信号处理实验六报告

合集下载

数字信号处理实验报告

数字信号处理实验报告

实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。

2、熟悉离散信号和系统的时域特性。

3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。

4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。

二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。

2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。

信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。

根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。

三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。

(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告⼀、课程设计(综合实验)的⽬的与要求⽬的与要求:1.掌握《数字信号处理基础》课程的基本理论; 2.掌握应⽤MATLAB 进⾏数字信号处理的程序设计;实验内容:已知低通数字滤波器的性能指标如下:0.26p ωπ=,0.75dB p R =,0.41s ωπ=,50dB s A =要求:1. 选择合适的窗函数,设计满⾜上述指标的数字线性相位FIR 低通滤波器。

⽤⼀个图形窗⼝,包括四个⼦图,分析显⽰滤波器的单位冲激响应、相频响应、幅频响应和以dB 为纵坐标的幅频响应曲线。

2. ⽤双线性变换法,设计满⾜上述指标的数字Chebyshev I 型低通滤波器。

⽤⼀个图形窗⼝,包括三个⼦图,分析显⽰滤波器的幅频响应、以dB 为纵坐标的幅频响应和相频响应。

3. 已知模拟信号1234()2sin(2)5sin(2)8cos(2)7.5cos(2)x t f t f t f t f t ππππ=+++其中10.12f kHz =,2 4.98f kHz =,3 3.25f kHz =,4 1.15f kHz =,取采样频率10s f kHz =。

要求:(1) 以10s f kHz =对()x t 进⾏取样,得到()x n 。

⽤⼀个图形窗⼝,包括两个⼦图,分别显⽰()x t 以及()x n (0511n ≤≤)的波形;(2) ⽤FFT 对()x n 进⾏谱分析,要求频率分辨率不超过5Hz 。

求出⼀个记录长度中的最少点数x N ,并⽤⼀个图形窗⼝,包括两个⼦图,分别显⽰()x n 以及()X k 的幅值; (3) ⽤要求1中设计的线性相位低通数字滤波器对()x n 进⾏滤波,求出滤波器的输出1()y n ,并⽤FFT 对1()y n 进⾏谱分析,要求频率分辨率不超过5Hz 。

求出⼀个记录长度中的最少点数1y N ,并⽤⼀个图形窗⼝,包括四个⼦图,分别显⽰()x n (01x n N ≤≤-)、()X k 、1()y n (101y n N ≤≤-)和1()Y k 的幅值;(4) ⽤要求2中设计的Chebyshev 低通数字滤波器对()x n 进⾏滤波,求出滤波器的输出2()y n ,并⽤FFT 对2()y n 进⾏谱分析,要求频率分辨率不超过5Hz 。

数字信号实验报告材料 (全)

数字信号实验报告材料 (全)

数字信号处理实验报告实验一:用 FFT 做谱分析 一、 实验目的1、进一步加深 DFT 算法原理和基本性质的理解。

2、熟悉 FFT 算法原理和 FFT 子程序的应用。

3、学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便在实际中正确应用 FFT 。

二、实验原理用FFT 对信号作频谱分析是学习数字信号处理的重要内容。

经常需要进行谱分析的信号是模拟信号和时域离散信号。

对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。

频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是2π/N ≤D 。

可以根据此时选择FFT 的变换区间N 。

误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时离散谱的包络才能逼近于连续谱,因此N 要适当选择大一些。

周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT ,得到的离散谱才能代表周期信号的频谱。

如果不知道信号周期,可以尽量选择信号的观察时间长一些。

对模拟信号的频谱时,首先要按照采样定理将其变成时域离散信号。

如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。

三、实验内容和步骤对以下典型信号进行谱分析:⎪⎩⎪⎨⎧≤≤-≤≤-=⎪⎩⎪⎨⎧≤≤-≤≤+==其它nn n n n n x 其它nn n n n n x n R n x ,074,330,4)(,074,830,1)()()(32414()cos4x n n π=5()cos(/4)cos(/8)x n n n ππ=+6()cos8cos16cos20x t t t t πππ=++对于以上信号,x1(n)~x5(n) 选择FFT 的变换区间N 为8和16 两种情况进行频谱分析。

分别打印其幅频特性曲线。

并进行对比、分析和讨论;;x6(t)为模拟周期信号,选择 采样频率Hz F s 64=,变换区间N=16,32,64 三种情况进行谱分析。

信号分析与处理实验报告

信号分析与处理实验报告

华北电力大学实验报告||实验名称FFT的软件实现实验(Matlab)IIR数字滤波器的设计课程名称信号分析与处理||专业班级:电气化1308 学生姓名:袁拉麻加学号: 2 成绩:指导教师:杨光实验日期: 2015-12-17快速傅里叶变换实验一、实验目的及要求通过编写程序,深入理解快速傅里叶变换算法(FFT)的含义,完成FFT和IFFT算法的软件实现。

二、实验内容利用时间抽取算法,编写基2点的快速傅立叶变换(FFT)程序;并在FFT程序基础上编写快速傅里叶反变换(IFFT)的程序。

三:实验要求1、FFT和IFFT子程序相对独立、具有一般性,并加详细注释;2、验证例6-4,并能得到正确结果。

3、理解应用离散傅里叶变换(DFT)分析连续时间信号频谱的数学物理基础。

四、实验原理:a.算法原理1、程序输入序列的元素数目必须为2的整数次幂,即N=2M,整个运算需要M 级蝶形运算;2、输入序列应该按二进制的码位倒置排列,输出序列按自然序列排列;3、每个蝶形运算的输出数据军官占用其他输入数据的存储单元,实现“即位运算”;4、每一级包括N/2个基本蝶形运算,共有M*N/2个基本蝶形运算;5、第L级中有N/2L个群,群与群的间隔为2L。

6、处于同一级的各个群的系数W分布相同,第L级的群中有2L-1个系数;7、处于第L级的群的系数是(p=1,2,3,…….,2L-1)而对于第L级的蝶形运算,两个输入数据的间隔为2L-1。

b.码位倒置程序流程图开始检测A序列长度nk=0j=1x1(j)=bitget(k,j);j=j+1Yj<m?Nx1=num2str(x1);y(k+1)=bin2dec(x1);clear x1k=k+1c.蝶形运算程序流程图五、程序代码与实验结果a.FFT程序:%%clear all;close all;clc;%输入数据%A=input('输入x(n)序列','s');A=str2num(A);% A=[1,2,-1,4]; %测试数据%%%%校验序列,%n=length(A);m=log2(n);if (fix(m)~=m)disp('输入序列长度错误,请重新输入!');A=input('输入x(n)序列','s');A=str2num(A);elsedisp('输入正确,请运行下一步')end%%%码位倒置%for k=0:n-1for j=1:m %取M位的二进制数%x1(j)=bitget(k,j); %倒取出二进制数%endx1=num2str(x1); %将数字序列转化为字符串%y(k+1)=bin2dec(x1); %二进制序列转化为十进制数%clear x1endfor k=1:nB(k)=A(y(k)+1); %时间抽取序列%endclear A%%%计算%for L=1:m %分解为M级进行运算%LE=2^L; %第L级群间隔为2^L%LE1=2^(L-1); %第L级中共有2^(L-1)个Wn乘数,进行运算蝶运算的两数序号相隔LE1%W=1;W1=exp(-1i*pi/LE1);for R=1:LE1 %针对第R个Wn系数进行一轮蝶运算,共进行LE1次%for P=R:LE:n %每个蝶的大小为LE% Q=P+LE1;T=B(Q)*W;B(Q)=B(P)-T;B(P)=B(P)+T;endW=W*W1;endendB %输出X(k)%%%验证结果:例6-4b.IFFT程序:%%clear all;close all;clc;%输入数据%A=input('输入X(k)序列','s');A=str2num(A);% A=[6,2+2i,-6,2-2i]; %测试数据%%%%校验序列,%n=length(A);m=log2(n);if (fix(m)~=m)disp('输入序列长度错误,请重新输入!');A=input('输入x(n)序列','s');A=str2num(A);elsedisp('输入正确,请运行下一步')end%%%码位倒置%for k=0:n-1for j=1:m %取M位的二进制数%x1(j)=bitget(k,j); %倒取出二进制数%endx1=num2str(x1); %将数字序列转化为字符串%y(k+1)=bin2dec(x1); %二进制序列转化为十进制数%clear x1endfor k=1:nB(k)=A(y(k)+1); %时间抽取序列%endclear A%%%计算%for L=1:m %分解为M级进行运算%LE=2^L; %第L级群间隔为2^L%LE1=2^(L-1); %第L级中共有2^(L-1)个Wn乘数,进行运算蝶运算的两数序号相隔LE1%W=1;W1=exp(-1i*pi/LE1);for R=1:LE1 %针对第R个Wn系数进行一轮蝶运算,共进行LE1次%for P=R:LE:n %每个蝶的大小为LE%Q=P+LE1;T=B(Q)*W;B(Q)=B(P)-T;B(P)=B(P)+T;endW=W*W1;endendB=conj(B); %取共轭%B=B/n %输出x(n)%验证结果:六、实验心得与结论本次实验借助于Matlab软件,我避开了用C平台进行复杂的复数运算,在一定程度上简化了程序,并添加了简单的检错代码,码位倒置我通过查阅资料,使用了一些函数,涉及到十-二进制转换,数字-文本转换,二-文本转换,相对较复杂,蝶运算我参考了书上了流程图,做些许改动就能直接实现。

《信号分析与处理》实验报告

《信号分析与处理》实验报告

序号:号项目名称:《信号分析与处理》实验报告学生学院:信息工程学院专业班级:学生学号:学生姓名:指导老师:朱铮涛2013年12月25日目录实验一、基本信号的产生和时频域抽样实验 (1)一、实验目的 (1)二、实验内容及所得图表 (1)三、思考题解答 (15)实验二、连续和离散系统分析 (16)一、实验目的 (16)二、实验内容和要求 (16)三、思考题解答 (22)实验三、用FFT实现谱分析实验 (23)一、实验目的 (23)二、实验原理 (23)三、实验内容及实验得到的结果 (23)四、实验结论 (26)五、思考题解答 (26)实验四、IIR数字滤波器设计和应用 (27)一、实验目的 (27)二、实验原理 (27)三、实验内容和结果 (27)四、思考题解答 (33)实验五、FIR数字滤波器设计和应用 (34)一、实验目的 (34)二、FIR数字滤波器的设计基本原理 (34)三、实验内容和实验结果 (37)四、思考题解答 (40)实验一、基本信号的产生和时频域抽样实验一、实验目的1、学习使用matlab产生基本信号波形、实现信号的基本运算;2、熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解;3、加深理解频谱离散化过程中的数学概念和物理概念,掌握频域抽样定理的基本内容。

二、实验内容及所得图表1、用Matlab产生以下序列的样本,并显示其波形:(a):()(0.9)cos(0.2/3),020nx n n nππ=+≤≤(b):)20()5()(---=nununx(c):)*5.0exp()(n nx-=(d):(e):(f):)()sin()(t u tAetx taΩ=-α2 设(a):求其傅里叶变换;对进行采样,求出采样所得离散时间信号的傅里叶变(b):用频率Fs=5000Hz对进行采样,求出采样所得离散时间信号的傅里叶变换;换;再用频率Fs=1000Hz(c):分别针对(b)中采样所得离散时间信号和,重建出对应的连续时间信号和,并分别与原连续时间信号进行比较;根据抽样定理(即Nyquist定理)的知识,说明采样频率对信号重建的影响。

信号处理实验报告总结

信号处理实验报告总结

信号处理实验报告总结引言信号处理是一门研究如何对信号进行处理和分析的学科,它在许多领域中都有着广泛的应用,如通信、图像处理、音频处理等。

本实验旨在通过实际操作与理论结合的方式,帮助学生深入理解信号处理的原理和方法。

理论背景信号处理的理论基础包括信号与系统、傅里叶分析、滤波器设计等方面的知识。

在本次实验中,我们主要了解了离散傅里叶变换(DFT)和数字滤波器的原理和应用,以及常见的信号处理算法。

实验过程与结果本次实验分为两个部分:DFT算法实现和数字滤波器设计。

DFT算法实现我们首先实现了离散傅里叶变换的算法,并通过MATLAB软件进行了验证。

实验中,我们使用了一个正弦信号,并通过DFT算法将其转换为频域表示。

实验结果显示,离散傅里叶变换能够准确地将时域信号转换为频域信号,且图像频谱与理论结果一致。

数字滤波器设计在第二个实验中,我们学习了数字滤波器的设计方法和常见的滤波器类型。

我们采用了巴特沃斯滤波器设计方法,并使用MATLAB软件进行了参数设计。

实验结果表明,数字滤波器能够有效地滤除输入信号中不需要的频率成分,并保留我们感兴趣的信号。

实验总结通过本次实验,我们对信号处理的理论知识有了更深入的了解,并通过实际操作加深了对信号处理方法的理解和应用能力。

通过实验,我们对离散傅里叶变换和数字滤波器的原理和应用有了更深入的了解。

然而,在实验过程中也遇到了一些困难。

例如,在DFT算法实现中,我们需要对算法进行优化以提高运行效率。

在数字滤波器设计中,我们还需要更深入地学习滤波器设计的原理和方法,以便更好地应用在实际工程中。

总的来说,本次实验使我们更加深入地了解了信号处理的原理和方法,并对信号处理的应用有了更为清晰的认识。

在今后的学习和工作中,我们将进一步巩固这方面的知识,并不断探索更多的信号处理方法和算法。

参考文献[1] Oppenheim, A. V., & Schaffer, J. R. (1998). Discrete-time signal processing. Prentice Hall.[2] Proakis, J. G., & Manolakis, D. G. (1996). Digital signal processing: principles, algorithms, and applications. Prentice Hall.附录本次实验的MATLAB代码如下:matlab% DFT算法实现N = length(x);for k = 0:N-1X(k+1) = 0;for n = 0:N-1X(k+1) = X(k+1) + x(n+1)*exp(-1i*2*pi*k*n/N);endend% 数字滤波器设计fs = 100; % 采样频率fpass = 10; % 通带频率fstop = 20; % 阻带频率Rp = 1; % 通带最大衰减Rs = 60; % 阻带最小衰减wp = 2*pi*fpass/fs;ws = 2*pi*fstop/fs;[N, wn] = buttord(wp, ws, Rp, Rs);[b, a] = butter(N, wn);y = filter(b, a, x);以上是本次信号处理实验的总结,通过实验我们深入理解了信号处理的原理和方法,也发现了一些问题,期望在今后的学习和工作中能够进一步探索和应用信号处理技术。

信号分析与处理实验报告

信号分析与处理实验报告

信号分析与处理实验报告一、实验目的1.了解信号分析与处理的基本概念和方法;2.掌握信号分析与处理的基本实验操作;3.熟悉使用MATLAB进行信号分析与处理。

二、实验原理信号分析与处理是指利用数学和计算机技术对信号进行分析和处理的过程。

信号分析的目的是了解信号的特性和规律,通过对信号的频域、时域和幅频特性等进行分析,获取信号的频率、幅度、相位等信息。

信号处理的目的是对信号进行数据处理,提取信号的有效信息,优化信号的质量。

信号分析和处理的基本方法包括时域分析、频域分析和滤波处理。

时域分析主要是对信号的时变过程进行分析,常用的方法有波形分析和自相关分析。

频域分析是将信号转换到频率域进行分析,常用的方法有傅里叶级数和离散傅里叶变换。

滤波处理是根据信号的特性选择适当的滤波器对信号进行滤波,常用的滤波器有低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。

三、实验内容1.信号的时域分析将给定的信号进行波形分析,绘制信号的时域波形图;进行自相关分析,计算信号的自相关函数。

2.信号的频域分析使用傅里叶级数将信号转换到频域,绘制信号的频域图谱;使用离散傅里叶变换将信号转换到频域,绘制信号的频域图谱。

3.滤波处理选择合适的滤波器对信号进行滤波处理,观察滤波前后的信号波形和频谱。

四、实验步骤与数据1.时域分析选择一个信号进行时域分析,记录信号的波形和自相关函数。

2.频域分析选择一个信号进行傅里叶级数分析,记录信号的频谱;选择一个信号进行离散傅里叶变换分析,记录信号的频谱。

3.滤波处理选择一个信号,设计适当的滤波器对信号进行滤波处理,记录滤波前后的信号波形和频谱。

五、实验结果分析根据实验数据绘制的图像进行分析,对比不同信号在时域和频域上的特点。

观察滤波前后信号波形和频谱的变化,分析滤波效果的好坏。

分析不同滤波器对信号的影响,总结滤波处理的原理和方法。

六、实验总结通过本次实验,我们了解了信号分析与处理的基本概念和方法,掌握了信号分析与处理的基本实验操作,熟悉了使用MATLAB进行信号分析与处理。

数字信号处理(西电上机实验)

数字信号处理(西电上机实验)

数字信号处理实验报告实验一:信号、系统及系统响应一、实验目的:(1) 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解。

(2) 熟悉时域离散系统的时域特性。

(3) 利用卷积方法观察分析系统的时域特性。

(4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。

二、实验原理与方法:(1) 时域采样。

(2) LTI系统的输入输出关系。

三、实验内容、步骤(1) 认真复习采样理论、离散信号与系统、线性卷积、序列的傅里叶变换及性质等有关内容,阅读本实验原理与方法。

(2) 编制实验用主程序及相应子程序。

①信号产生子程序,用于产生实验中要用到的下列信号序列:a. xa(t)=A*e^-at *sin(Ω0t)u(t)A=444.128;a=50*sqrt(2)*pi;b. 单位脉冲序列:xb(n)=δ(n)c. 矩形序列:xc(n)=RN(n), N=10②系统单位脉冲响应序列产生子程序。

本实验要用到两种FIR系统。

a. ha(n)=R10(n);b. hb(n)=δ(n)+2.5δ(n-1)+2.5δ(n-2)+δ(n-3)③有限长序列线性卷积子程序用于完成两个给定长度的序列的卷积。

可以直接调用MATLAB语言中的卷积函数conv。

conv用于两个有限长度序列的卷积,它假定两个序列都从n=0 开始。

调用格式如下:y=conv (x, h)四、实验内容调通并运行实验程序,完成下述实验内容:①分析采样序列的特性。

a. 取采样频率fs=1 kHz, 即T=1 ms。

b. 改变采样频率,fs=300 Hz,观察|X(ejω)|的变化,并做记录(打印曲线);进一步降低采样频率,fs=200 Hz,观察频谱混叠是否明显存在,说明原因,并记录(打印)这时的|X(ejω)|曲线。

②时域离散信号、系统和系统响应分析。

a. 观察信号xb(n)和系统hb(n)的时域和频域特性;利用线性卷积求信号xb(n)通过系统hb(n)的响应y(n),比较所求响应y(n)和hb(n)的时域及频域特性,注意它们之间有无差别,绘图说明,并用所学理论解释所得结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验六 离散时间滤波器设计一、 实验原理IIR 数字滤波器设计 (一)、脉冲响应不变法变换原理脉冲响应不变法将模拟滤波器的s 平面变换成数字滤波器的z 平面,从而将模拟滤波器映射成数字滤波器。

IIR 滤波器的系统函数为1z -(或z )的有理分式,即01()1Mkk k N kk k b zH z a z -=-==-∑∑一般满足N M ≤。

1、转换思路:)()()()()(z H n h nT h t h s H z a a −−→−=−−−→−−−−−−→−变换时域采样拉普拉斯逆变换若模拟滤波器的系统函数()H s 只有单阶极点,且假定分母的阶次大于分子的阶次,表达式:11()1k Nks T k TA H z ez -==-∑2、s 平面与z 平面之间的映射关系。

⎩⎨⎧Ω==→=→=→⎩⎨⎧Ω+==ΩT e r e e re e z s re z T TT sT ωσσσωωj j j j]IIR 数字滤波器设计的重要环节是模拟低通滤波器的设计,典型的模拟低通滤波器有巴特沃思和切比雪夫(I 型和II 型)等滤波器。

由模拟低通滤波器经过相应的复频率转换为)(s H ,由)(s H 经过脉冲响应不变法就得到所需要的IIR 数字滤波器)(z H 。

(二)、巴特沃思滤波器设计巴特沃思滤波器是通带、阻带都单调衰减的滤波器。

(1) 调用buttord 函数确定巴特沃思滤波器的阶数,格式 [N,Wc]=buttord(Wp,Ws,Ap,As)其中:Wp ,Ws 为归一化通带和阻带截止频率;Ap ,As 为通带最大和最小衰减,单位为dB ;N 为滤波器阶数,Wc 为3dB 截止频率,对于带通和带阻滤波器,Wc=[W1,W2]为矩阵,W1和W2分别为通带的上下截止频率。

(2) 调用butter 函数设计巴特沃思滤波器,格式 [b,a]=butter(N,Wc,options) 其中:options=’low ’, ‘high ’, ‘bandpass ’, ‘stop ’,默认情况下,为低通和带通。

b 和a 为设计出的IIR 数字滤波器的分子多项式和分母多项式的系数。

注意,利用以上两个函数也可以设计出模拟滤波器,格式为 [N,Wc]=buttord(Wp,Ws,Ap,As,’s ’) [b,a]=butter(N,Wc,options,’s ’) 其中:Wp 、Ws 和Wc 均为模拟频率。

(三)、切比雪夫I 型滤波器的设计切比雪夫I 型滤波器为通带波纹控制器:在通带呈现纹波特性,在阻带单调衰减。

[N,Wc]=cheb1ord(Wp,Ws,Ap,As) [b,a]=cheby1(N,Ap,Wc,options) 其中的参数含义和巴特沃思的相同。

(四)、切比雪夫II 型滤波器的设计切比雪夫II 型滤波器为阻带波纹控制器:在阻带呈现纹波特性,在通带单调衰减。

[N,Wc]=cheb2ord(Wp,Ws,Ap,As) [b,a]=cheby2(N,As,Wc,options)其中的参数含义和巴特沃思的相同。

已知模拟滤波器,可以利用脉冲响应不变法转换函数impinvar 将其变换为数字滤波器,调用格式为[bz,az]=impinvar(b,a,Fs)其中b,a 分别为模拟滤波器系统函数分子、分母多项式系数;Fs 为采样频率;bz 、az 为数字滤波器系统函数的分子、分母多项式系数。

(五)、双线性变换法变换原理为克服脉冲响应不变法产生频率响应的混叠失真,可以采用非线性频率压缩方法,使s 平面与z 平面建立了一一对应的单值关系,消除了多值变换性,也就消除了频谱混叠现象,这就是双线性变换法。

1、转换思路:→)(s H 写出微分方程−−→−近似差分方程→写出)(z H 由于双线性变换法中,s 到z 之间的变换是简单的代数关系,得到数字滤波器的系统函数和频率响应,即111111()()1z a a s c z z H z H s H c z ----=+⎛⎫-== ⎪+⎝⎭j tan 2()(j )j tan 2a c H e H H c ωωω⎛⎫Ω= ⎪⎝⎭⎛⎫⎛⎫=Ω= ⎪ ⎪⎝⎭⎝⎭ 设模拟系统函数的表达式为2001120120()NkN kk N a NNkN kk A sA A s A s A s H sB B s B s B sB s==++++==++++∑∑ 应用双线性变换得到()H z 的表达式111200121211210()()|1NkN kk N a NNz s ckN z k k a za a z a z a z H z H sb z b z b zb z------=----=-+=++++===++++∑∑ 2、s 平面与z 平面之间的映射关系。

2222j Ω)(Ω)(j Ωj Ω+-++=−−→−--++=→-+=σσσσωc c r c c re s c s c z 取模Z 平面S 1平面S 平面用不同的方法选择c 可使模拟滤波器频率特性与数字滤波器频率特性在不同频率处有对应的关系。

(1) 采用使模拟滤波器与数字滤波器在低频处有较确切的对应关系,即在低频处有1Ω≈Ω。

当1Ω较小时,2c T=。

(2) 采用数字滤波器的某一特定频率(例如截止频率1c c T ω=Ω)与模拟原型滤波器的一个特定频率c Ω严格相对应,则有cot 2cc c ω=Ω。

已知模拟滤波器,可以利用双线性变换函数bilinear 将其变换为数字滤波器,调用格式为[bz,az]=bilinear(b,a,Fs)其中b,a 分别为模拟滤波器系统函数分子、分母多项式系数;Fs 为采样频率;bz 、az 为数字滤波器系统函数的分子、分母多项式系数。

设计时要注意模拟原型低通频率预畸,否则衰减指标不能满足设计要求。

FIR 数字滤波器设计1、设计原理FIR 滤波器的设计问题,就是要使所设计的FIR 滤波器的频率响应)(j ωe H 逼近所要求的理想滤波器的频率响应)(j d ωe H 。

逼近可在时域进行,也可在频域进行。

窗函数法设计FIR 数字滤波器是在时域进行的,用窗函数截取无限长的)(n h d ,这样得到的频率响应)(j ωe H 逼近于理的频率响应)(d ωj e H 。

2、设计流程)()()()(j j ωωe H n h n h e H d d −−−−→−−−−−→−−−−−−→−序列傅里叶变换移序加窗截断序列傅里叶反变换(1)给定希望逼近的频率响应函数j ()d H e ω; (2) 求单位脉冲响应()d h n ;(j j 1()()2n d d h n H e e d πωωπωπ-=⎰)(3)由过渡带宽及阻带最小衰减的要求,可选定窗形状,并估计窗口长度N 。

设待求滤波器的过渡带用ω∆表示,它近似等于窗函数主瓣宽度。

因过渡带ω∆近似与窗口长度成反比,N A ω≈∆,A 决定于窗口形式;(4) 计算所设计的FIR 滤波器的单位脉冲响应;()()()01d h n h n w n n N =≤≤-(5) 由()h n 求FIR 滤波器的频率响应j ()H e ω,检验是否满足设计要求。

一旦选取了窗函数,其指标(过渡带宽、阻带衰减)就是给定的。

所以由窗函数设计FIR 滤波器就是由阻带衰减指标确定用什么窗,由过渡带宽估计窗函数的长度N 。

MATLAB 中提供了数种可以调用的窗函数,常用的有:hd=boxcar(N) %N 点矩形窗函数 ht=triang(N) %N 点三角窗函数 hd=hanning(N) %N 点汉宁窗hd=hamming(N) %N 点汉明窗函数 hd=blackman(N) %N 点布莱克曼窗hd=kaiser(N ,β) %给定beta 值的N 点凯泽窗函数MATLAB 中提供的fir1可以用来设计FIR 滤波器,调用格式为h=fir1(M,Wc,’ftype ’,window) 其中:h 为FIR 数字滤波器的系数构成的矩阵(即系统的单位脉冲响应), Wc 是滤波器的截止频率(以π为单位),可以是标量或数组;M+1为FIR 数字滤波器的阶数,ftype 指定滤波器类型,缺省时为低通,低通用“Low ”表示,高通用“high ”表示,带通用“bandpass ”表示,带阻用“stop ”表示,Window 指定窗函数,若不指定,默认为汉明窗。

二、 实验内容及结果分析(一)IIR 数字滤波器设计1、要求通带截止频率3kHz p f =,通带最大衰减1dB p a =,阻带截止 4.5kHz s f =,阻带最小衰减15dB s a =,采样频率30kHz c f =,用脉冲响应不变法设计一个切比雪夫数字低通滤波器,并图示滤波器的振幅特性,检验,p s ωω对应的衰减。

【程序】%---文件expIIR_1.m---clearall;close all;clc%切比雪夫原型低通的技术指标wp = 3*2*pi*10^3;ws = 4.5*2*pi*10^3;ap = 1; %通带最大衰减1as = 15; %阻带最小衰减15fs = 30*10^3; %采样频率wp1 = wp/fs; %数字频率ws1 = ws/fs;%确定切比雪夫低通滤波器的阶数N和3dB 截止频率[N WC] = cheb1ord(wp,ws,ap,as,'s') %设计切比雪夫滤波器[b a] = cheby1(N,ap,WC,'s');%脉冲响应不变法实现数字低通[bzaz] = impinvar(b,a,fs)w0 = [wp1,ws1];Hx = freqz(bz,az,w0);[H W] = freqz(bz,az); %求频响%求wp1和ws1对应的衰减dbHx = -20*log10(abs(Hx)/max(abs(H))) hf = figure;plot(W,abs(H));xlabel('相对频率');ylabel('幅频');grid on;saveas(hf,'expIIR.1.fig');【结果及分析】程序运行结果:N =4WC =1.8850e+04bz =-0.0000 0.0054 0.0181 0.0040 0az =1.0000 -3.0591 3.8323 -2.2919 0.5495dbHx =1.0005 21.5790滤波器阶数是4,dbHx中的1.0005和21.5790为ωp,ωs处的衰减,可见pa=1.0005≈1,sa=21.5790基本满足要求。

图1.1 IIR 滤波器设计题1的幅频响应2、用双线性变换法设计一个切比雪夫Ⅰ型数字高通滤波器。

相关文档
最新文档