数字信号处理实验六-时域采样与信号的重建
信号处理实验三报告

信号处理实验三报告实验三:时域信号的采样与重构一、实验目的1.学习使用示波器进行时域信号采样;2.学习时域信号重构的方法。
二、实验器材1.数字示波器;2.函数发生器;3.电缆。
三、实验原理1.时域信号的采样时域信号的采样是将连续时间的信号转换为离散时间的信号。
采样过程可以理解为在时间轴上以一定的时间间隔取样,得到采样点的幅值。
采样后的信号可以用离散时间信号表示。
2. Nyquist采样定理Nyquist采样定理指出,要恢复一个最高频率为f的连续时间信号,采样频率必须大于2f,即采样定理为Fs > 2f。
这是由于频谱中的高频分量蕴含着较大的信息量,必须以足够高的采样频率进行采样,否则会出现混叠现象。
3.时域信号的重构时域信号的重构是将采样得到的离散时间信号重新转化为连续时间信号的过程。
重构的方法主要有零阶保持插值、线性插值和插值滤波器等。
实验步骤1.连接示波器和函数发生器。
将函数发生器的输出端通过电缆与示波器的输入端连接。
2.设置函数发生器的频率为1kHz,并选择一个适当的幅度。
3.设置示波器的水平和垂直缩放,使信号在示波器的屏幕上能够完整显示。
4.调节示波器的触发方式和触发电平,使信号的波形稳定。
5.通过示波器的采样功能,进行信号的采样。
选择适当的采样率,观察采样得到的离散时间信号。
6. 根据Nyquist采样定理,选择适当的采样率进行采样,并进行离散时间信号的重构。
选择不同的重构方法,如零阶保持插值和线性插值,观察重构后的信号与原信号的差异。
实验结果1.通过示波器的采样功能,得到了采样频率为1kHz的离散时间信号。
2.通过零阶保持插值和线性插值的方法进行重构,观察到重构后的信号与原信号的差异。
可以发现,零阶保持插值会导致信号的平滑度降低,而线性插值能够更好地重构原信号。
实验分析1. 通过实验结果可以验证Nyquist采样定理的正确性。
当采样频率小于2f时,会出现混叠现象,无法正确恢复原信号。
信号的采样与恢复

实验报告课程名称:信号分析与处理 指导老师: 成绩: 实验名称:信号的采样与恢复 实验类型: 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得一、实验目的和要求1. 了解信号的采样方法与过程以及信号恢复的方法。
2. 验证采样定理。
二、实验内容和原理 2.1信号的自然采样采样信号为周期Ts ,宽度τ的矩形脉冲信号S(t)。
s(t)的傅里叶变换为: 2(t)Sa()()2s s sn S n T ωτπτδωω+∞-∞=-∑ 采样的过程可以视为两个信号相乘:()()()s f t f t s t =在频域中,1()()()2Sa()()2s s s s F F S n F n T ωωωπωττωω+∞-∞=*=-∑可以看到自然采样后的频谱除了左右平移采样信号的角频率ωs 外,还按取样函数Sa(x)的规律衰减。
时域采样定理:如果采样信号的频率为fs ,原信号的最大频率为f m ,为了采样后信号的频谱不混叠,需要有fs ≥2f m 。
2.2信号的恢复在不发生频谱混叠的时候,将信号通过的低通滤波器,理论上可以完全恢复原信号。
低通滤波器的截止频率略大于fm,即“频谱加窗”的方法。
如果发生了频谱混叠,则原信号的频谱不能完全被恢复,通过低通滤波器后输出的信号将产生失真。
本实验分别用500Hz三角波和正弦波作为输入信号,占空比50%和10%的0.4kHz、1kHz、2kHz、5kHz、10kHz的矩形脉冲作为采样信号,使用截止频率1kHz以及2kHz的低通滤波器,观察输出波形,验证采样定理。
实验中,受自然采样、实验滤波器效果的限制,恢复后的波形难免都会有失真。
三、主要仪器设备PC一台、myDAQ设备一套、面包板一块、导线、电容、电阻若干。
四、操作方法和实验步骤1.编辑波形文件:正弦波峰峰值4V、频率500Hz,与10kHz、幅值1V、占空比50%的方波相乘,保存波形文件。
数字信号处理实验六时域采样与信号的重建.docx

实验目的:1•了解用MATLAB语言进行时域抽样与信号重建的方法2. 进一步加深对时域信号抽样与恢复的基本原理的理解3. 掌握采样频率的确定方法和内插公式的编程方法。
二.实验内容1认真阅读并输入实验原理与方法中介绍的例子,观察输出波形曲线,理解每一条语句的含义。
•2 •已知一个连续时间信号f(t)=sinc(t)。
取最高有限带宽频率fm=1Hz。
(1)分别显示原连续时间信号波形和Fm=fm、Fm=2fm、Fm=3fm三种情况下抽样信号的波形。
实验程序:dt=0.1; f0=1; TO=1/fO;fm=fO; Tm=1/fm;t=-2:dt:2;f=sin c(t);subplot(4,1,1),plot(t,f,'k');axis([mi n(t) max(t) 1.1*mi n(f) 1.1*max(f)]); title('原连续信号和抽样信号');for i=1:3;fs=i*fm; Ts=1/fs;n=-2:Ts:2;f=s inc(n);subplot(4,1,i+1),stem( n,f,'filled','k');axis([mi n(n) max( n) 1.1*mi n(f) 1.1*max (f)]); end实验截图:(2)求解原连续信号波形和抽样信号所对应的幅度谱。
实验程序:dt=0.1;t=-4:dt:4;N=le ngth(t);f=si nc(t);Tm=1;fm=1/Tm; wm=2*pi*fm;k=1:N;w1=k*wm/N;F1=f*exp(-j*t'*w1)*dt; subplot(4,1,1),plot(w1/(2*pi),abs(F1));gridaxis([0 max(4*fm) 1.1*mi n(F1) 1.1*max(F1)]); for i=1:3;if i<= 2 c=0 ,else c=0.2,e ndfs=(4-i+c)*fm; Ts=1/fs;n=-4:Ts:4;f=s inc(n);N=le ngth( n); wm=2*pi*fs;k=1:N;w=k*wm/N;F=f*exp(-j* n'*w)*Ts; subplot(4,1,5-i),plot(w/(2*pi),abs(F),'k');grid axis([Omax(4*fm) 1.1*min(F) 1.1*max(F)]); end 实验截图:(3) 用时域卷积方法(内插公式)重建信号实验程序:f0=1; T0=1/f0; dt=0.01;fm=f0; Tm=1/fm;t=-4:dt:4*f0;x=sin c(t);subplot(4,1,1),plot(t,x);axis([mi n(t),max(t),1.1*mi n(x),1.1*max(x)]);title('用时域卷积重建抽样信号')for i=1:3;fs=i*fm; Ts=1/fs;n=-4:(4*fO)/Ts;t1=-4:Ts:4*fO;x1=s inc(n /fs); 3.5 2.5 4 3.5 3 .5 43 25 1 B 64 2 0 0.5 1 15 2 3.525 o 2 1 f l 6 4 2T_N=o nes(le ngth( n),1)*t1- n'*Ts*o nes(1,length(t1)) xa=x1*si nc(fs*pi*T_N);subplot(4,1,i+1),plot(t1,xa);axis([mi n(t1),max(t1),1.1*mi n(xa),1.1*max(xa)]); end实验截图:冃时域卷积車逹抽样唁号。
数字信号处理实验报告-信号采集与重建

数字信号处理实验报告-信号采集与重建实验二信号的采样与重建一.实验目的(1)通过观察采样信号的混叠现象,进一步理解奈奎斯特采样频率的意义。
(2)通过实验,了解数字信号采样转换过程中的频率特征。
(3)对实际的音频文件作内插和抽取操作,体会低通滤波器在内插和抽取中的作用。
二.实验内容(1)采样混叠,对一个模拟信号Va(t)进行等间采样,采样频率为200HZ,得到离散时间信号V(n).Va(t)由频率为30Hz,150Hz,170Hz,250Hz,330Hz的5个正弦信号的加权和构成。
Va(t)=6cos(60pi*t)+3sin(300pi*t)+2cos(340pi*t)+4cos(500pi*t)+10sin(660pi*t)观察采样后信号的混叠效应。
程序:clear,close all, t=0:0.1:20; Ts=1/2; n=0:Ts:20;V=8*cos(0.3*pi*t)+5*cos(0.5*pi*t+0.6435)-10*sin(0.7*pi*t);Vn=8*cos(0.3*pi*n)+5*cos(0.5*pi*n+0.6435)-10*sin(0.7*pi*n); subplot(221)plot(t,V), grid on,subplot(222) stem(n,Vn,'.'), grid on,40200-20-4040200-20-400510152021101520(2)输入信号X(n)为归一化频率f1=0.043,f2=0.31的两个正弦信号相加而成,N=100,按因子M=2作抽取:(1)不适用低通滤波器;(2)使用低通滤波器。
分别显示输入输出序列在时域和频域中的特性。
程序:clear;N=100; M=2;f1=0.043; f2=0.31; n=0:N-1;x=sin(2*pi*f1*n)+sin(2*pi*f2*n); y1=x(1:2:100);y2=decimate(x,M,'fir'); figure(1);stem(n,x(1:N));title('input sequence'); xlabel('n');ylabel('fudu'); figure(2); n=0:N/2-1; stem(n,y1);title('output sequence without LP'); xlabel('n');ylabel('fudu'); figure(3); m=0:N/M-1;stem(m,y2(1:N/M));title('output sequence with LP'); xlabel('n');ylabel('fudu'); figure(4);[h,w]=freqz(x);plot(w(1:512),abs(h(1:512)));title('frequency spectrum of the input sequence');xlabel('w');ylabel('fudu'); figure(5);[h,w]=freqz(y1);plot(w(1:512),abs(h(1:512)));title('frequency spectrum of the output sequence without LP');xlabel('w');ylabel('fudu'); figure(6);[h,w]=freqz(y2);plot(w(1:512),abs(h(1:512)));title('frequency spectrum of the output sequence without LP');xlabel('w');ylabel('fudu');input sequence21.510.5fudu0-0.5-1-1.5-202120304050n60708090100output sequence without LP21.510.5fudu0-0.5-1-1.5-20510152025n3035404550output sequence with LP1.510.5fudu0-0.5-1-1.50510152025n3035404550frequency spectrum of the inputsequence5045403530fudu252021105000.511.5wfrequency spectrum of the output sequence without LP3022.533.52520fudu15105000.511.5w22.533.5感谢您的阅读,祝您生活愉快。
时域采样与频域采样实验报告

时域采样与频域采样实验报告一、实验目的:1.理解采样定理的原理和应用;2.掌握时域采样和频域采样的方法和步骤;3.学习使用MATLAB软件进行采样信号的分析和处理。
二、实验原理:采样是指将连续时间信号转换为离散时间信号的过程。
采样过程中,时间轴被分成若干个时间间隔,每个时间间隔内只有一个采样值,即取样点,采样信号的幅度就是该时间间隔内对应连续时间信号的幅度,称为采样值。
时域采样:利用采样定理进行抽样,采样时将模拟信号保持在一个固定状态下,以等间隔时间取样,实现模拟信号的离散化。
时域采样的反变换为恢复成为原连续时间信号,称为重构。
在数字信号中,通过离散时间信号构建模拟信号。
频域采样:首先通过傅里叶变换将时域信号转换到频域,然后在频域对其进行采样,将频域采样结果再进行反傅里叶变换恢复成时域信号。
三、实验内容及步骤:1.时域采样实验①模拟信号的采样:在MATLAB软件中设计一个三角波信号和正弦波信号,并画出其时域图像。
分别设定采样频率为1.5kHz和3kHz,进行采样。
重构时域信号,并画出重构信号的时域图像。
比较原信号和重构信号,在时域和频域上进行对比和分析。
②数字信号的量化:对采集的信号进行量化处理,设量化步长分别为1、2、3。
计算量化误差和信噪比,并作图进行比较分析。
2.频域采样实验设计一个具有3kHz频率的信号,并绘制其频域图像。
设定采样率为10kHz,进行采样,同时对采样信号进行降采样处理。
恢复实验所得到的采样信号,绘制重构后的时域图像,并分析其质量。
四、实验结果与分析:1.时域采样实验:①模拟信号的采样:通过MATLAB软件设计得到的三角波和正弦波信号及其时域图像如下所示:其中,Fs1 = 1.5kHz,Fs2 = 3kHz,信号的采样频率与信号频率的比值应大于2,以保证采样后的信号不失真。
通过采样得到的信号及其重构图像如下所示:可以看出,采样和重构得到的信号与原信号的时域图像是相似的,重构后的信号和原信号之间的误差可以忽略不计。
数字信号处理实验报告

数字信号处理实验报告实验报告
实验题目:数字信号处理实验
实验日期:XXXX年XX月XX日
实验目的:
1. 了解数字信号处理的基本概念和原理;
2. 掌握数字信号的采样、量化和编码方法;
3. 学习数字信号处理的基本算法和应用。
实验内容:
1. 采样与重建
1.1 采样定理的验证
1.2 重建信号的实现
2. 量化与编码
2.1 量化方法的比较
2.2 编码方法的选择与实现
3. 数字滤波器设计与实现
3.1 FIR滤波器设计方法
3.2 IIR滤波器设计方法
实验步骤:
1. 使用示波器对输入的模拟信号进行采样,记录采样频率和采样点数。
2. 使用恢复信号方法,将采样得到的数字信号重建为模拟信号,并进行对比分析。
3. 对重建的信号进行量化处理,比较不同量化方法的效果,选择合适的方法进行编码。
4. 设计并实现数字滤波器,比较FIR和IIR滤波器的性能和实
现复杂度。
实验结果与分析:
1. 采样与重建实验结果表明,在满足采样定理的条件下,采样频率越高,重建信号的质量越高。
2. 量化与编码实验结果表明,在相同位数下,线性量化方法优于非线性量化方法,而编码方法可以根据信号特性选择,例如
差分编码适用于连续变化的信号。
3. 数字滤波器实验结果表明,FIR滤波器相对于IIR滤波器在时域和频域上更易于设计和理解,但实现复杂度较高。
实验结论:
数字信号处理是对模拟信号进行采样、量化和编码等处理,具有较高的灵活性和可靠性。
在实际应用中,应根据需要选择合适的采样频率、量化位数和编码方式,并根据信号特性选择合适的滤波器设计方法。
信号的采样与恢复

深圳大学实验报告课程名称:信号与系统实验项目名称:信号的采样与恢复学院:信息工程专业:电子信息指导教师:报告人:学号:班级:实验时间:实验报告提交时间:教务部制一、实验目的和要求1、了解信号的采样方法与过程以及信号恢复的方法。
2、验证采样定理。
二、实验内容和原理实验原理1、离散时间信号可以从离散信号源获得,也可以从连续时间信号采样而得。
采样信号x s (t )可以看成连续信号x (t )和一组开关函数s (t )的乘积。
s (t )是一组周期性窄脉冲,如图2-5-1,T s 称为采样周期,其倒数f s =1/T s 称采样频率。
图2-5-1 矩形采样信号对采样信号进行傅里叶分析可知,采样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。
平移的频率等于采样频率f s 及其谐波频率2f s 、3f s ……。
当采样信号是周期性窄脉冲时,平移后的频率幅度按sinx/x 规律衰减。
采样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。
2、采样信号在一定条件下可以恢复到原信号。
只要用一截止频率等于原信号频谱中最高频率f n 的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出端可以得到恢复后的原信号。
3、原信号得以恢复的条件是f s ≥2f max ,f s 为采样频率,f max 为原信号的最高频率。
当fs <2 f max 时,采样信号的频谱会发生混迭,从发生混迭后的频谱中无法用低通滤波器获得原信号频谱的全部内容。
在实际使用中,仅包含有限频率的信号是极少的,因此即使f s =2 f max ,恢复后的信号失真还是难免的。
实验中选用f s <2 f max 、f s =2 f max 、f s >2 f max 三种采样频率对连续信号进行采样,以验证采样定理:要使信号采样后能不失真地还原,采样频率f s 必须大于信号最高频率的两倍。
4、连续信号的采样和采样信号的复原原理框图如图2-5-2所示。
连续信号的采样与恢复实验报告

实验六、连续信号的采样与恢复一、实验目的1.加深理解采样对信号的时域和频域特性的影响;2.加深对采样定理的理解和掌握,以及对信号恢复的必要性;3.掌握对连续信号在时域的采样与重构的方法。
二、实验原理(1) 信号的采样信号的采样原理图如下图所示,其数学模型表示为:=其中的f(t)为原始信号,为理想的开关信号(冲激采样信号)δTs(t) =,fs(t)为采样后得到的信号称为采样信号。
由此可见,采样信号在时域的表示为无穷多冲激函数的线性组合,其权值为原始信号在对应采样时刻的定义值。
令原始信号f(t)的傅立叶变换为F(jw)=FT(f(t)),则采样信号fs(t) 的傅立叶变换Fs(jw)=FT(fs(t))=。
由此可见,采样信号fs(t)的频谱就是将原始信号f(t)的频谱在频率轴上以采样角频率ws为周期进行周期延拓后的结果(幅度为原频谱的1/Ts)。
如果原始信号为有限带宽的信号,即当|w|>|wm|时,有F(jw)=0,则有:如果取样频率ws≥2wm时,频谱不发生混叠;否则会出现频谱混叠。
(2) 信号的重构设信号f(t)被采样后形成的采样信号为fs(t),信号的重构是指由fs(t)经过内插处理后,恢复出原来的信号f(t)的过程。
因此又称为信号恢复。
由前面的介绍可知,在采样频率w s≥2w m的条件下,采样信号的频谱Fs(jw)是以w s为周期的谱线。
选择一个理想低通滤波器,使其频率特性H(j w)满足:H(j w)=式中的wc称为滤波器的截止频率,满足wm≤wc≤ws/2。
将采样信号通过该理想低通滤波器,输出信号的频谱将与原信号的频谱相同。
因此,经过理想滤波器还原得到的信号即为原信号本身。
信号重构的原理图见下图。
通过以上分析,得到如下的时域采样定理:一个带宽为w m的带限信号f(t),可唯一地由它的均匀取样信号fs(nTs)确定,其中,取样间隔Ts<π/w m, 该取样间隔又称为奈奎斯特(Nyquist)间隔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验目的:
1.了解用MATLAB语言进行时域抽样与信号重建的方法
2.进一步加深对时域信号抽样与恢复的基本原理的理解
3.掌握采样频率的确定方法和内插公式的编程方法。
二.实验内容
1认真阅读并输入实验原理与方法中介绍的例子,观察输出波形曲线,理解每一条语句的含义。
.
2.已知一个连续时间信号f(t)=sinc(t)。
取最高有限带宽频率fm=1Hz。
(1)分别显示原连续时间信号波形和Fm=fm、Fm=2fm、Fm=3fm三种情况下抽样信号的波形。
实验程序:
dt=0.1; f0=1; T0=1/f0;
fm=f0; Tm=1/fm;
t=-2:dt:2;
f=sinc(t);
subplot(4,1,1),plot(t,f,'k');
axis([min(t) max(t) 1.1*min(f) 1.1*max(f)]);
title('原连续信号和抽样信号');
for i=1:3;
fs=i*fm; Ts=1/fs;
n=-2:Ts:2;
f=sinc(n);
subplot(4,1,i+1),stem(n,f,'filled','k');
axis([min(n) max(n) 1.1*min(f) 1.1*max(f)]);
end
实验截图:
(2)求解原连续信号波形和抽样信号所对应的幅度谱。
实验程序:
dt=0.1;t=-4:dt:4;
N=length(t);f=sinc(t);Tm=1;fm=1/Tm;
wm=2*pi*fm;k=1:N;
w1=k*wm/N;
F1=f*exp(-j*t'*w1)*dt;
subplot(4,1,1),plot(w1/(2*pi),abs(F1));grid
axis([0 max(4*fm) 1.1*min(F1) 1.1*max(F1)]); for i=1:3;
if i<= 2 c=0 ,else c=0.2,end
fs=(4-i+c)*fm; Ts=1/fs;
n=-4:Ts:4;
f=sinc(n);
N=length(n); wm=2*pi*fs;
k=1:N;
w=k*wm/N;
F=f*exp(-j*n'*w)*Ts;
subplot(4,1,5-i),plot(w/(2*pi),abs(F),'k');grid axis([0 max(4*fm) 1.1*min(F) 1.1*max(F)]); end
实验截图:
(3)用时域卷积方法(内插公式)重建信号。
实验程序:
f0=1; T0=1/f0; dt=0.01;
fm=f0; Tm=1/fm;
t=-4:dt:4*f0;
x=sinc(t);
subplot(4,1,1),plot(t,x);
axis([min(t),max(t),1.1*min(x),1.1*max(x)]); title('用时域卷积重建抽样信号')
for i=1:3;
fs=i*fm; Ts=1/fs;
n=-4:(4*f0)/Ts;
t1=-4:Ts:4*f0;
x1=sinc(n/fs);
T_N=ones(length(n),1)*t1-n'*Ts*ones(1,length(t1)) xa=x1*sinc(fs*pi*T_N);
subplot(4,1,i+1),plot(t1,xa);
axis([min(t1),max(t1),1.1*min(xa),1.1*max(xa)]); end
实验截图:。