数字信号处理实验(吴镇扬)答案-4
数字信号处理(吴镇扬)课后习题答案(比较详细的解答过程)第一章测试训练题t

1、时域和频域的区别2、信号在各个频率的幅度分布图称为3、采样率就是4、抗混叠滤波器的目的是5、如果复信号频率是120Hz,采样频率是150Hz,信号的混叠频率是6、对频率在1kHz到1.1kHz的实带限信号进行抽样,若抽样频率为750Hz,则基带信号位于什么频带?7、以800Hz抽样的300Hz实信号的最先4个镜像频率是8、x[n] = cos(n3 /4)可以描述为a每个数字周期 个采样点,覆盖 个模拟信号周期9、低通滤波器的截至频率是1kHz,则将削弱哪个频率a 0 Hzb 500 Hzc 1k Hzd 2k Hz10、在x1[n] = sin(n /9)上作如下( )变化,得到x2[n] = sin(n /9 + /3)a 不变b 右移3位c左移3位d 关于y轴对称11、滤波器y[n] + 0.8y[n-1] = x[n] - 0.5x[n-1] 的单位脉冲响应的头4个样点值为12、h[n] * x[n]数字上等于a 对所有k,将h[k]x[n-k]求和的值b 对所有k,将x[k]h[n-k]求和的值c x[n] * h[n]d以上均是13、描述某系统的差分方程y[n] = 0.7y[n-2] + x[n] - 0.3x[n-1],该系统的转移函数为14、某系统单位脉冲响应h[n] = 0.5d[n] - 0.4d[n-1] + 0.25d[n-2],对应转移函数为a H(z) = 1 - 0.4z^-1 + 0.25z^-2b H(z) = z^2 - 0.4z + 0.25c H(z) = z^-2 - 0.4z^-1 + 0.25d 非以上答案15、极点为0.5 + j0.8和0.5 - j0.8,零点为-1.2的滤波器是a 稳定的b 边缘稳定c 不稳定d 不能决定16、滤波器的单位脉冲响应的DTFT给出了滤波器的a 频谱b 频率响应c 幅度d 相位17、频谱图平坦的信号对应如下哪个信号a 正弦信号b 方波c 白噪声d 直流信号18、离散实正弦信号的频谱的一个周期中包括a 无峰点b 1个峰点c 2个峰点d 多于2个峰点19、讨论连续非周期与离散非周期信号(即连续非周期信号采样前后)以及连续周期与离散周期信号(即连续周期信号采样前后)这四种信号频谱的周期性和连续性,并总结其规律性。
数字信号处理课后习题答案(全)1-7章

(5)y(n)=x2(n)
(6)y(n)=x(n2)
(7)y(n)=
n
(8)y(n)=x(n)sin(ωxn(m) )
m0
解: (1) 令输入为
输出为
x(n-n0)
y′(n)=x(n-n0)+2x(n-n0-1)+3x(n-n0-2) y(n-n0)=x(n-n0)+2x(n—n0—1)+3(n-n0-2)
所以 T[ax1(n)+bx2(n)]=aT[x1(n)]+bT[x2(n)]
第 1 章 时域离散信号和时域离散系统
(2) 令输入为
输出为
x(n-n0)
y′(n)=2x(n-n0)+3 y(n-n0)=2x(n-n0)+3=y′(n) 故该系统是非时变的。 由于
T[ax1(n)+bx2(n)]=2ax1(n)+2bx2(n)+3 T[ax1(n)]=2ax1(n)+3 T[bx2(n)]=2bx2(n)+3 T[ax1(n)+bx2(n)]≠aT[x1(n)]+bT[x2(n)] 故该系统是非线性系统。
=2x(n)+x(n-1)+ x(n-2)
将x(n)的表示式代入上式, 得到 1 y(n)=-2δ(n+2)-δ(n+1)-0.5δ(2n)+2δ(n-1)+δ(n-2)
+4.5δ(n-3)+2δ(n-4)+δ(n-5)
第 1 章 时域离散信号和时域离散系统
8. 设线性时不变系统的单位脉冲响应h(n)和输入x(n)分别有以下三种情况,
(3) 如果|x(n)|≤M, 则|y(n)|≤ nn0|x(k)|≤|2n0+1|M, 因 k nn0
数字信号处理课后习题答案(全)1-7章

将x(n)的表示式代入上式, 得到 1 y(n)=-2δ(n+2)-δ(n+1)-0.5δ(2n)+2δ(n-1)+δ(n-2)
+4.5δ(n-3)+2δ(n-4)+δ(n-5)
第 1 章 时域离系统的单位脉冲响应h(n)和输入x(n)分别有以下三种情况,
+6δ(n-1)+6δ(n-2)+6δ(n-3)+6δ(n-4)
1
4
(2m 5) (n m) 6 (n m)
m4
m0
第 1 章 时域离散信号和时域离散系统
(3) x1(n)的波形是x(n)的波形右移2位, 再乘以2, 画出图形如题2解图 (二)所示。
(4) x2(n)的波形是x(n)的波形左移2位, 再乘以2, 画出图形如题2解图(三) 所示。
(5)y(n)=x2(n)
(6)y(n)=x(n2)
(7)y(n)=
n
(8)y(n)=x(n)sin(ωxn(m) )
m0
解: (1) 令输入为
输出为
x(n-n0)
y′(n)=x(n-n0)+2x(n-n0-1)+3x(n-n0-2) y(n-n0)=x(n-n0)+2x(n—n0—1)+3(n-n0-2)
第 1 章 时域离散信号和时域离散系统
题2解图(四)
第 1 章 时域离散信号和时域离散系统
3. 判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1) x(n) Acos 3 πn A是常数
7 8
(2)
j( 1 n )
x(n) e 8
吴镇扬数字信号处理课后习题答案

jw0 n
u (n)] e jw0n z n
n 0
1 1 (e jw0 z 1 )
(1) 解:令 y (n) RN (n)
由题意可知,所求序列等效为 x (n 1) y (n) y (n) 。
Z [ y (n)] z n
n 0
N 1
1 zN z N 1 , 1 z 1 z N 1 ( z 1)
1
A B 1 2 1 1 1 1 z 1 2z 1 z 1 2 z 1 B 1 | 1 2 1 z 1 z 1 2
1 | 1 1 1 2 z 1 z 1
x(n) u (n) 2 2 n u ( n 1) u (n) 2 n 1u ( n 1)
n0
若n0 0时,收敛域为:0 z ;
(2) 解: Z [0.5 u (n)]
n
若n0 0 时,收敛域为: z 0 z 0.5
0.5
n 0
n
z n
1
1 , 1 0.5 z 1
n
(3) 解: Z [ 0.5 u ( n 1)]
n
n
j j 1 1 (3) X (e 2 ) X ( e 2 ) 2 2 j
(2) e
j n0
X (e j ) (移位特性)
2
数字信号处理习题指导
G ( z ) ZT [ x (2n)] G( z)
n
g ( n )e
jwn
令n' 2n, 则
n ' 取偶数
( z 5) z n |z 0.5 (1 0.5 z)
数字信号处理(吴镇扬)课后习题答案(比较详细的解答过程)chap5-6PPT课件

-
6
5.6.1.2 哈佛结构
数字信号处理一般需要较大的数据流量和较 高的运算速度,为了提高数据吞吐量,在数字 信号处理器中大多采用哈佛结构,如图5.6-2。
程序总线
数据总线
程序 存储器
CPU
操作数 存储器
图5.6-2 哈佛结构
-
7
与冯.诺曼结构处理器比较,哈佛结构处理 器有两个明显的特点:
(1)使用两个独立的存储器模块,分别存储 指令和数据,每个存储模块都不允许指令和数 据并存;
,而是数据的组织和地址的产生。以FFT运算为
例,要求并行存取N/2个数据点,由于一般的存
储器在每个周期里只能在总线上传输一个数据,
因此,并行处理要有专门的缓冲区以要求的吞吐
率来高速度地供应数据,数据地址也必须高速产
生。
-
19
5.6.2 DSP硬件构成
典型的DSP处理器中的运算/处理功能单元 主要包括以下几个部分:
•采用哈佛结构(多总线结构,即程序存储器 和数据存储器分开,各有各的总线,或地址总 线和数据总线分开),甚至采用多地址总线 和多数据总线。还采用流水线及并行结构。
-
2
5.6.1 数字信号处理器结构特点
5.6.1.1 冯.诺曼结构 1945年,冯.诺曼首先提出了“存储程序”
的概念和二进制原理,后来,人们把利用这种 概念和原理设计的电子计算机系统统称为“冯. 诺曼型结构”计算机。冯.诺曼结构的处理器使 用同一个存储器,经由同一个总线传输,如图 5.6-1。
期的循环操作足够长时,或是对一系列数据反
复执行同一指令时,采用流水线处理方式才是
合理的。
-
17
5.6.1.4 并行处理
加快运算速度的另一种方法是采用并行处 理,这种方法克服了流水线方法要把一个处理 分解为若干子处理的困难。
数字信号处理(吴镇扬)第一章习题解答

提示:与理想采样信号的频谱进行比较。上述过程是物理采样后的频谱。
1.6解:
(1) (性质1)
(2) (性质4)
(3)
(4)1.7(1)Fra bibliotek:(2)解:
(3)解:
(4)解:
(5)解:
1.8 (1)解:令
由题意可知,所求序列等效为 。
而
故:
(2)解:
因为:
所以,
1.10 (1)解:
,为双边序列
本小题采用部分分式法求逆Z变换,可以使用“留数法”…..
所以
(3)解:
1.18y(n)=1,n=0
y(n)=3*2-n,n≥1
解:
1.19
(1)解:
无论 还是 ,右边序列的围线C内包含 两个极点。
当 时
当 时
因此
思考:1、为何讨论当 时的情况;2、为何不用讨论 的情况
解答过程如下:
(2)解:
右边序列的围线C内包含 一个极点。故
当 时
因此,
思考:1、为何只讨论当 时的情况
(3) 当n0>0时,该系统是因果系统;当n0<0时,该系统是非因果系统;系统稳定。
(4)因果、稳定。
(5)因果、稳定。
(6)因果、稳定。
(7)因果,但由于 。
(8) 在 时刻有值,故非因果。由于 的值都在 的时刻内,那么 ,故系统稳定。
1.17解:由图可知:
所以
(1)解:
(2)解:
通解
特解
带入方程得:
(3)解:
当 时,右边序列的围线C内包含 两个极点。故
因此
第1章
1.解:由题意可知
则周期为: 其中 为整数,且满足使N为最小整数。
数字信号处理实验指导吴镇扬

实验一快速Fourier变换(FFT)及其应用一、实验目的1.在理论学习的基础上,通过本实验,加深对FFT的理解,熟悉FFT子程序。
2.熟悉应用FFT对典型信号进行频谱分析的方法。
3. 了解应用FFT进行信号频谱分析过程中可能出现的问题以便在实际中正确应用FFT。
4.熟悉应用FFT实现两个序列的线性卷积的方法。
5.初步了解用周期图法作随机信号谱分析的方法。
返回页首二、实验原理与方法在各种信号序列中,有限长序列信号处理占有很重要地位,对有限长序列,我们可以使用离散Fouier变换(DFT)。
这一变换不但可以很好的反映序列的频谱特性,而且易于用快速算法在计算机上实现,当序列x(n)的长度为N时,它的DFT定义为:反变换为:有限长序列的DFT是其Z变换在单位圆上的等距采样,或者说是序列Fourier 变换的等距采样,因此可以用于序列的谱分析。
FFT并不是与DFT不同的另一种变换,而是为了减少DFT运算次数的一种快速算法。
它是对变换式进行一次次分解,使其成为若干小点数的组合,从而减少运算量。
常用的FFT是以2为基数的,其长度。
它的效率高,程序简单,使用非常方便,当要变换的序列长度不等于2的整数次方时,为了使用以2为基数的FFT,可以用末位补零的方法,使其长度延长至2的整数次方。
(一)、在运用DFT进行频谱分析的过程中可能产生三种误差:(1)混叠序列的频谱时被采样信号的周期延拓,当采样速率不满足Nyquist定理时,就会发生频谱混叠,使得采样后的信号序列频谱不能真实的反映原信号的频谱。
避免混叠现象的唯一方法是保证采样速率足够高,使频谱混叠现象不致出现,即在确定采样频率之前,必须对频谱的性质有所了解,在一般情况下,为了保证高于折叠频率的分量不会出现,在采样前,先用低通模拟滤波器对信号进行滤波。
(2)泄漏实际中我们往往用截短的序列来近似很长的甚至是无限长的序列,这样可以使用较短的DFT来对信号进行频谱分析,这种截短等价于给原信号序列乘以一个矩形窗函数,也相当于在频域将信号的频谱和矩形窗函数的频谱卷积,所得的频谱是原序列频谱的扩展。
数字信号处理(吴镇扬)课后习题答案(比较详细的解答过程)chap6

x ( m) x1 (m) = 0
或
m = 0,± M ,±2M ,⋯
其它
∞
(6.2a)
(6.2b .2b) x1 (m) = x(m) p(m) = x(m) ∑ δ (m − Mi) (6.2b)
i =−∞
是一脉冲串序列, 式中 p(m) 是一脉冲串序列, 它在 M 的整数倍处的值 其余皆为零。 表示将采样率减少 为 1,其余皆为零。令 ↓M 表示将采样率减少 M 倍 的抽取, 6.1.1) 6.1.2 式的含意如图 6.1.1 (6.1.1 和 .2) 6.1. 的抽取, 6.1.1) (6.1.2) ( 所示, M=3。 所示,图中 M=3。
1 p( n ) = M 数展开。 数展开。
M −1 k =0
e j 2πnk / M 为周期序列 p(n) 的付里叶级 p(n)的付里叶级 ∑
所以
1 M −1 j (ω − 2πk ) / M ′(e ) = X ) (6.4) .4) ∑ X (e M k =0
jω
′(e jω ) , X (e jω ) 分 别 是 x ′(n) 和 x (n) 的 式中 X DTFT。这样, DTFT。这样, X ′(e jω ) 是原信号频谱 X (e jω ) 先作 的移位叠加 位叠加, M 倍的扩展再在 ω 轴上每隔 2π / M 的移位叠加,
而 X 1 (e ) =
jω n = −∞
∞
∑ x ( n ) p ( n)e
− jωn
1 M −1 j 2πnk / M − jωn = ∑ [ x ( n) ]e ∑e n = −∞ M k =0 1 M −1 = X (e j (ω − 2πk / M ) ) (6.3b (6.3b) ∑ M k =0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四 有限长单位脉冲响应滤波器设计朱方方 0806020433 通信四班(1) 设计一个线性相位FIR 高通滤波器,通带边界频率为0.6π,阻带边界频率为0.4π,阻带衰减不小于40dB 。
要求给出h(n)的解析式,并用MATLAB 绘出时域波形和幅频特性。
解:(1) 求数字边界频率:0.6,.c r ωπωπ== (2) 求理想滤波器的边界频率:0.5n ωπ= (3) 求理想单位脉冲响应:[]d s i n ()s i n [()]()()1n nn n n n h n n παωααπαωαπ⎧---≠⎪⎪-=⎨⎪-=⎪⎩(4) 选择窗函数。
阻带最小衰减为-40dB ,因此选择海明窗(其阻带最小衰减为-44dB);滤波器的过渡带宽为0.6π-0.4π=0.2π,因此6.210.231 , 152N N Nππα-=⇒===(5) 求FIR 滤波器的单位脉冲响应h(n):[]31d sin (15)sin[0.5(15)]1cos ()15()()()15(15)115n n n R n n h n w n h n n n ππππ⎧---⎡⎤⎛⎫-⋅⋅≠⎪⎪⎢⎥==-⎝⎭⎨⎣⎦⎪=⎩程序: clear;N=31; n=0:N-1;hd=(sin(pi*(n-15))-sin(0.5*pi*(n-15)))./(pi *(n-15)); hd(16)=0.5; win=hanning(N); h=win'.*hd;figure; stem(n,h);xlabel('n'); ylabel('h(n)'); grid;title('FIR 高通滤波单位脉冲响应h(n)'); [H,w]=freqz(h,1); H=20*log10(abs(H)); figure;3plot(w/pi,H); axis([0 1 -100 10]);xlabel('\omega/\pi'); ylabel('幅度/dB'); grid;title('FIR 高通滤波器,hanning 窗,N=31');51015202530nh (n )0.10.20.30.40.50.60.70.80.91-100-90-80-70-60-50-40-30-20-10010ω/π幅度/d BFIR 高通滤波器,hanning 窗,N=31分析:由图知阻带衰减最小值大于40,满足要求。
(2) 设计一个线性相位FIR 带通滤波器,采样频率为20kHz ,通带边界频率为4kHz 和6kHz ,阻带边界频率为2kHz 和8kHz ,阻带衰减不小于50dB 。
要求给出h(n)的解析式,并用MATLAB 绘出时域波形和幅频特性。
解:(1) 求数字边界频率:12120.4 , 0.6 , 0.2,0.8c c r r ωπωπωπωπ==== (2) 求理想滤波器的边界频率:120.3,0.7n n ωπωπ== (3) 求理想单位脉冲响应:[]21d 21sin ()sin[()]()()n n n n n n n n h n n ωαωααπαωωαπ⎧---≠⎪⎪-=⎨-⎪=⎪⎩(4) 选择窗函数。
阻带最小衰减为-50dB ,因此选择汉明窗(其阻带最小衰减为-53dB);滤波器的过渡带宽为0.4π-0.2π=0.8π-0.6π=0.2π,因此6.610.233 , 162N N Nππα-=⇒===(5) 求FIR 滤波器的单位脉冲响应h(n):[]33d sin 0.7(16)sin[0.3(16)]0.540.46cos ()16()()()16(16)0.416n n n R n n h n w n h n n n ππππ⎧---⎡⎤⎛⎫-⋅⋅≠⎪ ⎪⎢⎥==-⎝⎭⎨⎣⎦⎪=⎩程序:clear;N=33; n=0:N-1;hd=(sin(0.7*pi*(n-16))-sin(0.3*pi*(n-16)))./(pi*(n-16)); hd(17)=0.4; win=hamming(N); h=win'.*hd;figure; stem(n,h);xlabel('n'); ylabel('h(n)'); grid;title('FIR 带通滤波单位脉冲响应h(n)'); [H,w]=freqz(h,1); H=20*log10(abs(H)); figure;plot(w/pi,H);axis([0 1 -100 10]);xlabel('\omega/\pi'); ylabel('幅度/dB'); grid; title('FIR 带通滤波器,hamming 窗,N=33');5101520253035nh (n )0.10.20.30.40.50.60.70.80.91-100-90-80-70-60-50-40-30-20-10010ω/π幅度/d BFIR 带通滤波器,hamming 窗,N=33(3) 设计一个线性相位FIR 带阻滤波器,采样频率为4000Hz ,通带边界频率为600Hz 和1400Hz ,阻带边界频率为800Hz 和1200Hz ,阻带衰减不小于50dB 。
要求给出h(n)的解析式,并用MATLAB 绘出时域波形和幅频特性。
(1) 求数字边界频率:12120.3 , 0.7 , 0.4,0.6c c r r ωπωπωπωπ==== (2) 求理想滤波器的边界频率:120.35,0.65n n ωπωπ== (3) 求理想单位脉冲响应:[][]12d 12sin ()sin ()sin[()]()()1n n n n n n n n n h n n παωαωααπαωωαπ⎧-+---≠⎪⎪-=⎨-⎪+=⎪⎩(4) 选择窗函数。
阻带最小衰减为-50dB ,因此选择汉明窗(其阻带最小衰减为-53dB);滤波器的过渡带宽为0.4π-0.3π=0.7π-0.6π=0.1π,因此6.610.166, 32.52N N Nππα-=⇒===(5) 求FIR 滤波器的单位脉冲响应h(n):[][]d sin (32.5)sin 0.35(32.5)sin[0.65(32.5)]()()()(32.5)n n n h n w n h n n ππππ-+---==-程序:clear;N=66; n=0:N-1;hd=(sin(pi*(n-32.5))+ sin(0.35*pi*(n-32.5))-sin(0.65*pi*(n-32.5)))./(pi*(n-32.5)); win=hamming(N); h=win'.*hd;figure; stem(n,h);xlabel('n'); ylabel('h(n)'); grid;title('FIR 带通滤波单位脉冲响应h(n)'); [H,w]=freqz(h,1); H=20*log10(abs(H)); figure; plot(w/pi,H);axis([0 1 -100 10]);xlabel('\omega/\pi'); ylabel('幅度/dB'); grid; title('FIR 带阻滤波器,hamming 窗,N=66');010203040506070nh (n )FIR 带通滤波单位脉冲响应h(n)0.10.20.30.40.50.60.70.80.91-100-90-80-70-60-50-40-30-20-10010ω/π幅度/d BFIR 带阻滤波器,hamming 窗,N=66(4) 用凯塞窗设计一个多带线性相位滤波器,幅频特性如下图所示,N=40,β分别取4、6、10,比较不同β值时的幅频特性和相频特性。
0.10.20.30.40.50.60.70.80.9100.20.40.60.811.21.41.61.8ω/π|H d (e j ω)|理想滤波器的幅频特性解: 程序: clear;%beta=4Wd=[0.2 0.4 0.6 0.8]; M=39; beta=4; hh = fir1(M, Wd, 'DC-0', kaiser(M+1,beta)); [H, w] = freqz(hh, 1); figure; subplot(2,1,1);plot(w/pi,abs(H));xlabel('\omega/\pi'); ylabel('幅度'); grid; title('幅频特性, beta=4'); subplot(2,1,2);plot(w/pi,angle(H));xlabel('\omega/\pi'); ylabel('弧度'); grid; title('相频特性');%beta=6;Wd=[0.2 0.4 0.6 0.8]; M=39; beta=6; hh = fir1(M, Wd, 'DC-0', kaiser(M+1,beta)); [H, w] = freqz(hh, 1); figure; subplot(2,1,1); plot(w/pi,abs(H)); xlabel('\omega/\pi');ylabel('幅度'); grid; title('幅频特性, beta=6'); subplot(2,1,2); plot(w/pi,angle(H)); xlabel('\omega/\pi'); ylabel('弧度'); grid; title('相频特性'); %beta=10;Wd=[0.2 0.4 0.6 0.8]; M=39; beta=10; hh = fir1(M, Wd, 'DC-0', kaiser(M+1,beta));[H, w] = freqz(hh, 1); figure; subplot(2,1,1); plot(w/pi,abs(H));xlabel('\omega/\pi'); ylabel('幅度'); grid; title('幅频特性, beta=10');subplot(2,1,2);plot(w/pi,angle(H));xlabel('\omega/\pi'); ylabel('弧度'); grid; title('相频特性');00.10.20.30.40.50.60.70.80.910.511.5ω/π幅度0.10.20.30.40.50.60.70.80.91-4-2024ω/π弧度相频特性00.10.20.30.40.50.60.70.80.910.51ω/π幅度幅频特性, beta=60.10.20.30.40.50.60.70.80.91-4-2024ω/π弧度相频特性00.10.20.30.40.50.60.70.80.910.51ω/π幅度0.10.20.30.40.50.60.70.80.91-4-2024ω/π弧度相频特性分析:Beta=4时幅频图比较接近理想滤波器,相频特性不太明显,随着Beta 的增大,幅频图过渡带开始增加,相频特性越来越明显。