立式热虹吸再沸器机械设计说明书

合集下载

立式热虹吸再沸器机械设计说明书(相关知识)

立式热虹吸再沸器机械设计说明书(相关知识)

大连理工大学本科课程设计立式热虹吸式再沸器机械设计说明书学院(系):化工机械与安全学院专业:过程装备与控制工程学生姓名:孔闯学号:201242052指导教师:由宏新、代玉强评阅教师:完成日期:2015.10.2大连理工大学Dalian University of Technolog摘要本课程设计主要任务是设计1台立式热虹吸式再沸器,作为丙烯-丙烷精馏塔的提馏段加热设备。

在大三下学期的时候已经初步完成了再沸器的工艺部分的设计和核算,本次设计主要进行再沸器的机械部分的计算及校核,包括再沸器各部分的结构说明,筒体壁厚的计算,封头壁厚的计算,管箱法兰和管板的计算,筒体和封头开孔及补强等。

通过3周的工作,已完成了再沸器的机械参数的计算,手工绘制了再沸器的装配图1张和管板零件图1张。

目录摘要 (I)1设计基础 (2)1.1项目背景 (2)1.2设计依据 (2)1.3技术来源及授权 (2)1.4项目简介 (2)2结构工艺说明 (1)2.1管程和壳程物料的选择 (1)2.2换热管 (1)2.3管板 (1)2.3.1 管板结构尺寸 (1)2.3.2 换热管与管板连接 (2)2.3.3 排管及管孔 (3)2.4折流板 (5)2.5接管及连接附件 (6)2.6安全泄放 (7)2.7耳式支座 (8)2.8管箱、管箱法兰与封头 (11)3强度计算 (13)3.1工艺参数计算结果表 (13)3.2计算条件 (14)3.3强度计算 (15)3.3.1 壳程圆筒计算 (15)3.3.2 前端管箱筒体计算 (16)3.3.3 前端管箱封头计算 (18)3.3.4 后端管箱筒体计算 (19)3.3.5 后端管箱封头计算 (20)3.3.6 开孔补强设计计算 (21)3.3.7 兼作法兰固定式管板计算 (24)3.3.8 管箱法兰计算 (34)4结论 (36)附录A 过程工艺与设备课程设计任务书 (38)1设计基础1.1项目背景本项目来源于大连理工大学过程装备与控制工程专业大四年级过程工艺与设备课程设计题目;设计者为过程装备与控制工程专业在校大四学生,与项目发布者为师生关系;本项目设计装置为立式热虹吸式再沸器。

再沸器机械设计说明书

再沸器机械设计说明书

前言第一节换热器的主要形式换热器是一种进行热交换操作的工艺设备,广泛应用于化工、炼油、动力、冶金、原子能、造船、食品、制冷、建筑、电子、航空等工业部门中。

它不仅可以单独作为加热器、冷却器等使用,而且是一种化工单元操作的重要附属设备,因此在化工生产中占有重要的地位。

通常在化工厂的建设中换热器投资比例为11%,在炼油厂中高达40%。

随着化学工业的迅速发展及能源价格的提高,换热器的投资比例将进一步加大,因此,对换热器的研究备受重视,从换热器的设计、制造、结构改进到传热机理的研究一直十分活跃,一些新型高效换热器相继问世。

在化工生产中,换热器是主要的工艺设备之一。

例如,在氮肥生产中,氮气与氢气的混和气体要在500℃左右的高温才能在催化剂的作用下合成氨,而氨与未反应的氮、氢气体的分离,则需要通过冷却与冷凝的办法以液体的形式分离出来。

这一生产过程中的加热、冷却与冷凝就是通过换热器实现的。

在酒精生产中,酒精精馏塔在操作时,原料液需预热,釜底液体需在再沸器中加热,塔顶产生的蒸汽需冷凝。

这一生产过程中的预热、加热和冷凝也都是通过换热器实现的。

换热器在化工行业中的应用是十分广泛的,各种化工生产工艺几乎都要用到它。

在制冷工业中,以食品冷藏业常用的以氨为制冷剂的蒸汽压缩制冷装置为例,经过压缩机压缩后的气态氨在冷凝器中被冷凝为液体;液化后的高压液态氨在膨胀机或截流阀中绝热膨胀,使温度下降到远低于周围环境的温度;这种低温氨流体在流经蒸发器时(布置在冷藏室中)吸热蒸发而回复到原先进入压缩机时的氨气状态。

然后,再重复新的循环。

在其他各种制冷装置中,都存在着冷凝器和蒸发器等换热器。

在火力发电厂中,装有空气预热器、燃油加热器、给水加热器、蒸汽冷凝器等一系列的换热器。

其实,蒸汽锅炉本身也可以看作是一个大型复杂的换热器。

燃料在炉膛中燃烧产生的热量,通过炉膛受热面、对流蒸发受热面、过热器及省煤气加热工质,使工质汽化、过热成为能输往蒸汽轮机的符合要求的过热蒸汽。

立式热虹吸式再沸器毕业设计

立式热虹吸式再沸器毕业设计

立式热虹吸式再沸器毕业设计摘要本篇毕业设计主要研究了立式热虹吸式再沸器的设计和性能分析,对于该种型号的再沸器进行了深入的研究和探索。

通过对立式热虹吸式再沸器的热工特性和传热机理进行分析,提出了一种优化设计方案,使得该型号再沸器在使用过程中能够更加高效地运行,提高了热能利用率。

在实验过程中,对比了优化前后的性能指标,证明了优化方案的可行性和有效性。

关键词:立式热虹吸式再沸器;传热机理;优化设计;性能指标AbstractKeywords: vertical thermo-siphon reboiler; heat transfer mechanism; optimized design; performance indicators一、引言二、热虹吸式再沸器的传热机理热虹吸式再沸器主要由三部分组成,一个加热器、一个再沸器和一个地下水箱。

由于热水比重小,故而在水箱中形成了温度分层,上层为凉水,下层为热水。

当提高加热器的温度时,热水开始上升,形成热虹吸效应。

热水上升后,流入到水箱下部的再沸器中,并加热未完全再沸的物料,物料受到加热后,再次蒸发并上升,贯穿整个再沸器,最后通过管道排出。

热虹吸式再沸器的传热机理主要由三部分组成,包括对流传热、辐射传热和传导传热。

其中,对流传热是热虹吸效应的主要形式,其原理是利用热量作用在液体上,使得液体的密度发生变化,从而形成自然对流的循环。

在该过程中,辐射传热和传导传热也参与其中。

三、优化设计方案为了提高热虹吸式再沸器的传热效率,在设计过程中,我们提出了一种优化方案,主要包括以下几个方面:(1)加热器的设计在加热器设计中,我们采用了高效的加热元件,并减小加热器对外面空间的影响。

同时也采用了优化导流板等措施,使得加热器可以更加均匀地加热物料。

这些优化措施可以有效提高加热器的能量利用率。

在再沸器的设计中,我们主要采用了优化分层结构的方式,使得水箱中的冷水和热水能够更加有效地分离。

PROII再沸器设计

PROII再沸器设计

PRO/Ⅱ中热虹吸再沸器的设计一、 前言再沸器是在化工设计中经常碰到的一种换热器,它用于分馏塔底,使塔底物料汽化后返回塔内,以提供分馏所需要的热源。

再沸器的热负荷根据分馏塔的要求而定。

化工装置中最常见的是立式热虹吸再沸器,由于塔釜物料在再沸器中加热汽化,汽液混合物的比重显著减小,使再沸器的入口和出口产生静压差,因而不必用泵就可以不断地循环,塔底流体不断地被虹吸入再沸器,加热汽化后再返回塔内。

图一为一典型立式热虹吸再沸器。

在化工设计中,再沸器的设计与普通换热器的设计有些不同,除了象普通换热器一样要计算换热面积、传热系数、平均温差等设计数据外,还要考虑到在设计再沸器时,为保证再沸器操作时的正常循环,还要进行压力平衡计算,最主要的参数就是塔釜液位和再沸器之间的标高差,它是热虹吸再沸器循环的推动力。

塔釜液位和再沸器之间的标高差的大小影响到再沸器循环量(汽化率)的大小,它是热虹吸再沸器设计的重要参数。

二、PRO/II 中热虹吸再沸器的设计PRO/Ⅱ是SIMSCI 公司开发的化工过程模拟软件,已经被世界一些著名的化学公司所采用,其计算模型已成为国际标准,有2000多个纯组分数据库、用于3000条VLE 二元作用的在线二元参数及专业数据包,近40个单元模块,使用严格的最新计算方法,模拟范围广泛,功能齐全,尤其适合大型工业装置,可用于评价已有装置的优化操作或新建、改建装置的优化设计〔1〕。

本文所采用的是PRO/Ⅱ最新的6.0版本。

PRO/Ⅱ软件提供了严格换热器的单元计果利用严格换热器计算模块进行计算,由于程的循环量(即塔釜至再沸器的循环量),无法进行。

而如果在进行严格换热器计算的力平衡计算,那么再沸器的计算也就迎刃而解我们知道,热虹吸再沸器设计中压力平衡它决定了再沸器的安装尺寸,设计时应使压流量的要求。

主要的可变因素是入口的管径位置。

塔釜至再沸器的循环液经部降计算非常繁琐,主要变量为再沸器进出口压力降主要包括以下几个部分:(1)、ΔP1(2)、再沸器出口管线的摩擦损失(3)损失。

立式热虹吸再沸器工艺设计教学文案

立式热虹吸再沸器工艺设计教学文案

立式热虹吸再沸器工艺设计立式虹吸再沸器工艺设计设计一台立式热虹吸再沸器,以前塔顶蒸汽冷凝为热源,加热塔底釜液使其沸腾。

前塔顶蒸汽组成:乙醇0.12,水0.88,均为摩尔分数,釜液可视为纯水。

具体条件及物性如下前言能源是国民经济和社会发展的重要物质基础。

我国资源总量较为丰富,但人均占有资源相对不足,能源和其它重要矿产资源的人均占有量仅为世界平均水平的一半。

化学工业在整个国民经济体系中占有相当重要的地位,其发展速度和水平直接制约着其它许多部门的发展;同时,化学工业又是能源消耗较多的部门,化学工业消耗的各种能源约占全国能源产量的9%,占全国工业耗能的23%。

目前,日趋严峻的资源、环境和安全约束以及市场竞争的压力,要求化学工业必须利用当今先进的技术,改善生产和管理,以实现更高效、低耗、清洁和安全的生产。

在石化企业中,再沸器是精馏塔的重要辅助设备之一,它提供了精馏过程所需的热量,其节能潜力非常大。

再沸器设计的好坏,操作正常与否,直接影响着精馏塔的分离效果。

为了有效的利用能源,对再沸器正确的选择和设计就显得十分重要。

流态化是一门旨在强化颗粒与流体之间接触和传递的工程技术。

近年来,由于生产实际需求的推动,流态化技术得到新的发展,取得的成果越来越多,其优点越来越为人们所认识,并且己经成为引人注目的前沿研究领域。

另外,在化工过程设计中,要应用到大量的基础物性数据。

开发一个数据库,包含这些基本的物性数据或者计算方法,在这些化工过程的设计中,就可以直接从数据库中查取有关的数据,省去烦琐的物性查取和计算的过程,简化设计,因此也是一项十分有意义的工作。

2立式热虹吸再沸器简介:热虹吸再沸器在化学工业中有非常广泛的应用,它具有非常高的传热系数,并且不需要泵来推动工艺流体的循环,从而使得设备费降低。

但是因为在热虹吸再沸器中流体流动和传热之间紧密相关,其设计过程十分复杂,要考虑到许多相关的因素,一般首先要根据工艺要求,同时考虑一些细节因素,选择再沸器的类型此基础上选择压力平衡计算式和传热计算式,进行工艺设计。

立式热虹吸式再沸器的布置及配管

立式热虹吸式再沸器的布置及配管
3.3 框架结构支撑
框架结构支撑是指再沸器同其他设备一起安装在合适的 钢框架上。这种支撑形式也会存在不同膨胀量引起的相对位移, 但是土建投资方面则会优于独立结构。需要注意的是,再沸器布 置于框架内时,容易忽略再沸器上方是否留有足够的抽芯检修 空间,以及设备吊装是否方便。再者,共用框架平台一般很难做 到因再沸器支撑标高而调整框架层高,只能将框架标高设计低 于再沸器支撑标高,通过增加独立的支撑结构来达到合适的要 求标高。这就需要所有设备统筹考虑,甚至加入再沸器支撑弹簧 的因素,综合所有涉及项,完成整个框架和设备的标高确定。
Equipment Layout and Piping Design for Vertical Thermosiphon Reboiler
CHEN Wei-zhong(Beijing Petrochemical Engineering Co., Ltd., Xi’an Branch, Xi’an 710075, China)
1 立式热虹吸式再沸器的特点
热虹吸式再沸器为自然循环式,塔釜的液体进入再沸器被 加热而部分汽化,再沸器入口管线中充满液体,而出口管线中 是汽液两相混合物。再沸器的汽化率越大,则出口管线中物料 的密度越小,两者的密度差就越大,利用进出口管线的密度差 使塔底液体不断被“虹吸”入再沸器,加热汽化后的汽液混合物 则返同塔内,整个过程不需要用泵就可以实现不断循环[1]。这 种物料循环方式,决定了其具有连接管线短、传热系数高、占地 面积小、总投资低等特点。因其与塔管口以较短的管线直接相 连,管程流体不易结垢,加热段的停留时间较短,流率稳定性较 高,实现了良好的可控性。
2.2 支撑形式的确定
ห้องสมุดไป่ตู้
塔器
汽相 液体
蒸汽 再 沸 器

立式热虹吸再沸器机械设计说明书模板

立式热虹吸再沸器机械设计说明书模板

立式热虹吸再沸器机械设计说明书12020年4月19日大连理工大学本科课程设计立式热虹吸式再沸器机械设计说明书学院(系):化工机械与安全学院专业:过程装备与控制工程学生姓名:孔闯学号: 42052指导教师:由宏新、代玉强评阅教师:完成日期: .10.2大连理工大学Dalian University of Technolog摘要本课程设计主要任务是设计1台立式热虹吸式再沸器,作为丙烯-丙烷精馏塔的提馏段加热设备。

在大三下学期的时候已经初步完成了再沸器的工艺部分的设计和核算,本次设计主要进行再沸器的机械部分的计算及校核,包括再沸器各部分的结构说明,筒体壁厚的计算,封头壁厚的计算,管箱法兰和管板的计算,筒体和封头开孔及补强等。

经过3周的工作,已完成了再沸器的机械参数的计算,手工绘制了再沸器的装配图1张和管板零件图1张。

目录摘要 (I)1设计基础 (2)1.1项目背景 (2)1.2设计依据 (2)1.3技术来源及授权 (3)1.4项目简介 (3)2结构工艺说明 (1)2.1管程和壳程物料的选择 (1)2.2换热管 (2)2.3管板 (2)2.3.1 管板结构尺寸 (2)2.3.2 换热管与管板连接 (3)2.3.3 排管及管孔 (4)2.4折流板 (6)2.5接管及连接附件 (7)2.6安全泄放 (9)2.7耳式支座 (10)2.8管箱、管箱法兰与封头 (13)3强度计算 (15)3.1工艺参数计算结果表 (15)3.2计算条件 (16)3.3强度计算 (17)3.3.1 壳程圆筒计算 (17)3.3.2 前端管箱筒体计算 (18)3.3.3 前端管箱封头计算 (20)3.3.4 后端管箱筒体计算 (21)3.3.5 后端管箱封头计算 (22)3.3.6 开孔补强设计计算 (23)3.3.7 兼作法兰固定式管板计算 (26)3.3.8 管箱法兰计算 (35)4结论 (38)附录A 过程工艺与设备课程设计任务书 (40)文档仅供参考1设计基础1.1项目背景本项目来源于大连理工大学过程装备与控制工程专业大四年级过程工艺与设备课程设计题目;设计者为过程装备与控制工程专业在校大四学生,与项目发布者为师生关系;本项目设计装置为立式热虹吸式再沸器。

立式热虹吸再沸器机械设计说明书

立式热虹吸再沸器机械设计说明书

. .理工大学本科课程设计立式热虹吸式再沸器机械设计说明书学院(系):化工机械与安全学院专业:过程装备与控制工程学生姓名:孔闯学号: 201242052指导教师:由宏新、代玉强评阅教师:完成日期: 2015.10.2理工大学Dalian University of Technolog摘要本课程设计主要任务是设计1台立式热虹吸式再沸器,作为丙烯-丙烷精馏塔的提馏段加热设备。

在大三下学期的时候已经初步完成了再沸器的工艺部分的设计和核算,本次设计主要进行再沸器的机械部分的计算及校核,包括再沸器各部分的结构说明,筒体壁厚的计算,封头壁厚的计算,管箱法兰和管板的计算,筒体和封头开孔及补强等。

通过3周的工作,已完成了再沸器的机械参数的计算,手工绘制了再沸器的装配图1和管板零件图1。

目录摘要 (I)1设计基础 (2)1.1项目背景 (2)1.2设计依据 (2)1.3技术来源及授权 (2)1.4项目简介 (2)2结构工艺说明 (1)2.1管程和壳程物料的选择 (1)2.2换热管 (1)2.3管板 (1)2.3.1 管板结构尺寸 (1)2.3.2 换热管与管板连接 (2)2.3.3 排管及管孔 (3)2.4折流板 (5)2.5接管及连接附件 (5)2.6安全泄放 (7)2.7耳式支座 (7)2.8管箱、管箱法兰与封头 (11)3强度计算 (13)3.1工艺参数计算结果表 (13)3.2计算条件 (14)3.3强度计算 (15)3.3.1 壳程圆筒计算 (15)3.3.2 前端管箱筒体计算 (16)3.3.3 前端管箱封头计算 (17)3.3.4 后端管箱筒体计算 (19)3.3.5 后端管箱封头计算 (20)3.3.6 开孔补强设计计算 (21)3.3.7 兼作法兰固定式管板计算 (24)3.3.8 管箱法兰计算 (33)4结论 (36)附录A 过程工艺与设备课程设计任务书 (38)1设计基础1.1项目背景本项目来源于理工大学过程装备与控制工程专业大四年级过程工艺与设备课程设计题目;设计者为过程装备与控制工程专业在校大四学生,与项目发布者为师生关系;本项目设计装置为立式热虹吸式再沸器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立式热虹吸再沸器机械设计说明书大连理工大学本科课程设计立式热虹吸式再沸器机械设计说明书学院(系): 化工机械与安全学院专业: 过程装备与控制工程学生姓名: 孔闯学号: 201242052指导教师: 由宏新、代玉强评阅教师:完成日期: 2015、10、2大连理工大学Dalian University of Technolog摘要本课程设计主要任务就是设计1台立式热虹吸式再沸器,作为丙烯-丙烷精馏塔的提馏段加热设备。

在大三下学期的时候已经初步完成了再沸器的工艺部分的设计与核算,本次设计主要进行再沸器的机械部分的计算及校核,包括再沸器各部分的结构说明,筒体壁厚的计算,封头壁厚的计算,管箱法兰与管板的计算,筒体与封头开孔及补强等。

通过3周的工作,已完成了再沸器的机械参数的计算,手工绘制了再沸器的装配图1张与管板零件图1张。

目录摘要 (I)1设计基础 (2)1、1项目背景 (2)1、2设计依据 (2)1、3技术来源及授权 (2)1、4项目简介 (2)2结构工艺说明 (1)2、1管程与壳程物料的选择 (1)2、2换热管 (1)2、3管板 (1)2、3、1 管板结构尺寸 (1)2、3、2 换热管与管板连接 (2)2、3、3 排管及管孔 (3)2、4折流板 (4)2、5接管及连接附件 (5)2、6安全泄放 (6)2、7耳式支座 (7)2、8管箱、管箱法兰与封头 (11)3强度计算 (12)3、1工艺参数计算结果表 (12)3、2计算条件 (13)3、3强度计算 (14)3、3、1 壳程圆筒计算 (14)3、3、2 前端管箱筒体计算 (15)3、3、3 前端管箱封头计算 (16)3、3、4 后端管箱筒体计算 (18)3、3、5 后端管箱封头计算 (19)3、3、6 开孔补强设计计算 (20)3、3、7 兼作法兰固定式管板计算 (23)3、3、8 管箱法兰计算 (32)4结论 (35)附录A 过程工艺与设备课程设计任务书 (36)1设计基础1.1项目背景本项目来源于大连理工大学过程装备与控制工程专业大四年级过程工艺与设备课程设计题目;设计者为过程装备与控制工程专业在校大四学生,与项目发布者为师生关系;本项目设计装置为立式热虹吸式再沸器。

1.2设计依据过程工艺与设备课程设计任务书(见附录A)《固定式压力容器安全技术监察规程》TSG R0004-2009《压力容器》GB 150-2011《热交换器》GB/T 151-2014《长颈对焊法兰》JB/T 4703-2000《无缝钢管尺寸、外形、重量及允许偏差》GB/T 17395-2008《钢制压力容器封头》JB/T 4746-2002《承压设备无损检测》NB/T47013-2015《石油化工钢制管法兰用紧固件》SH/T 3404-20131.3技术来源及授权《化工单元过程及设备课程设计》,匡国柱、史启才主编,化学工业出版社,2002年。

《化学化工物性数据手册》(有机卷),刘光启、刘杰主编,化学工业出版社,2002年。

《化工原理》(下册),大连理工大学,高等教育出版社,2009年。

SW6-2011化工设备设计软件1.4项目简介精馏就是分离液体混合物(含可液化的气体混合物)最常用的一种单元操作,在化工、炼油、石油化工等工业中得到广泛应用。

板式精馏塔就是常见的精馏分离设备,结构上,板式精馏塔就是一圆形筒体,塔内装有多层塔板,塔中部适宜位置设有进料板,两相在塔板上相互接触与分离。

在板式塔提馏段底部会设置再沸器,再沸器的作用就是将塔底液体部分汽化后送回精馏塔,使塔内气液两相间的接触传质得以连续进行。

本设计采用立式热虹吸式再沸器,它就是一垂直放置的管壳式换热器。

液体在自下而上通过换热器管程时部分汽化,由在壳程内的载热体供热。

立式热虹吸再沸器就是利用塔底单相釜液与换热器传热管内汽液混合物的密度差形成循环推动力,构成工艺物流在精馏塔底与再沸器间的流动循环。

这种再沸器具有传热系数高,结构紧凑,安装方便,釜液在加热段的停留时间短,不易结垢,调节方便,占地面积小,设备及运行费用低等显著优点。

同时,由于结构上的原因,壳程不能采用机械方法清洗,因此不适宜用于高粘度或较脏的加热介质;而且,由于就是立式安装,因而会增加塔的裙座高度。

为提高本项目的设计计算准确性,本设计采用了业内常用的化工设备设计软件SW6-2011进行计算校核。

2结构工艺说明2.1管程与壳程物料的选择本立式热虹吸再沸器用于对提馏段的丙烯丙烷凝液加热,使其气化返回塔底,继续进行精馏分离,丙烯丙烷为低毒易燃介质,工作压力1、79MPa。

加热介质为饱与水蒸气,干净清洁,工作压力0、1MPa。

根据换热器设计经验,管程与壳程介质的选择一般遵循以下原则:(1)易结垢的流体走管程,便于检修及时清洗除垢;(2)具有腐蚀性的流体应走管程,可防止管束与壳体材质受腐蚀,且便于管子清洗检修;(3)易燃易爆、有毒流体走管程,减少泄漏机会,避免引起人员中毒或者爆炸;(4)高压流体走管程,以防壳体受压,节省壳体材料;(5)被冷却流体走壳程,可借外壳向外的散热作用使壳体散热,增强冷却效果;(6)流量大、粘度大的流体走壳程,流量小的流体走管程;(7)饱与蒸汽走壳程,便于及时排出冷凝液,且蒸汽洁净清洗方便;(8)需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用多管程以增大流速。

(9)物料不同,走法也就不同,应根据实际情况,选择液体流径。

故,本换热器丙烯丙烷凝液走管程,加热蒸汽走壳程。

2.2换热管根据工艺计算结果,本再沸器换热管尺寸为φ25×2,长度L=3000mm,数量为245根,管心距32mm,材料选用10g,Ⅰ级管束,外径允许偏差±0、10mm,制造及检验标准为GB/T 17395-2008。

因壳程为清洁水蒸气,管束无需清洗,故管束排列方式为正三角形排列。

2.3管板2.3.1管板结构尺寸本再沸器管板采用固定管板兼做法兰的结构形式,根据工艺计算结果要求,本再沸器为单管程单壳程结构,管板无需开分程槽,具体结构尺寸如图2、1、图2、2。

图2、1管板结构尺寸图2、2管板法兰结构尺寸2.3.2换热管与管板连接根据GB151-2014中6、6、1要求,强度胀接具有结构简单,管子更换与修补容易的特点,故本装置换热管与管板采用胀接连接,其的适用范围如下:a)设计压力小于或等于4、0MPa;b)设计温度小于或等于300℃;c)操作中无振动,无过大的温度波动及明显的应力腐蚀倾向。

本再沸器设计压力1、9MPa,设计温度100℃,操作平稳且无明显应力腐蚀倾向,满足上述条件,故换热管与管板采用胀接连接,胀度k=7%,管孔尺寸如图2、3示。

图2、3管孔尺寸2.3.3排管及管孔管板排孔限位圆直径为549mm,排管如图2、4、图2、5,管板开4个拉杆开孔,开孔尺寸见图2、6。

图2、4排管图图2、5管孔尺寸图2、6拉杆螺孔尺寸2.4折流板本再沸器选用拱形折流板,弓形折流板引导流体垂直流过管束,流经缺口处顺流经过管子后进入下一板间,改变方向,流动中死区较少,能提供高度的湍动与良好的传热。

其结构尺寸见图2、7,板厚8mm,全换热器布置7个折流板,折流板间距400mm。

图2、7折流板尺寸2.5接管及连接附件根据工艺计算结果要求,查GB/T 17395-2008选取接管规格及尺寸见表2-1。

表格2-1接管数据接管编号规格DN公称压力/bar外径/mm壁厚/mm长度/mm重量/Kg用途a 250 25 273 12 200 15、45管程出料口b 200 25 219 10 200 10、31管程进料口c 150 2、5 159 4、5 200 3、8 壳程出料d 100 2、5 108 4 150 2、05 壳程进料e 50 25 57 3、5 150 0、92 安全阀接管f、g 20 2、5 2 2、5 150 0、21 液位计接管h、i 20 2、5 25 2、5 150 0、21 排气、排液接管根据HG/T 20592-2009为接管选用配套的连接件,板由于式平焊钢制管法兰取材方便,制造简单,成本低,使用广泛,具有良好的综合性能,因此本装置的管法兰全部选用板式平焊钢制管法兰,具体结构及连接尺寸见图2、8与表2-2图2、8板式平焊法兰结构表格2-2接管法兰及连接附件注:排气与排液接管孔工作时常闭,用法兰盖密封。

2.6安全泄放对安全阀接管需计算其最小泄放面积,安全阀安装在再沸器上管箱筒节处,介质为饱与丙烯丙烷蒸汽,输入热量H=1622.39kW=5、84×106 kJ/h,泄放压力,泄放压力下液体汽化潜热q=265、8 kJ/kg,根据GB 150、1-2011附录B中要求,选用全启式安全阀,由制造厂提供的泄放系数为K=0、65。

(1)容器安全泄放量为:接管法兰螺栓规格DN 公称压力/bar法兰外径D螺栓孔中心圆直径K厚度mm重量/Kg螺栓孔直径L螺栓孔数量规格长度/mm250 25 425 370 35 20、2 30 12 M27 110 200 25 360 310 32 14、2 26 12 M27 100 150 2、5 265 225 20 5、14 18 8 M16 65 100 2、5 210 170 18 3、41 18 4 M16 60 50 25 165 125 20 2、77 18 4 M16 65 20 2、5 90 65 14 0、6 11 4 M10 45 20 2、5 90 65 14 0、6 11 4 M10 45(2)安全阀最小泄放面积A:最小接管内径为,所以选用的φ50的接管满足要求。

2.7耳式支座本换热器由于立式安装,故采用耳式支座,具体结构尺寸见图2、9。

图2、9耳式支座以下各部分计算内容系根据JB/T 4712、3-2007《容器支座第3部分:耳式支座附录A》进行设计计算。

计算数据:设计压力P MPa1、9示意图:设计温度t ℃100壳体内径Di mm600m设备保温厚m m设备外径DOmm616支座数量n2不均匀系数k 1所选耳式支座型号JB/T4712、3-2007,耳式支座B 2-Ⅰ1、耳座安装尺寸计算901、52 mm2、耳座载荷计算地震载荷1954、904 N风载荷1454、967 N水平力P 取PW与Pe+0、25PW的大值,NPe+0、25PW = 2318、64584 N因此P=2318、64584 N耳式支座实际承受载荷16、07605kN3、计算支座处圆筒所受的支座弯矩2、250647684校核所选耳式支座耳式支座本体允许载荷[Q]kN 60 (根据所选支座查表3,表4,表5得到) 支座处圆筒的许用弯矩[ML]74、27 (根据δe与p查表B、1内插得到)判断依据:Q<[Q]且ML<[ML],所选耳式支座合格耳式支座最终校核结果合格附表1 风压高度变化系数fi距地面高度H it 地面粗糙度类别A B C5 1、17 1、000、7410 1、38 1、000、7415 1、52 1、140、7420 1、63 1、250、8430 1、80 1、421、0040 1、92 1、561、1350 2、03 1、671、2560 2、12 1、771、3570 2、20 1、861、4580 2、27 1、951、5490 2、34 2、021、62100 2、40 2、1、09 70150 2、64 2、382、03附表2 对应于设防烈度αmax值设防烈度7 8 9设计基本地震加速度0、1g 0、15g 0、2g 0、3g 0、4g地震影响系数最大值αmax0、08 0、12 0、16 0、24 0、322.8管箱、管箱法兰与封头根据GB151-2014中6、2本立式再沸器选用B型封头管箱结构,封头选用标准椭圆封头其结构尺寸见图2、10;根据《化工单元过程及设备课程设计》第122页管箱结构尺寸要求,管箱圆筒长度取L=200 mm,根据JBT4703-2000管箱法兰选用长颈对焊法兰,结构尺寸见图2、11。

相关文档
最新文档