结论:a) AB和CD之间的距离相等。

b) AD和BC之间的距离相等。

c) AB和CD之间的夹角以及AD和BC之间的夹角都是直角。

d) 矩形的对角线AC和BD相交于O,而OA和OC以及OB和OD之间的夹角也都是直角。

推导立体几何中的平行与垂直关系

推导立体几何中的平行与垂直关系

推导立体几何中的平行与垂直关系在立体几何中,平行和垂直关系是两个重要的几何概念。

本文将通过推导的方式来探讨平行和垂直之间的关系,从而更深入地理解它们在空间中的性质和应用。

1. 平行线的推导在立体几何中,平行线是指在同一个平面内永不相交的两条直线。

我们可以通过以下的推导过程来证明平行线之间的关系。

(省略推导过程,只列出结论)结论1:如果两条直线分别与一条第三条直线相交,并且这两个交点的两组内角互补或对顶角相等,那么这两条直线是平行的。

结论2:如果两条直线被一组平行线截断,并且这两组截断线的对应角互等,那么这两条直线是平行的。

结论3:如果两条直线被同一平面平行于第三条直线截断,并且截断线上的对应角互等,那么这两条直线是平行的。

2. 垂直关系的推导垂直关系是指两条线段、两个平面或两个立体体素之间的相互垂直性。

下面是垂直关系的推导过程。

结论4:如果两条线段的斜率相乘为-1,则它们是垂直的。

结论5:如果两个平面的法向量垂直,则这两个平面是垂直的。

结论6:如果两个立体体素的对应面之间的相交线段互相垂直,则这两个立体体素是垂直的。

通过上述的推导过程,我们可以明确平行线和垂直关系在立体几何中的性质和判定条件。

这些性质和条件在实际问题中有着广泛的应用,例如在建筑设计、空间规划和工程测量等领域。

总结起来,平行和垂直关系是立体几何中的重要概念。

通过推导我们可以得出平行线的判定条件和垂直关系的性质,从而更好地理解它们在空间中的应用。

对于解决实际问题和深入学习几何学来说,这些知识将会帮助我们更好地理解和应用平行和垂直的性质。

在实践中,我们可以通过几何题目的解答来进一步巩固对平行和垂直关系的理解。

通过本文的学习,相信读者对于立体几何中的平行和垂直关系有了更深入的认识。

在以后的学习和工作中,我们可以灵活运用这些概念和推导方法,更好地解决与立体几何相关的问题。

立体几何作为数学的一个重要分支,在应用中有着广泛的价值和意义。

因此,深入理解并掌握平行和垂直关系是我们学习立体几何的关键。

初二立体几何的平行与垂直关系

初二立体几何的平行与垂直关系

初二立体几何的平行与垂直关系立体几何是数学中的一个重要分支,它研究的是三维空间中的几何形状和其性质。

在立体几何中,平行与垂直关系是一个基础概念,对于我们理解立体图形的性质和应用具有重要意义。

本文将详细介绍初二阶段立体几何中的平行与垂直关系,帮助读者更好地理解和掌握相关知识。

一、平行关系1. 平行的定义在平面几何中,我们知道两条直线如果永不相交,那么它们是平行的。

类似地,在立体几何中,两个平面如果永不相交,那么它们也是平行的。

两个平行的平面可以近似地理解为平行于地面的两个水平板,它们之间的距离始终保持不变。

2. 平行关系的表示方法在数学中,平行关系可以用符号“||”表示。

例如,平面ABCD || 平面EFGH表示平面ABCD与平面EFGH是平行的。

3. 平行关系的性质平行关系具有以下性质:(1)平行关系具有传递性。

即如果平面A || 平面B,平面B || 平面C,则可得出平面A || 平面C。

(2)两个平行面之间的任意两条相交直线都是平行的。

这个性质在立体几何的证明中常常被使用。

二、垂直关系1. 垂直的定义在平面几何中,如果两条直线相交且交角为90度,那么我们称这两条直线为垂直线。

类似地,在立体几何中,两个平面如果相交且交线与两平面的交角都为90度,那么我们称这两个平面为垂直平面。

2. 垂直关系的表示方法在数学中,垂直关系可以用符号“⊥”表示。

例如,线段AB ⊥线段CD表示线段AB与线段CD是垂直的。

3. 垂直关系的性质垂直关系具有以下性质:(1)垂直关系具有对称性。

即如果线段AB ⊥线段CD,则可得到线段CD ⊥线段AB。

(2)在平行平面中,与同一条直线垂直的两条直线是平行的。

三、平行和垂直关系的应用平行和垂直关系在生活中和其他学科中有广泛的应用。

1. 建筑设计中,平行和垂直关系是设计师在设计房间平面图时必须要考虑的因素。

合理利用平行和垂直线,可以使房间具备更好的功能性和美观性。

2. 制图学中,平行和垂直线的运用对于绘制准确的图形至关重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题19立体几何中平行与垂直(解析版)在立体几何中,点、线、面之间的位置关系,特别是线面、面面的平行和垂直关系,是高中立体几何的理论基础,是高考命题的热点与重点之一,一般考查形式为小题(位置关系基本定理判定)或解答题(平行、垂直位置关系的证明),难度不大。

立体几何中平行与垂直的易错点易错点1:线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为"一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行"而导致证明过程跨步太大。

易错点2:有关线面平行的证明问题中,对定理的理解不够准确,往往忽视",//,"a a b b αα⊄⊂三个条件中的某一个。

易错点3:线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为"一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行"而导致证明过程跨步太大;题组一:基本性质定理1.(2019全国Ⅲ理8)如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD⊥平面ABCD ,M 是线段ED 的中点,则( )A .BM =EN ,且直线BM 、EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM 、EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线【解析】 如图所示,联结,.因为点为正方形的中心,为正三角形,平面平面,是线段的中点,所以平面,平面,因为是中边上的中线,是中边上的中线,直线,是相交直线,设,则,BE BD N ABCD ECD △ECD ⊥ABCD M ED BM ⊂BDE EN ⊂BDE BM BDE △DE EN BDE △BD BM EN DE a =2BD a =, 所以,, 所以.故选B . 2.(2019全国Ⅱ理7)设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【解析】 对于A ,内有无数条直线与平行,则与相交或,排除; 对于B ,内有两条相交直线与平行,则;对于C ,,平行于同一条直线,则与相交或,排除;对于D ,,垂直于同一平面,则与相交或,排除.故选B .3.(2013新课标Ⅱ)已知为异面直线,⊥平面,⊥平面.直线满足,,则( )A .∥且∥B .⊥且⊥C .与相交,且交线垂直于D .与相交,且交线平行于【解析】 作正方形模型,为后平面,为左侧面可知D 正确.4.(2016年全国II )α,β是两个平面,m ,n 是两条线,有下列四个命题:①如果m n ⊥,m α⊥,n β∥,那么αβ⊥.②如果m α⊥,n α∥,那么m n ⊥.③如果a β∥,m α⊂,那么m β∥.④如果m n ∥,αβ∥,那么m 与α所成的角和n 与β所成的角相等.BE ==2BM a=EN a ==BM EN ≠αβαββα∥αββα∥αβαββα∥αβαββα∥,m n m αn βl ,l m l n ⊥⊥,l l αβ⊄⊄αβl ααβl βαβl αβl αβ其中正确的命题有 .(填写所有正确命题的编号)【解析】 ②③④【解析】对于命题①,可运用长方体举反例证明其错误:如图,不妨设AA '为直线m ,CD 为直线n ,ABCD 所在的平面为α.ABC D ''所在的平面为β,显然这些直线和平面满足题目条件,但αβ⊥不成立.命题②正确,证明如下:设过直线n 的某平面与平面α相交于直线l ,则l n ∥, 由m α⊥,有m l ⊥,从知m n ⊥结论正确.由平面与平面平行的定义知命题③正确.由平行的传递性及线面角的定义知命题④正确.题组二:线面平行6.(2017新课标Ⅱ)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面三角形ABCD ,12AB BC AD ==,90BAD ABC ∠=∠=,E 是PD 的中点. (1) 证明:直线CE ∥平面PAB ;【解析】(1)取PA 的中点F ,连结EF ,BF .因为E 是PD 的中点,所以EF AD ∥,12EF AD =.由90BAD ABC ∠=∠=得BC AD ∥,又12BC AD =,所以EF BC ∥,四边形BCEF 是平行四边形,CE BF ∥,又BF ⊂平面PAB ,CE ⊄平面PAB ,故CE ∥平面PAB . 7.(2014新课标2)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(Ⅰ)证明:PB ∥平面AEC ;EM D C B AP【解析】(Ⅰ)连接BD 交AC 于点O ,连结EO .因为ABCD 为矩形,所以O 为BD 的中点.又E 为PD 的中点,所以EO ∥PB .EO ⊂平面AEC ,PB ⊄平面AEC ,所以PB ∥平面AEC .8.(2013新课标Ⅱ)如图,直三棱柱中,分别是的中点,(Ⅰ)证明://平面;【解析】(Ⅰ)连结,交于点O ,连结DO ,则O 为的中点,因为D 为AB 的中点,所以OD ∥,又因为OD 平面,平面,所以 //平面;9.(2014新课标Ⅱ)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(Ⅰ)证明:PB ∥平面AEC ;【解析】(Ⅰ)连接BD 交AC 于点O ,连结EO .因为ABCD 为矩形,所以O 为BD 的中点.又E 为PD 的中点,所以EO ∥PB .EO ⊂平面AEC,PB ⊄平面AEC ,所以PB ∥平面AEC .10.(2016全国III )如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,AD BC ,=3AB AD AC ==,4PA BC ==,M 为线段AD 上一点,2AM MD =,111ABC A B C -,D E 1,ABBB 12AA AC CB AB ===1BC 1A CDA 11AC 1A C 1AC 1BC⊂1A CD 1BC ⊄1A CD 1BC 1A CDN 为PC 的中点.(Ⅰ)证明MN 平面PAB ;【解析】(Ⅰ)由已知得232==AD AM ,取BP 的中点T ,连接TN AT ,. 由N 为PC 中点知BC TN //,221==BC TN . 又BC AD //,故TN 平行且等于AM ,四边形AMNT 为平行四边形,于是AT MN //. 因为⊂AT 平面PAB ,⊄MN 平面PAB ,所以//MN 平面PAB .11.(2019全国Ⅰ理18)如图,直四棱柱ABCD–A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;【解析】 (1)连结B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =B 1C .又因为N 为A 1D 的中点,所以ND =A 1D .由题设知A 1B 1DC ,可得B 1C A 1D ,故ME ND , 因此四边形MNDE 为平行四边形,MN ∥ED .又MN 平面EDC 1,所以MN ∥平面C 1DE .PAB DC NM 1212===⊄题组三线线垂直12.(2013新课标Ⅰ)如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,1BAA ∠=60°.(Ⅰ)证明1AB A C ⊥;【解析】(Ⅰ)取AB 中点E ,连结CE ,,,∵AB =,=,∴是正三角形,∴⊥AB , ∵CA =CB , ∴CE ⊥AB ,∵=E ,∴AB ⊥面, ∴AB ⊥;13.(2012新课标)如图,直三棱柱111C B A ABC -中,112AC BC AA ==,D 是棱1AA 的中点,BD DC ⊥1.(Ⅰ)证明:BC DC ⊥1;【解析】(Ⅰ)在Rt DAC ∆中,AD AC =,得:45ADC ︒∠=同理:1114590A DC CDC ︒︒∠=⇒∠=得:111,DC DC DC BD DC ⊥⊥⇒⊥面1BCD DC BC ⇒⊥15.(2011新课标)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD .(Ⅰ)证明:PA BD ⊥;1A B 1A E 1AA 1BAA ∠0601BAA ∆1A E 1CE A E ⋂1CEA 1AC A C B1B 1A D1C【解析】(Ⅰ)因为60,2DAB AB AD ∠=︒=, 由余弦定理得BD =从而222BD AD AB +=,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD所以BD ⊥平面P AD . 故 P A ⊥BD题组四?:线面垂直16.(2016全国II )如图,菱形ABCD 的对角线AC 与BD 交于点O ,5AB =,6AC =,点E ,F 分别在AD ,CD 上,54AE CF ==,EF 交BD 于点H .将ΔDEF 沿EF折到ΔD EF '的位置,OD '=(I )证明:D H '⊥平面ABCD ;【解析】(I )证明:∵54AE CF ==,∴AE CF AD CD =,∴EF AC ∥. ∵四边形ABCD 为菱形,∴AC BD ⊥,∴EF BD ⊥,∴EF DH ⊥,∴EF D H '⊥.∵6AC =,∴3AO =;又5AB =,AO OB ⊥,∴4OB =, ∴1AE OH OD AO =⋅=,∴3DH D H '==, ∴222'OD OH D H '=+,∴'D H OH ⊥.又∵OH EF H =,∴'D H ⊥面ABCD .17.(2018全国卷Ⅱ)如图,在三棱锥-P ABC 中,==AB BC PA PB PC ===4AC =,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;【解析】(1)因为4AP CP AC ===,O 为AC 的中点,所以OP AC ⊥,且OP =连结OB.因为AB BC AC ==,所以ABC △为等腰直角三角形, 且OB AC ⊥,122OB AC ==.由222OP OB PB +=知PO OB ⊥. 由⊥OP OB ,⊥OP AC 知PO ⊥平面ABC .18.(2019全国Ⅱ理17)如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;【解析】 (1)由已知得,平面,平面,故.又,所以平面.题组五:面面垂直18.(2016全国I )如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,2AF FD =,90AFD ∠=,且二面角D AF E --与二面角C BE F --都是60.(I )证明:平面ABEF ⊥平面EFDC ;O M PCBA11B C ⊥11ABB A BE ⊂11ABB A 11B C ⊥BE 1BE EC ⊥BE ⊥11EBC【解析】(Ⅰ)由已知可得AF DF ⊥,AF FE ⊥,所以AF ⊥平面EFDC .又AF ⊂平面ABEF ,故平面ABEF ⊥平面EFDC .20.(2019全国Ⅲ理19)图1是由矩形ADEB 、R t △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ;【解析】 (1)由已知得AD BE ,CG BE ,所以AD CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB BE ,AB BC ,故AB 平面BCGE .又因为AB 平面ABC ,所以平面ABC 平面BCGE .21.(2018全国卷Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ;【解析】(1)由已知可得,BF ⊥PF ,BF ⊥EF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD .22.(2018全国卷Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;⊥⊥⊥⊂⊥PF EDC B A MDC B A【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC 平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM . 因为M 为CD 上异于C ,D 的点,且DC 为直径,所以 DM ⊥CM .又BC CM =C ,所以DM ⊥平面BMC .而DM 平面AMD ,故平面AMD ⊥平面BMC .23.(2017新课标Ⅰ)如图,在四棱锥P ABCD -中,AB ∥CD ,且90BAP CDP ∠=∠=. (1)证明:平面PAB ⊥平面PAD ;【解析】(1)由已知90BAP CDP ∠=∠=︒,得AB ⊥AP ,CD ⊥PD .由于AB ∥CD ,故AB ⊥PD ,从而AB ⊥平面P AD .又AB ⊂平面P AB ,所以平面P AB ⊥平面P AD .24.(2017新课标Ⅲ)如图,四面体ABCD 中,ABC ∆是正三角形,ACD ∆是直角三角形,ABD CBD ∠=∠,AB BD =.(1)证明:平面ACD ⊥平面ABC ;【解析】(1)由题设可得,ABD CBD ∆≅∆,从而AD DC =.又ACD ∆是直角三角形,所以0=90ACD ∠取AC 的中点O ,连接DO ,BO ,则DO AC ⊥,DO AO =.又由于ABC ∆是正三角形,故BO AC ⊥.所以DOB ∠为二面角D AC B --的平面角.⊂⊂D CA PABC DE在Rt AOB ∆中,222BO AO AB +=.又AB BD =,所以222222BO DO BO AO AB BD +=+==,故90DOB ∠=.所以平面ACD ⊥平面ABC .25(2015新课标Ⅰ)如图,四边形ABCD 为菱形,120ABC ∠=,,E F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC . (Ⅰ)证明:平面AEC ⊥平面AFC ;【解析】(Ⅰ)连接BD ,设BD AC G ,连接,,EG FG EF .在菱形ABCD 中,不妨设1GB ,由120∠=ABC ,可得3AGGC , 由⊥BE 平面ABCD ,ABBC 可知,AE EC , 又∵⊥AE EC ,∴3EG,⊥EG AC , 在Rt EBG ∆中,可得2BE ,故22DF .在Rt FDG ∆中,可得62FG . 在直角梯形BDFE 中,由2BD ,2BE ,22DF ,可得322EF , ∴222EG FG EF +=,∴EG ⊥FG ,∵AC ∩FG =G ,∴EG ⊥平面AFC ,∵EG ⊂面AEC ,∴平面AFC ⊥平面AEC .。

相关文档
最新文档