由平行截面面积求体积

合集下载

《数学分析》考试大纲

《数学分析》考试大纲

《数学分析》考试大纲一、课程名称:数学分析二、适用专业: 数学与应用数学三、考试方法:闭卷考试四、考试时间:100分钟五、试卷结构:总分:100分,选择题15分,填空题15分,计算题40分,证明题30分。

六、参考书目:1、华东师范大学数学系编著,《数学分析》(上、下册),高等教育出版社,2010年第4版。

2、中国科学技术大学常庚哲史济怀编著,《数学分析教程》(上、下册),高等教育出版社,2003年第1版。

七、考试的基本要求:数学分析是数学与应用数学专业专升本入学考试中专业课考试内容,考生应理解和掌握《数学分析》中函数、极限、连续、微分学、积分学和级数的基本概念、基本理论、基本方法。

应具有抽象思维能力、逻辑推理能力、运算能力和空间想象能力,能运用所学知识正确拙推理证明,准确、简捷地计算。

能综合运用数学分析中的基本理论、基本方法分析和解决实际问题。

八、考试范围第一章实数集与函数(一)考核内容实数及其性质,绝对值与不等式。

区间与邻域,有界集与确界原理。

函数概念,函数的表示法。

函数的四则运算,复合函数,反函数,初等函数。

具有某些特性的函数:有界函数、单调函数、奇函数与偶函数、周期函数。

(二)考核知识点1、实数:实数的概念,实数的性质,绝对值与不等式;2、数集、确界原理:区间与邻域,有界集与无界集,上确界与下确界,确界原理;3、函数概念:函数的定义,函数的表示法(解析法、列表法、和图象法),分段函数;4、具有某些特征的函数:有界函数,单调函数,奇函数与偶函数,周期函数。

(三)考核要求1、了解实数域及性质;2、掌握几种不等式及应用;3、熟练掌握数域,上确界,下确界,确界原理;4、牢固掌握函数复合、基本初等函数、初等函数及某些特性(单调性、周期性、奇偶性、有界性等)。

第二章数列极限(一)考核内容数列。

数列极限的定义,无穷小数列。

收敛数列性质:唯一性、有界性、保号性、不等式性质、迫敛性、四则运算法则。

子列及子列定理。

数学分析10.2由平行截面面积求体积

数学分析10.2由平行截面面积求体积

第十章 定积分的应用 2 由平行截面面积求体积定义:设Ω为三维空间中的一立体,它夹在垂直于x 轴的两平面x=a 与x=b 之间(a<b). 称Ω为位于[a,b]的立体. 若在任意一点x ∈[a,b]处作垂直于x 轴的平面,它截得Ω的截面面积显然是x 的函数,记为A(x), x ∈[a,b],并称之为Ω的截面面积函数.公式1:设截面面积函数A(x)是[a,b]上的一个连续函数,对[a,b]作分割T :a=x 0<x 1<…<x n =b. 过各分点作垂直于x 的平面x=x i , i=1,2,…,n ,它们把Ω切割成n 个薄片. 设A(x)在每个小区间△i =[x i-1,x i ]上的最大, 最小值分别为M i 与m i ,那么每一薄片的体积△V i 满足 m i △x i ≤△V i ≤M i △x i . 于是Ω的体积V=∑=n1i i V △满足∑=n1i iix△m ≤V ≤∑=n1i i i x △M . 因为A(x)连续,从而在[a,b]上可积,所以当T 足够小时,能使i n1i i x △ω∑==∑=n1i i i i x )△m -(M <ε,ε为任意小的正数.∴V=∑=→n 1i i 0T M lim △x i (或∑=→n 1i i 0T m lim △x i )=∑=→n1i 0T A lim (ξi )△x i . 其中A(ξi )=M i (或m i ). ∴V=⎰ba A(x )dx.例1:求由两个圆柱面x 2+y 2=a 2与z 2+x 2=a 2 所围立体的体积.解:如图取该立体的第一卦限,即81部分.对任一x 0∈[0,a],平面x=x 0与这部分立体的截面是正方形,边长为:202x a -,即A(x)=a 2-x 2, x ∈[0,a]. ∴V=8⎰a 0A(x )dx=8⎰-a22)x (a dx=316a 3.例2:求由椭球面222222cz b y a x ++=1所围立体(椭球)的体积.解:以平面x=x 0(|x 0|≤a)截椭球面,得椭圆:⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-220222222a x 1c z a x 1b y =1.∴截面面积函数为:A(x)=πbc ⎪⎪⎭⎫ ⎝⎛-22a x 1, x ∈[-a,a]. ∴V=⎰aa -A(x )dx=⎰⎪⎪⎭⎫ ⎝⎛-aa -22a x 1πbc dx=34πabc.注:当a=b=c=r 时,就等于球的体积34πr 3.定理:设ΩA ,ΩB 为位于同一区间a,b 的两个立体,其体积分别V A ,V B .若在[a,b]上它们的截面面积函数A(x)与B(x)皆连续,且A(x)=B(x)则V A =V B .公式2:设f 是[a,b]上的连续函数,Ω是由平面图形0≤|y|≤|f(x)|, a ≤x ≤b 绕x 轴旋转一周的旋转体,则截面面积函数为A(x)=π[f(x)]2, x ∈[a,b]. ∴旋转体Ω的体积为:V=π⎰ba2[f(x )]dx.例3:试用公式2导出圆锥体的体积公式.解:设正圆锥的高为h ,底圆半径为r ,则有0≤|y|≤hrx, x ∈[0,h].∴V=π⎰⎪⎭⎫⎝⎛h02x h r dx=31πr 2h.例4:求由圆x 2+(y-R)2≤r 2 (0<r<R)绕x 轴旋转一周所得环状立体体积.解:圆的上下半圆分别为:y=f(x)=R+22x r -;y=g(x)=R-22x r -, |x|≤r. ∴圆环体截面面积函数为:A(x)=π[f(x)]2-π[g(x)]2=4πR 22x r -, x ∈[-r,r]. ∴V=2⎰-r022x r πR 4dx=8πR ⎰-r022x r dx= 2π2r 2R.习题1、如图所示,直椭圆柱体被通过底面短轴的斜平面所截,试求截得楔形体的体积.解:如图所示建立直角坐标系,则椭圆柱面的方程为:16y 100x 22+=1, 斜面的方程为Z=2x.用平面x=t 截这个立体,得一长方形,其边长为:8100t 12-和2t.∴A(x)=82x 100x 12⋅-=4x 100x 12-, x ∈[0,10].∴截得楔形体的体积为:V=⎰-1002100x 1x 4dx=3400.2、求下列平面曲线绕轴旋转所围成立体的体积: (1)y=sinx, 0≤x ≤π, 绕x 轴;(2)x=a(t-sint), y=a(1-cost) (a>0), 0≤t ≤2π, 绕x 轴; (3)r=a(1+cos θ), (a>0), 绕极轴;(4)2222b y a x +=1, 绕y 轴. 解:(1)V=π⎰π02x sin dx=2π2.(2)V=π⎰2π22cost)-(1a d[a(t-sint)]=πa3⎰2π3cost)-(1dt=5a 3π2.(3)r=a(1+cos θ), (a>0)是心脏线,而心脏线极轴之上部分的参数方程为: x=a(1+cos θ)cos θ; y=a(1+cos θ)sin θ, (0≤θ≤π) ∴V=|π⎰π322y dx|-|π⎰π32π2y dx|=|π⎰+π222θsin ) cos θ(1a da(1+cos θ)cos θ|=πa3⎰+++π2333) cos θ2θ)(1θcos sin 2θcosθsin 2θ(sin d θ=38πa 3.(4)y=b 22a x 1-, ∴V=πb 2⎰⎪⎪⎭⎫ ⎝⎛-a a -22a x 1dx =34a b 2π.3、已知球半径为r ,验证高为h 的球缺体积V=πh 2(r-3h) (h ≤r). 证:球缺体积可看作曲线y=22x R -,R-h ≤x ≤R 绕x 轴旋转而得, V=π⎰Rh-R 2y dx=π⎰-Rh-R 22)x (R dx=πh 2(r-3h). 得证.4、求曲线x=Rcos3t, y=Rsin3t, (R>0)所围平面绕x轴旋转所得立体体积.解:V=π⎰RR-2y dx=π⎰0π62tsinR dRcos3t=3πR3⎰π027ttcossin dt=10516πR3.5、导出曲边梯形0≤y≤f(x), a≤x≤b绕y轴旋转所得立体的体积公式为:V=2π⎰bax f(x)dx.证:曲边梯形绕y轴旋转,在x处的截面图形为一圆柱的侧面,其面积为:A(x)=2πx·f(x), a≤x≤b. 所围立体体积为:V=⎰baA(x)dx=2π⎰b a x f(x)dx. 得证.6、求0≤y≤sinx, 0≤x≤π所示平面图形绕y轴旋转所得立体体积. 解法1:曲线y=sinx可分成两部分:x=arcsiny, x=π-arcsiny, 0≤y≤1. 用y=t截这个立体,其截面面积为:A(t)=π[(π-arcsint)2- (arcsint)2]=π3-2π2arcsint.即面积函数为A(y)=π3-2π2arcsiny.∴V=⎰123arcsiny)2π-(πdy=2π2.解法2:利用第5题的结论可得:V=2π⎰πx sinx dx=2π2.。

空间立体体积的计算方法(1)

空间立体体积的计算方法(1)

数学积分求体积方法概述摘要:定积分在大学数学学习及应用中起着非常重要的作用,一直以来定积分问题就是大学数学学习的重点,也是本科及研究生入学考试重点考察的内容之一,在我们的生活中起着很重要的作用!空间立体体积的计算在日常生活和学习中是十分重要的,对于规则的立体,中学里已有一些求解公式,对于不规则的立体,则需要用高等数学积分法加以解决。

本文总结了几种常见的利用积分求立体体积的方法及案例,通过所学积分学知识建立了更为普遍的立体体积的求解方法和计算公式,同时也介绍了相关的物理方法,并从具体的例题入手充分挖掘了空间立体体积计算的一些思想和方法。

关键词:积分; 空间立体体积; 积分区域; 被积函数引言空间立体体积的计算是生活中常见的问题,对于规则的空间立体体积的计算在中学时就有具体的计算公式,但对于不规则的空间立体体积则难以计算。

本文就主要针对各种形状的空间立体研究计算其体积的简便方法。

其实很多文献对空间立体体积的计算问题都进行了讨论,文献[1]就基本上包括了此问题的所有积分计算方法,并给出了相应的计算公式。

文献[2]-[9]分别从不同方面对各种方法进行了细致说明,并对个别特例进行了深入分析,给出了特殊的积分计算方法。

文献[10]则主要是对部分方法做出了总结,并列出了大量相关例题辅助理解。

以上文献充分体现出积分思想在解题中应用广泛,特别是在计算空间立体体积领域。

如果我们能够在积分学的基础上掌握空间立体体积的计算方法,则能使一些复杂的问题简单化,还易让人接受。

所以我们要分析掌握积分法,以便于解决与此相关的各种复杂问题,特别是各种空间立体体积的计算问题。

空间立体体积的计算是高等数学积分法在几何上的主要应用,其主要思想是将体积表示成定积分或重积分,研究空间立体,确定积分区域及被积函数,然后综合考虑立体特征、积分区域及被积函数特点,选择恰当的积分方法,使空间立体体积的计算简单明了。

本文在上述文献的基础上,总结了中学常见的空间立体体积的计算方法。

高数上册之立体的体积

高数上册之立体的体积

一系列圆柱形薄壳组成的, 以此柱壳的体积作为体积元素,
当dx很小时,此小柱体的高看作f(x),
即为圆柱薄壳
8
y
在区间 [ x , x dx] 上
柱壳体的体积元素为
绵 阳
师 范 学 院
y f (x)
dV 2x dx f ( x )
V dV 2 xf ( x )dx
a a
b
o
a
x
b
4
x
图1
y
绵 同理,如旋转体由图2的曲边梯 阳 师 范 学 d 形绕y轴形成. x=(y) d 2 c 则体积为 V [ ( y )] dy 院

c
例3 求如图直角三角形绕x轴 旋转而成的圆锥体的体积.
解 可求得过点O及P(h,r)的直线方程为
r y x h
o
2 3 2
o
x
例4 求阿基米德螺线r=a(a>0)上 相应于从0到2的一段弧长. 解
s

b
r ( ) r ( )d a
2 2

2
1 2 d
0
a [2 1 4 2 ln(2 1 4 2 )] 2
14
1
绵 阳
师 范 学 院

如图,过x的截面是直角三角形,
边长分别为y和ytan .因此
1 2 A( x ) ( R x 2 ) tan ,-R 2 o R 1 x y 2 2 V ( R x ) tandx R R 2 x 1 2 1 3 2 3 R ( R x x ) tan | R R tan 2 3 3
o
b
x
解 圆的方程为 ( x b) 2 y 2 a 2 ,则所求体积可视为

定积分的几何应用(体积))

定积分的几何应用(体积))

π πa2 (t sin t)2 a sin t d t
注意上下限 !
2 π
π
π
a
2
(t
sin
t)
2
a
sin
t
d
t
0
π a3

(t
sin
t)2
sin
t
dt
0
注: 2 π (t sin t)2 sin t d t 0
2 π (t 2 sin t 2t sin 2 t sin3 t)d t (令 u t π) 0
V 2 1u[4 (u 3)2 ]du 5
令u x3
2 2 (x 3)(4 x2)dx 2
2 2 (3 x)(4 x2 )dx 2
(※)
补充 2. 如果旋转体是由连续曲线 y f ( x)、直 线 x a、 x b(0 a b)及 x轴所围成的曲边梯
形绕 x = m (>b) 旋转一周而成的立体,体积为
2
令u t 2
16 π a3 π (2u sin 2u) sin 4 u d u 0
令v u π
2
π
16 π
a3
2
π 2
(2v
π
sin
2v)
cos4 v
偶函数
d
v
奇函数
例 3 求由曲线 y 4 x2及 y 0所围成的图形 绕直线 x 3旋转构成旋转体的体积.
解(一) 取积分变量为y , y [0,4]
c
o
x
例2. 计算摆线
的一拱与 y=0
所围成的图形分别绕 x 轴 , y 轴旋转而成的立体体积 .
解: 绕 x 轴旋转而成的体积为
y

华东师范大学数学系《数学分析》(上)笔记和课后习题(含真题)详解(定积分的应用)

华东师范大学数学系《数学分析》(上)笔记和课后习题(含真题)详解(定积分的应用)

第10章 定积分的应用10.1 复习笔记一、平面图形的面积由连续曲线()(0)y f x =≥,以及直线,()x a x b a b ==<和x 轴所围曲边梯形的面积为()b baaA f x dx ydx ==⎰⎰如果()f x 在[,]a b 上不都是非负的,则所围图形的面积为()b baaA f x dx y dx ==⎰⎰一般地,由上、下两条连续曲线2()y f x =与1()y f x =以及两条直线,()x a x b a b ==<所围的平面图形(图l0-1),它的面积计算公式为21[()()]baA f x f x dx =⎰-图10-1二、由平行截面面积求体积 1.立体体积的一般计算公式 设为三维空间中的一立体,它夹在垂直于x 轴的两平面x =a 与x =b 之间(a <b ),称为位于[a,b]上的立体,若在任意一点x∈[a,b]处作垂直于x轴的平面,它截得的截面面积是关于x的函数,记为A(x),并称之为的截面面积函数(见图10-2),设A(x)是连续函数.图10-2 图10-3对[a,b]作分割过各个分点作垂直于x轴的平面x=xi,i=1,2,…,n,它们把分割成n个薄片,i=1,2,…,n任取那么每一薄片的体积(见图10-3)于是由定积分的定义和连续函数的可积性,当时,上式右边的极限存在,即为函数A (x)在[a,b]上的定积分,于是立体的体积定义为2.旋转体的体积a b上的连续函数,Ω是由平面图形设f是[,]≤≤≤≤0|||f(x)|,ay x b绕x轴旋转一周所得的旋转体,那么易知截面面积函数为2()[()],[,]A x f x x a b π=∈得到旋转体Ω的体积公式为2=[()]baV f x dxπ⎰三、平面曲线的弧长与曲率 1.平面曲线的弧长 (1)定义①如果存在有限极限ss T T =→0||||lim即任给0ε>,恒存在0δ>,使得对C 的任意分割T ,只要||||T δ<,就有|s |T s ε-<则称曲线C 是可求长的,并把极限s 定义为曲线C 的弧长.②设曲线AB 是一条没有自交点的闭的平面曲线.在AB 上任取点P ,将AB 分成两段非闭曲线,如果AP 和PB 都是可求长的,则称AB 是可求长的,并把AP 的弧长和PB 的弧长的和定义为AB 的弧长.③设曲线C 由参数方程(),(),[,]x x t y y t t αβ==∈给出.如果(t)x 与()y t 在[,]αβ上连续可微,且'()x t 与'()y t 不同时为零,即''()()0x t y t +≠,],[βα∈t ,则称C 为一条光滑曲线.(2)定理设曲线C 是一条没有自交点的非闭的平面曲线,由参数方程(),(),[,]x x t y y t t αβ==∈ (10-1)给出.若()x t 与()y t 在[,]αβ上连续可微,则C 是可求长的,且弧长为'2'2[()][()]s x t y t dt βα=+⎰ (10-2)(3)性质设AB 是一条没有自交点的非闭的可求长的平面曲线.如果D 是AB 上一点,则和AD 和DB 也是可求长的,并且AB 的弧长等于AD 的弧长与DB 的弧长的和.2.曲率 (1)定义如图10-4,设()t α表示曲线在点((),())P x t y t 处切线的倾角,==()()t t t ααα∆+∆-表示动点由P 沿曲线移至))(),((t t y x t x Q ∆+∆+时切线倾角的增量,若PQ 之长为s ∆,则称||K sα-∆=∆为弧段PQ 的平均曲率.如果存在有限极限|||lim ||lim |00dsd s s K s t ααα=∆∆=∆∆=→∆→∆则称此极限K 为曲线C 在点P 处的曲率.图10-4(2)计算公式设曲线C 是一条光滑的平面曲线,由参数方程(10-1)给出,则曲率的计算公式为2322)(||''''''''y x y x y x K +-=若曲线由()y f x =表示,则相应的曲率公式为2''3'2||(1+y )y K =四、旋转曲面的面积1.设平面光滑曲线C 的方程为(),[,]y f x x a b =∈(不妨设()0f x ≥),这段曲线绕x 轴旋转一周得到旋转曲面的面积为2(baS f x π=⎰2.如果光滑曲线C 由参数方程(),(),[,]x x ty y t t αβ==∈给出,且()0y t ≥,那么由弧微分知识推知曲线C 绕x 轴旋转所得旋转曲面的面积为2(S y t βαπ=⎰五、定积分的近似计算 1.梯形法公式121()(...)22bn n ay y b a f x dx y y y n --=+++++⎰2.抛物线法公式(辛普森Simpsom 公式)021*******()[4(...y )2(...)]6bn n n ab af x dx y y y y y y y n---≈+++++++++⎰10.2 课后习题详解§1 平面图形的面积1.求由抛物线y =x 2与y =2-x 2所围图形的面积.解:该平面图形如图10-1所示.两条曲线的交点为(-1,1)和(1,1),所围图形的面积为图10-12.求由曲线与直线所围图形的面积.解:该平面图形如图10-2所示.所围图形的面积为。

由平行截面面积求体积


方形, 所以截面面积 A(x) R 2 。 2
R2 2的正
故两圆柱面所围成的立体体积
R
V 8
R2 x2
dx 16 R3
0
3
-a
z c
x0
by
0
ax
-b
-c
例2 求由椭圆面 x2 y2 z2 1 所围立体(椭球)的体积。(如上图) a2 b2 c2
解法:画出草图,关键是求出用垂直于 x 轴(其它轴也可)的平面 截立体所得截面面积函数 A(x) 的具体表达式。
解:如上图所示,上、下半圆方程分别为:y1 R r2 x2 , y2 R r2 x2 , x r则环体体积是由上、
下两个半圆绕 x 轴旋转一周所得旋转体的体积之差 (如下图所示):
r
y
o
r
x
上半圆:y1 R r2 x2
r
o
y
r
x
下半圆:y2 R r2 x2
A(x) f (x)2 , x [a, b],
由已知平行截面面积求体积的 公式可知,旋转体的体积公式为:
b
V f (x)2dx. a
例3 求圆锥体的体积公式
y
y f (x)
o a
y
y f (x)
oa
x
x b
b
x
4
例4 求由圆 x2 ( y R)2 r2 (0 r R)绕x轴旋转 一周所得环状立体体积。
例 1 求两圆柱: x2 y 2 R2 z 2 x2 R2 所围的立体体积 .卦限对称的,因此,它的体 积是其在第一卦限体积的8倍。如何求其在第一卦限的体积? 下图就是其在第一卦限部分立体:

-体积、旋转体的侧面积、一些物理量的计算

∴该误差是比dx 高阶的无穷小,故
dV A(x)dx,
b
V a A(x)dx.
例 1.设有半径为R 的正圆柱体,被通过其底的直径
而与底面交成 的平面所截,求截得的圆柱楔的体积。
解:如图建立坐标系,
y tan
R
则底圆的方程为x2 y2 R2 。
x y
x[R, R] ,用过点x 且垂直于x 轴 o
x2
)dx
a
V
a a
b2 a2
(a
2
x2
)dx
ox
b
Байду номын сангаасax
x dx
2
b2 a2
a 0
(a2 x2)dx
2b2 a2
(a
2
x
1 3
x3
)
a 4 ab2. 03
例 3.已知圆台的上底半径为 r1 ,下底半径为r2 ,高为h ,
求它的体积。
解:如图选择坐标系,母线 AB 的方程为
y
0
r1
h r2
y
o a x xdx b x
设[x,x dx] 是[a,b] 上的代表小区间,相应的一小块立体
的体积记为V ,设 A(x) 在[x,x dx] 上的最小值和最大值分
别为m 和 M ,则 mdxV Mdx,
取近似
V A(x)dx,
其误差为 V A(x)dx (M m)dx ,
∵当dx0 时,(M m) 0 ,
则 dA 2f (x)dL ,
oa

A 2
b
f (x)
1 y2 dx.
a
y f (x) x x dx b x
[ 圆台的侧面积= 母线长 (上底半径 下底半径 ) 。在极限 状态,母线长是弧微元dL ;上底半径 下底半径 2f(x) 。]

平行截面面积求体积

V b f 2( x)dx. a
例2 求由圆 x2 ( y R)2 r 2 (0 r R) 绕 x 轴
旋转一周所得环状立体的体积.
y
r
解 x2 ( y R)2 r2 的上下半圆分别为
R
y f2(x) R r2 x2,
O
x
y f1( x) R r 2 x2 .
因此
A( x)dx.
a
i 1
i 1
因此
b
V A( x)dx.
a
例1 求由两个圆柱面 围立体的体积.
x2 y2 a2 与 z2 x2 a2 所
z
a
x
a x0
O
a
y
解 先求出立体在第一卦限的体积V1. x0 [0,a] ,
x x0 与立体的截面是边长为 a2 x02 的正方形,
所以 A( x) a2 x2 , x [0,a]. 于是求得
A( x)
f
2 2
(
x)
f12( x) 4
R
r2 x2 ,
从而
r
V 8 R
r 2 x2dx 2 2r 2R.
0
例3 求由区域 ( x, y) | 0 x 1 , x y 2 x2
绕 y 轴旋转一周所得立体的体积. y
解 旋转体由曲线
2
x
y,
y [0,1]
2 y , y [1, 2]
围成的曲边三角形绕极轴旋转一周所得旋转体的
体积公式.
作业: P246:1,2(2,4),4,5,6
[ xi1, xi ] 上 A( x) 的最大、最小值分别为 Mi , mi ,
则第 i 个小薄片的体积 Vi 满足
mi xi Vi Mi xi ,

高等数学第六章《定积分的应用》

第六章 定积分的应用一、内容提要(一)主要定义【定义】 定积分的元素法 如果(1)所求量U 是与一个变量x 的变化区间[]b a ,有关的一个整体量; (2)U 对区间[]b a ,具有可加性; (3)部分量i U ∆可表示为()i i i U f x ξ∆≈∆.则可按以下步骤计算定积分(1)选取一个变量x 或y ,并确定它的变化区间[]b a ,;(2)把区间[]b a ,分成n 个小区间, 求任一小区间[],x x dx +的部分量U ∆的近似dU .()U dU f x dx ∆≈=; (3)计算()U=baf x dx ⎰.(二)主要定理与公式根据定积分的元素法可建立一些几何和物理方面的定积分表达式. 1.平面图形面积 (1)直角坐标情形①由()(),(0),,y f x f x x a x b =≥==所围图形的面积()bas f x dx =⎰.②由()()12,,,y f x y f x x a x b ====所围图形的面积()()12 bas f x f x dx =-⎰.③由()()12,,,x y x y y c y d ϕϕ====所围图形的面积()()12dcs y y dy ϕϕ=-⎰(2)参数方程情形 由曲线l :()()x t y t ϕψ=⎧⎪⎨=⎪⎩,12t t t ≤≤,x 轴及,x a x b ==所围图形的面积 ()()21t t s t t dt ψϕ'=⎰(3)极坐标情形① 由(),,ρϕθθαθβ===所围图形的面积()212s d βαϕθθ=⎰ ② 由()()12,,,ρϕθρϕθθαθβ====所围图形的面积()()222112s d βαϕθϕθθ⎡⎤=-⎣⎦⎰ 2.体积(1)旋转体的体积① 由()0,,,y y f x x a x b ====所围图形绕x 轴旋转所得旋转体体积:()2b a V f x dx π=⎡⎤⎣⎦⎰. 当0a b ≤<时,上述曲边梯形绕y 轴旋转所得旋转体的体积: ()22bbaaV x y dx x f x dx ππ==⎰⎰.② 由(),0,,x y x y c y d ϕ====所围图形绕y 轴旋转一周形成的立体体积:()2d c V y dy πϕ=⎡⎤⎣⎦⎰ (2)平行截面面积为已知的立体的体积设以()[],A x C a b ∈表示立体Ω的过点x 且垂直于x 轴的截面面积,且立体Ω夹在平面x a x b ==与之间,则立体Ω的体积:()baV A x dx =⎰.3.平面曲线的弧长(1)光滑曲线():,l y f x a x b =≤≤的弧长为as =⎰.(2)光滑曲线()(),: ,x x t l t y y t αβ=⎧⎪≤≤⎨=⎪⎩的弧长为s βα=⎰.(3)光滑曲线():, l ρϕθαθβ=≤≤的弧长为s βαθ=⎰4.变力沿直线做功、水压力 (1)变力沿直线做功设物体在变力()F x 的作用下,沿变力的方向由x a =移到x b =,在物体的位移区间[],a b 内任一子区间[],x x dx +上功的元素为 ()dW F x dx =,全部功()baW F x dx =⎰.(2)水压力设平板铅直地放入液体中,液体的密度为ρ,平板位于液面下的深度在区间[]0,b 内任一子区间[],x x dx +上,液体深x 处的压强为p gx ρ=,压力元素()dp gx f x dx ρ=⋅. 全部压力为 ()0bp gx f x dx ρ=⋅⎰.二、典型题解析(一)填空题【例6.1】 由曲线,xxy e y e -==及直线1x =所围成图形的面积是 . 解 所求面积 ()()1112xx x x S ee dx e e e e ---=-=+=+-⎰.故应填12e e -+-. 【例6.2】 由222,82x y x y =+=所围成图形(见图6.1)面积A (上半平面部分),则A = .解 两曲线22228x y x y ⎧=⎪⎨⎪+=⎩的交点为()()2,2,2,2-.所求的面积为222)2x A dx -=⎰328226x ⎫=-⎪⎭423π=+. 故应填423π+. 【例6.3】 曲线sin 02y x x π⎛⎫=≤≤⎪⎝⎭与直线,02x y π==围成一个平面图形,此平面图形绕x 轴旋转产生的旋转体的体积 .解 2220s i n 4V x d x πππ==⎰. 故应填24π.【例6.4】 阿基米德螺线()0aeλθρλ=>从0θ=到θα=一段弧长s = .解 0s αθ=⎰ ()01eλαθλ==-⎰.)1eλα-.【例6.5】 曲线322y x x x =-++与x 轴所围成的图形的面积A = . 解 函数322(2)(1)y x x x x x x =-++=--+与x 轴的交点为()()()1,0,0,02,0-.()()023232122A x x x dx x x x dx -=--+++-++⎰⎰3712=. (二)选择题图6.122x y =228x y +=【例6.6】 曲线x y e =与其过原点的切线及y 轴所围成的图形(见图6.2)面积为[ ](A ) ()1x e ex dx -⎰; (B )()1ln ln ey y y dy -⎰;(C )()1e x x e xe dx -⎰; (D )()1ln ln y y y dy -⎰.解 曲线x y e =在任意点(),x y 的切线方程为()x x Y e e X x -=-,由于切线过原点,可以求出1x =,于是过原点的切线方程为Y eX =.所求平面图形的面积等于()1xeex dx -⎰. 故选择A.【例6.7】 由曲线()()12y x x x =--与x 轴围成的平面图形的面积为 [ ]. (A )()()()()12011212x x x dx x x x dx -----⎰⎰;(B )()()212x x x dx ---⎰;(C )()()()()12011212x x x dx x x x dx ---+--⎰⎰;(D )()()212x x x dx --⎰.解 在区间[]0,1,0y <,在区间[]1,2,0y >, 所以 ()()112S x x x dx =---⎰()()2112x x x dx +--⎰.故选择C.【例 6.8】 曲线cos 22y x x ππ⎛⎫=-≤≤ ⎪⎝⎭与x 轴围成的平面图形绕x 轴旋转一周而成的旋转体体积为 [ ](A )2π (B )π (C )212π (D )2π. 解 2222cos2V xdx ππππ-==⎰.故选择C.图6.2【例6.9】 双纽线()22222x yx y +=-围成的平面图形的面积为 [ ](A )402cos 2d πθθ⎰; (B )404cos 2d πθθ⎰;(C)2θ; (D )()2401cos 22d πθθ⎰.解 双纽线的极坐标方程为2cos 2 r θ=,(,44ππθ-≤≤35)44ππθ≤≤由对称性 2244001422S r d r d ππθθ=⨯=⎰⎰402cos 2d πθθ=⎰. 故选择A.【例6.10】 曲线()2ln 1y x =-上102x ≤≤的一段弧长l = [ ].(A); (B )1222011x dx x +-⎰; (C); (D ). 解 曲线是直角坐标表示的曲线,采用公式al =⎰.由曲线方程()2ln 1y x =-可得210x ->,221x y x -'=-,则1222011x l dx x +==-⎰. 故选择B .(三)非客观题 1. 平面图形的面积解题方法 (1)先画出草图;(2)求出交点;(3)选取积分变量、区间,找出面积元素,然后积分. (1)直角坐标情形【例6.11】求曲线22,ax y ay x ==所围(见图6.3)的面积. 解 如图所示,交点为()(),00,0A a O 及.图6.32ax y =2y ax =所围的面积()23232002)333aax x aS dx ax a aa ⎡⎤==-=⎢⎥⎣⎦⎰. 【例6.12】 求介于由曲线2121,2+==x y x y 和x 轴围成的平面图形(见图6.4)的面积.解 (法一)设此面积为S ,有12101111()d ()d 2222S x x x x x -=+++-⎰⎰0122310()()42423x x x x x -=+++-23=(法二)13122002(21)]d ()3S y y y y y =-=-+⎰23=.【例6.12】 求0,2x x π==之间由曲线sin y x =和cos y x =所围成的图形(见图6.5)的面积. 解 20sin cos A x x dx π=-⎰()40cos sin x x dx π=-⎰()544sin cos x x dx ππ+-⎰()254cos sin x x dx ππ+-⎰=【例6.13】 求抛物线243y x x =-+-及其在点()0,3-和()3,0处的切线所围成的图形(见图6.6)的面积.解 由24y x '=-+得过点()0,3-和()3,0的切线方程为1:43l y x =-和2:26l y x =-+,图 6.4图 6.24π54π2π图 6.5图 6.6且可得12,l l 交点坐标为3,32⎛⎫⎪⎝⎭,则所围图形的面积为()32204343A x x x dx ⎡⎤=---+-⎣⎦⎰()32322643x x x dx ⎡⎤+-+--+-⎣⎦⎰94=. 【例6.14】求由曲线322,0a y y a x==+所围的面积. 解 所求面积为33222202lim b b a dx S dx a dx a x a x+∞-∞→+∞==++⎰⎰ 3212limarctan b a b a aπ→+∞==. 【例6.15】确定常数k ,使曲线2y x =与直线,2,0x k x k y ==+=所围成图形的面积最小. 解 选x 为积分变量,变化区间为[],2k k +,面积元素2dA x dx =,所求面积为()()22 k kA k x dx k +=-∞<<+∞⎰,要求k 使()A k 取最小值,()A k 是积分上(下)限函数,故()()22241dA k k k dk=+-=+, 令0dA dk =,解得驻点1k =-,因为2240d Adk=>,则1k =-为()A k 在(),-∞+∞内唯一极小值点,即当1k =-时,所围成图形的面积最小. (2)参数方程情形【例6.16】求摆线()()sin ,1cos x a t t y a t =-=-()020t y π≤≤=及所围的面积. 解 所求面积为20(1cos )(1cos )S a t a t dt π=-⋅-⎰图 6.72220(12cos cos )a t t dt π=-+⎰221cos 2(12cos )2tat dt π+=-+⎰20312sin sin 224t t t π⎡⎤=-+⎢⎥⎣⎦23a π=【例6.17】求椭圆渐趋线()2233222cos ,sin c c x t y t c a b a b===-所围面积. 解 所求面积为223324sin cos c c S t t dt b a π'⎛⎫= ⎪⎝⎭⎰22322034sin cos sin c c t t tdt b aπ=⎰4422012sin (1sin )c t t dt abπ=--⎰438c abπ=.(3)极坐标情形【例6.18】求曲线2(2cos )r a θ=+所围成图形(见图6.7)的面积. 解 所求面积为()201222cos 2S a d πθθ=⋅+⎡⎤⎣⎦⎰ ()220444cos cos a d πθθθ=++⎰201cos 2444cos 2a d πθθθ+⎛⎫=++ ⎪⎝⎭⎰209sin 244sin 24a πθθθ⎡⎤=++⎢⎥⎣⎦ 218a π=【例6.19】 求心脏线1cos r θ=+与圆3cos r θ=公共部分(见图6.8)的面积. 解 由3cos 1cos θθ=+得交点坐标为3,23π⎛⎫± ⎪⎝⎭,()2232031121cos (3cos )22S d d πππθθθθ⎡⎤=++⎢⎥⎣⎦⎰⎰54π=. 【例6.20】 求由双纽线()()222222x ya x y +=-所围成且在圆周22212x y a +=内部的图形(见图6.9)的面积.解将r =代入方程22cos2r a θ=中得6πθ=.令0r =代入22cos 2r a θ=中得4πθ=,故 226410611cos 222A d a d πππθθθ=+⎰⎰ 224611sin 22264a a πππθ=⋅⋅+2(633)24a π=+-, 214(66a A A π∴==+-.【例6.21】求由曲线2cos2r r θθ==及所围成的图形的公共部分(见图6.10)的面积.解 解方程组2cos 2r r θθ⎧=⎪⎨=⎪⎩,得两曲线的交点坐标为26π⎛⎫ ⎪ ⎪⎝⎭. 所求的面积为1r =+图 6.9)2646112cos222S d dπππθθθθ=+⎰⎰[]64061112sin2sin2242πππθθθ⎡⎤=-+⎢⎥⎣⎦1626ππ=+=.2.体积的计算(1)旋转体的体积【例6.22】将抛物线24y ax=及直线x x=()x>所围成的图形绕x轴旋转,计算所得的旋转抛物体的体积.解()2,dV f x dxπ=其中()f x=所求体积()00222002x xV f x dx dx axπππ===⎰⎰.【例6.23】求曲线22,0y x x y=-=所围图形分别绕ox轴,oy轴旋转所成旋转体的体积.解所求体积为()22216215xV x x dxππ=-=⎰;()228223yV x x x dxππ=-=⎰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档