大数据模型构建平台介绍v1.0图

合集下载

大数据资料之Kylin

大数据资料之Kylin

尚硅谷大数据技术之Kylin(作者:尚硅谷大数据研发部)版本:V1.0第1章概述1.1 Kylin定义Apache Kylin是一个开源的分布式分析引擎,提供Hadoop/Spark之上的SQL查询接口及多维分析(OLAP)能力以支持超大规模数据,最初由eBay开发并贡献至开源社区。

它能在亚秒内查询巨大的Hive表。

1.2 Kylin特点Kylin的主要特点包括支持SQL接口、支持超大规模数据集、亚秒级响应、可伸缩性、高吞吐率、BI工具集成等。

1)标准SQL接口:Kylin是以标准的SQL作为对外服务的接口。

2)支持超大数据集:Kylin对于大数据的支撑能力可能是目前所有技术中最为领先的。

早在2015年eBay的生产环境中就能支持百亿记录的秒级查询,之后在移动的应用场景中又有了千亿记录秒级查询的案例。

3)亚秒级响应:Kylin拥有优异的查询相应速度,这点得益于预计算,很多复杂的计算,比如连接、聚合,在离线的预计算过程中就已经完成,这大大降低了查询时刻所需的计算量,提高了响应速度。

4)可伸缩性和高吞吐率:单节点Kylin可实现每秒70个查询,还可以搭建Kylin的集群。

5)BI工具集成Kylin可以与现有的BI工具集成,具体包括如下内容。

ODBC:与Tableau、Excel、PowerBI等工具集成JDBC:与Saiku、BIRT等Java工具集成RestAPI:与JavaScript、Web网页集成Kylin开发团队还贡献了Zepplin的插件,也可以使用Zepplin来访问Kylin服务。

1.3 Kylin 架构Web APP REST APIBI Tools JDBC/ODBCSQLSQLHadoop Hive Kafka RDBMS数据源HBaseOLAP Cube数据存储Start Schema DataKey Value DataREST Server(REST 服务层)Query Engine(查询引擎层)Routing(路由层)Metadata(元数据)Cube Build Engine(Cube 构建引擎)Kylin 架构Kylin 架构1)REST ServerREST Server 是一套面向应用程序开发的入口点,旨在实现针对Kylin 平台的应用开发工作。

大数据分析平台总体架构方案ppt课件

大数据分析平台总体架构方案ppt课件
从中长期看,数据仓库对金融集团分散在各个业务系统中的数据 整合、清洗,有助于企业整体数据质量的改善,提高的数据的实 用性
议程
1
3 4 5
大数据分析平台总体架构
用户
数 IT人员 据
管Байду номын сангаас
内部用户
外部用户 访问 层
控 平 台数据
标 准
流 实时数 历史数 程 据查询 据查询 调
内部管理分析
度 平台流程
应用集市数据区
大数据分析平台总体架构——流程调度层归档数据 处理流程
数据归档的对象包括业务系统数据文 件、贴源数据区数据、主题数据区数 据、大数据区数据和集市数据区数据
数据按照生命周期规划存储到归档区 Hadoop集群,归档后原数据区删除此 数据
整个处理流程由流程调度层部署的自 定义开发WorkFlow组件调度运行
数据内容 主要用途
临时数据区
业务系统前日增量数据 缓存数据,支持后续ELT数据处理
数据模型 保留周期
贴源数据模型 保存最近7天数据
贴源数据区
业务系统前日快照数据和一段时间的流水数据 数据标准化,为后续主题模型、集市和沙盘演
练提供数据
贴源数据模型 不保存历史
用户
贴源数据区和主题数据区批量作业访问
智慧金融: 金融集团大数据分析平台总体架 构方案
议程
2 3 4 5
金融集团管理分析类应用建设现状基本分析
基本的现状
商城已建立面向整个零售业 务的数据仓库,整合了前台 业务运营数据和后台管理数 据,建立了面向零售的管理 分析应用;
金融集团已开展供应链金融 、人人贷和保理等多种业务 ,积累了一定量的业务数据 ,同时业务人员也从客户管 理、风险评级和经营规模预 测等方面,提出了大量分析 预测需求;

大数据 分析大数据 大数据分析模型构建

大数据 分析大数据 大数据分析模型构建
• 数据的获取及存储
数据采集
日志、web、温度、图像、音频、视频、温度、湿度、光感、力学、 距离
数据存储
Mysql、Hive、Hbase、MongoDB
Car 情报局
任务2 构建数据分析模型
1 厘清数据分析过程
• 数据处理及清洗
目的:
一致性、有效性
数据错误类型:
内容缺失、数据格式问题、数据重复、数据不准确、数据不完整、数 据不一致等
Car 情报局
任务2 构建数据分析模型
(1)理解机器学习的几个概念
• 深度学习
Car 情报局
深度学习是指机器学习中的一类函数,通常指的是多层神经网络。 很多深度学习的算法是半监督式学习算法,用来处理存在少量未标识 数 据 的 大 数 据 集 。 常 用 的 算 法 有 : 受 限 波 尔 兹 曼 机 ( Restricted Boltzmann Machine, RBN)、Deep Belief Networks(DBN)、 卷积网络(Convolutional Network)、堆栈式自动编码器(Stacked Auto-encoders)。
任务2 构建数据分析模型
(1)理解机器学习的几个概念
• 机器学习
机器学习(Machine Learning)是一门讨论各式各样的适用于不同 领域问题的函数形式,以及如何使用数据有效地获取函数参数具体值 的一门学科。而从方法论的角度看,机器学习是计算机基于数据构建 概率统计模型并运用模型对数据进行预测与分析的学科。
任务2 构建数据分析模型
(2)机器学习模型的建立过程
1 模型选择 2 模型训练 3 模型预测
Car 情报局
任务2 构建数据分析模型
(2)机器学习模型的建立过程-模型选择Car 情报局

三维空间信息共享平台产品介绍全版V1.0

三维空间信息共享平台产品介绍全版V1.0
DEM数据压缩率:1/5; 数据量限制:仅限于服务端数据库的存储限制;
支持多时序存储。
构建开放式空间基础信息平台,实现传统空间基础信息共享方式的根本改
变; 建立健全空间基础数据更新机制、共享标准体系和政策制度体系。
4.3 系统特性
采用J2EE体 系作为应用 实现的规范
J2EE 提供了一个企业级的计 算模型和运行环境用于开发 和部署多层体系结构的应用
提供空间数据加工、集成、 管理、发布及应用全流程平 台产品
三维空间信息共享平台 产品详细介绍
目 录
产品简介 典型案例 产品架构
技术参数 产品特性
产品功能
1 产品简介
研发背景
产品定位
1.1 研发背景
社会步入信息时代,信息资源的整合和应用已经成为推 动社会经济发展的一个重要驱动因素。 同时,随着各部门信息化水平的提高,以及对业务更精 细和科学的管理需求,传统的二维手段在很多方面已经不能 满足业务和决策需要。
三维空间 数据库服务器
应用服务器 WEB服务器
C/S模式
B/S模式
Internet Internet
三维空间数据库管理、 数据处理/图形工作站
三维浏览、业务应用、 运维支撑系统
物理结构设计的思路是:三维数据管理系统采用C/S架构,三维 空间信息共享服务系统、三维空间信息展示系统及运维支撑等系统采 用B/S模式。
2 产品架构
系统架构
系统拓扑
数据流程
2.1 系统架构
基于北京灵图软件技术有限公司自主研发的VRMap三维地理 信息系统平台软件,灵图三维空间信息共享平台主要由五部分组成: 三维数据管理系统 三维空间信息共享服务系统 二次开发接口 三维空间信息展示系统 运维支撑系统

如何构建智能化的大数据分析平台

如何构建智能化的大数据分析平台

如何构建智能化的大数据分析平台在当今信息化的社会中,大数据的应用越来越广泛。

如何有效地分析大数据,让数据发挥更大的价值,成为了当前最热门的话题。

为此,构建一套可靠的大数据分析平台成为了非常重要的任务。

本文将从三个方面来探讨如何构建智能化的大数据分析平台。

一、数据的采集与预处理任何一套大数据分析平台的关键,都在于其数据的来源和数据处理的可靠性。

数据采集的准确性对后续的分析决策影响重大,因此,需选择具有良好品质的数据源。

同时,在考虑数据源的同时,采集的数据安全性也是不可忽略的。

对于数据的预处理,应当以“清洗—转换—集成”为基本流程。

即在采集数据后经过清洗,将数据转换成企业需要的数据格式,再将多个源的数据集成,确保处理后的数据具有数据质量、数据速度和数据一致性。

二、数据分析大数据分析一般分为三类:描述性分析、诊断性分析和预测性分析。

因此,大数据分析平台需要支持三类分析,而且每类分析又希望得到不同的分析结果。

描述性分析是通过对比和对数据的汇总和分组,来解释数据的意义。

与此相反,诊断性分析则探测之间的关联和问题的本质原因。

在这种情况下,分析师可以利用对原因的认知,提出创新的问题解决方案。

预测性分析是分析未来情况的预测,通常这种分析方式非常脆弱,需要足够的数据来支持此类分析。

三、智能化的分析决策一旦高质量数据被准确分析和解读,它就可以帮助企业做出明智的决策,有益于商业成功。

如何构建智能化的大数据分析平台,让数据自动分析和处理显得非常重要。

这一过程需要进行机器学习分析以及数据挖掘,可以帮助识别数据的模式,从而提高数据决策质量。

除了机器学习,自然语言处理(NLP)技术也应用于智能化分析系统中。

这个技术可以在分析过程中理解和解释自然语言中的数据和文本,并根据用户需求自动生成分析报告。

总之,智能化大数据分析平台是一个集成全球领先的分析工具的解决方案。

它为企业提供了精确、一致性和细致的数据,同时也为企业提供了基于数据的预测和实时化的分析。

大数据平台设计方案

大数据平台设计方案
(2)数据处理:使用Spark分布式计算框架进行数据处理。
(3)数据查询:使用Hive进行大数据查询。
(4)数据挖掘:采用机器学习算法库,如TensorFlow、PyTorch等。
(5)数据可视化:使用ECharts、Tableau等工具实现数据可视化。
四、数据安全与合规性
1.数据安全:采用物理安全、网络安全、数据加密、访问控制等技术手段,确保数据安全。
第2篇
大数据平台设计方案
一、引言
在信息技术迅猛发展的当下,大数据已成为企业竞争力的重要组成部分。为了高效利用数据资源,提升决策质量,降低运营成本,本公司决定构建一套先进的大数据平台。本方案旨在提供一份详尽、合规的大数据平台设计方案,以支撑企业未来发展需求。
二、项目目标
1.构建统一、高效的数据资源中心,实现数据的集中管理和有效利用。
-数据处理:采用Spark分布式计算框架,实现快速、高效的数据处理。
-数据查询:使用Hive进行大数据查询,满足复杂查询需求。
-数据挖掘:集成TensorFlow、PyTorch等机器学习算法库,实现数据挖掘和分析。
-数据可视化:运用ECharts、Tableau等工具,实现数据可视化展示。
四、数据安全与合规性
(2)数据存储层:采用分布式存储技术,实现海量数据的存储和管理。
(3)数据处理层:对数据进行清洗、转换、整合等处理,提高数据质量。
(4)数据服务层:提供数据查询、分析、可视化等服务,满足业务部门需求。
(5)应用层:基于数据服务层提供的接口,开发各类应用,为决策层和业务部门提供支持。
2.技术选型
(1)数据存储:采用Hadoop分布式文件系统(HDFS)进行海量数据存储。
-数据存储层:采用分布式存储技术,实现大数据的高效存储和管理。

华为FusionInsight解决方案介绍

华为FusionInsight解决方案介绍
9
海量数据从哪里来-机器
Boeing:飞机每 个引擎3分钟产生 1TB数据,波音 787 6小时飞行产 生240TB数据
CERN: LHC对撞 产生1PB/s的数据 SKA:2015年存 储需要1EB
云化IDC建设 催生了数据大集中
Facebook:每天 产生50TB的日志 数据,衍生分析 数据超过100TB
obsolete before plateau
50%的企业已经投资和使用大数据,33%的企业正在规划如何利用大数据,我们看到大数据领域的持续投资,大数据即将步入成熟发展阶段
跨过概念,进入实践,空间迅猛发展
5
大数据已经在领先企业获得落地,并产生效果
互联网
金融 运营商 零售
Google大脑
VISA信用卡可疑交易
Activity Streams Internet TV NFC Payment Private Cloud Computing Augmented Reality Cloud Computing Media Tablet Virtual Assistants In-Memory Database Management Systems Gesture Recognition Machine-to-Machine Communication Services Mesh Networks:Sensor
2013
密合作,最大限度地促进增长和利益,减少风险
•八国集团发布了《G8开放数据宪章》,提出要加快推动数据开放和利用。
•欧盟力推《数据价值链战略计划》,用大数据改造传统治理模式,降低公共部门成本,并促进经济增长和就业增长
•G8:
•英国政府发布《英国数据能力发展战略规划》,旨在利用数据产生商业价值、提振经济增长,承诺2015年之前 开放交通、天气、医疗方面的核心数据库。 •安倍内阁正式公布新IT战略《创建最尖端IT国家宣言》,以开放大数据为核心的IT国家战略 •2015年3月的两会上,李克强总理明确表态,政府应该尽量的公开非涉密的数据,以便利用这些数 据更好的服务社会,也为政府决策和监管服务。

《大数据平台简介》课件

《大数据平台简介》课件

B
C
D
可扩展性强
大数据平台采用分布式架构,可以根据业 务需求进行横向和纵向的扩展,满足企业 不断增长的数据处理需求。
数据整合能力强
大数据平台能够整合不同来源、不同格式 的数据,实现数据的统一管理和分析。
挑战分析
数据安全风险高
随着数据量的增长,数据安 全问题也日益突出,如何保 障数据的安全和隐私成为大 数据平台面临的重要挑战。
定义
大数据平台是一个集数据存储、处理、分 析和管理于一体的综合性系统,旨在高效 处理大规模数据集,挖掘其潜在价值。
高效性
具备高性能的数据处理能力,能够快速处 理和分析大规模数据。
可靠性
提供数据备份、恢复和容错机制,确保数 据安全可靠。
扩展性
具备水平扩展和垂直扩展能力,可根据业 务需求灵活增加计算和存储资源。

大数据平台的应用场景
数据分析与挖掘
对海量数据进行深入分析和挖掘,发现 潜在规律和趋势,为企业决策提供支持

数据科学与机器学习
利用大数据平台进行数据建模、特征 工程、模型训练和评估等,支持机器
学习和人工智能应用。
数据仓库与报表
构建企业级数据仓库,提供标准化的 报表和查询服务,满足企业日常运营 和管理的需求。
05
CATALOGUE
大数据平台案例分析
案例一:某电商的大数据平台建设
总结词
该电商企业通过大数据平台建设,实现 了精准营销、个性化推荐和供应链优化 。
VS
详细描述
该电商企业利用大数据技术,收集并分析 用户行为、购买历史、浏览记录等数据, 实现了个性化推荐和精准营销。同时,通 过大数据分析,优化了供应链管理,降低 了库存成本,提高了运营效率。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档