[工学]第五章 抗 沉 性

合集下载

第六章 船舶抗沉性

第六章 船舶抗沉性

在船舶设计中,是通过在船壳内用水密舱 壁分隔船体成适当数量的舱室的方法来满 足船舶的抗沉性要求。
第一节 进水舱的分类及渗透率
一、进水舱的分类
在抗沉性计算中,根据船舱进水情况,可将船舱分为下列 三类

1.第一类舱 舱的顶部位于水线以下,船体破损后海水灌满整个舱室, 但舱顶未破损,因此舱内没有自由液面。双层底和顶盖在 水线以下的舱柜等属于这种情况。
三、渗透率
船舱内有各种结构构件、设备、机械和货物等,它们在舱 内已占据了一定的空间。因此, 船舱内实际进水的体积 V1 总是小于空舱的型体积V。两者的比值称为体积渗透率
μV :
体积渗透率μV的大小视舱室用途及货物装载情况而定
V1 v V0
各种处所及货物的渗透率
舱室名称 客舱、船员 住室、双层 95% 底、尖舱 蒸汽机舱 柴油机舱 80% 85% 罐装食物 30% 低渗透率货物 面粉(包装) 29% 高渗透率货物 家俱(箱装) 80% 机器(箱装) 85% 车 胎 85% 一般货物 羊肉,羊皮 55.2%
可浸长度的确定系假定进水舱的渗透率μ= 1.0 , 事实上 各进水舱的μ总是小于1.0 的, 故在 “可浸长度曲线图上” 通常还画出实际的可浸长度曲线,并注明μ的具体数值
二、分舱因数及许用舱长
如果船舶货舱的长度等于其长度中点处的可浸长度,则该 舱破损进水后,水线恰与下沉限界线相切。然而不同的船 舶对抗沉性的要求不同,因此在我国《船舶与海上设施法 定检验规则》中采用了一个分舱因数F来决定许用舱长
2.第二类舱 进水舱未被灌满,舱内的水与船外的海水不相联通,有自 由液面。为调整船舶浮态而灌水的舱以及船体破洞已被堵 塞但水还没有抽干的舱室属于这类情况。 3.第三类舱 舱的顶盖在水线以上,舱内的水与船外海水相通,因此舱 内水面与船外海水保持同一水平面。这是船体破舱中最为 普遍的典型情况,对船的危害也最大。

[工学]第五章 弹塑性模型理论

[工学]第五章 弹塑性模型理论

第五章 弹塑性模型理论5.1 概述弹塑性理论可以分为两种,塑性增量理论和塑性全量理论。

塑性增量理论又称塑性流动理论,塑性全量理论又称塑性形变理论。

在塑性增量理论中,将物体在弹塑性变形阶段的应变ij ε分为两部分:弹性应变e ij ε和塑性应变p ij ε。

塑性应变增量ij d ε的表达式为e p ij ij ij d d d εεε=+ (5.1.1)式中,弹性应变增量d e ij ε可以用广义虎克定律计算,塑性应变增量d p ij ε可以根据塑性增量理论计算。

塑性增量理论主要包括三部分:(1) 屈服面理论;(2) 流动规则理论;(3) 加工硬化(或软化)理论。

在塑性形变理论中是按全量来分析问题的。

它在盈利状态和相应的应变状态之间建立一一对应的关系。

塑性形变理论实质上是把弹塑性变形过程看成是非线性弹性变形过程。

严格说,在弹塑性变形理论的应用是有条件的。

严格讲,只有在等比例加载条件下,应用塑性变形理论可以得到精确解。

所谓等比例加载是指在加载过程中,各应力分量是按同一比例增加的。

严格的等比例加载是很难满足的,在土工问题中可以说是不可能的。

在简单加载条件下应用塑性形变理论分析有时也可以取得较好效果。

近些年来建立的土体弹塑性模型大部分是根据塑性增量理论建立的。

本章主要介绍塑性增量理论,在最后一节简要介绍塑性形变理论。

5.2 屈服面得概念首先讨论理想弹塑性材料。

理想弹塑性材料受力到什么程度才开始发生塑性变形呢?在简单拉伸时,问题是很明显的。

当应力等于屈服应力σs 时,塑性变形开始产生。

σs 值是可以在拉伸试验应力-应变曲线上找到的。

然而在复杂应力状态时,问题就不是这样简单了。

一点的应力状态由六个应力分量确定。

在复杂应力状态下,显然不能任意选取某一个应力分量的数值作为判断材料是否进入塑性状态的标准。

因此需要在应力空间或应变空间来考虑这一问题。

在土塑性力学中,常用的应力空间有三维主应力空间、p 、q (或σm ,σ1-σ3)应力平面、以及132σσ+,132σσ-应力平面等。

抗沉性

抗沉性

1:舱顶在水线以下且封闭的。

进水后舱室充满水,进水量不变,无自由液面。

此类侵水对船舶的稳性和浮态影响较小,可作为装载固体质量来处理。

2:舱顶在水线以上,舱内和舱外水不相同,有自由液面,作为增加液体重量来考虑,并考虑自由液面。

3:舱顶在水线以上,破口在舷侧水线附近或以下,进水后舱内和舱外水想通,水面保持一致。

实质是损失了一部分浮力,用逐步逼近增重法来计算进水后的浮态和稳态。

:4:浮态:船体破损侵水后的最终平衡水线沿船舷距甲板上边缘至少要有76mm的干舷高度。

稳性;对称浸水,当采用固定排水量法计算时,最终平衡状态的剩余稳性高度GM》50mm,不对称时可允许横倾角大于7.
5:舱壁甲板:横向水密舱板所能够达到的最高一层的甲板。

限界线;舱壁甲板上表面以下76mm的线。

分舱载重线:决定分舱长度时的载重线。

可浸长度:沿着船长方向以某一点c为中心的舱,在规定的分舱载重线和渗透率的情况下,以C点所做的舱的长度。

许可舱长:考虑到船长和船舶业务性质对抗沉性要求时所允许的实际舱长,称为许可舱长。

渗透率:舱室实际进水量与理论进水量之比。

6:有区别,因为钢材和面粉的渗透率不同。

7:一:实际装载的渗透率的u值大于规定值二是:船舶破舱浸水钱的载重水线低于规定的分舱载重线。

化工热力学 第五章

化工热力学  第五章

露点:当第一个液滴在一定压力下出现时的温度。
恒沸点: 达到平衡时汽液两相组成相等,即xi=yi。
沸程:
南阳理工学院
生化学院
化工热力学
第五章
相平衡热力学
二元组分汽液平衡关系,不是一条
线来描述的,而是用一个区域来描
述的,图中实线为泡点线MCm,虚线 为露点线NCm,不同的溶液组成,就 对应不同的汽液平衡关系,在整个 溶液范围内组成了一个上拱形的泡 K P
p2

C1 T C1
p
等压面
p1
等温面
K
0 汽
x1 , y1
TB1
1
T
U
图5-2二元汽-液平衡图
南阳理工学院
生化学院
化工热力学
第五章
相平衡热力学
T y1露点线
p=常数 A B C D E C” D” V
等x,y面线
T2
T
V/L B’ T’ C’ D’
等压面
T1
T x1泡点线 x1 y1 x1 , y1 0 1 图5-3(a) 二元气液平衡T-x-y图
化工热力学
第五章
相平衡热力学
第五章
第七章
相平衡
南阳理工学院
相 平 衡 热 力 学
生化学院
化工热力学
第五章
相平衡热力学
目的和要求:
混合物相平衡理论是论述相平衡时系统T、p 和各 相组成以及其它热力学函数之间的关系与相互间的 推算。 相平衡是分离技术及分离设备开发、设计的理论 基础。

即在一定温度T,压力p下处于平衡状态的多相多组分 系统中,任一组分 i 在各相中的组分逸度必定相等。
南阳理工学院

第五章 船舶舱室设计

第五章 船舶舱室设计

( l )满足使用要求。 (2 )符合规范、公约约束。 (3 )紧密地与船体设计配合。 ( 4 )注意船体结构。 (5 )充分考虑船舶制造工艺,特别是现代船舶制
造工艺中壳舾涂一体化和模块化问题。
( 6 )给人以“美感”。这是舱室与区划在美学上 的要求。在设计时要充分体现舱室的特点,形成 其特定的性格和风格。
(1)甲板区域划分与平面布置; (2)舱室防火分隔; (3)甲板敷料布置; (4)绝缘材料布置; (5)舱室内装节点布置; (6)舱室预埋件布置; (7)门窗布置; (8)灯具空调布置; (9)梯道布置; (10)各工作舱室布置; (11)各公共舱室布置; (12)备品、装饰品订货明细表; (13)舱室供应品、备品清单明细表。
舱室的适用性在于最大限度地发挥其使用功能,以多种形 式美融于内在功能之中。这是设计的目的,也是设计的核心。
合理是工程技术最起码的要求。合理应包括结构形式合理、 空间上的合理、用材合理有效,最重要的是符合工艺设计要 求。安全是舱室设计中不可忽视而受约束的问题。国际公约 和各国规范都有严格的规定。舱室设计中直接涉及的安全问 题是防火和应急逃生,此外涉及船舶的性能,如稳性、抗沉 性,涉及设备的安全使用,船员和旅客的安全健康等因素。
舱室设计中着重考虑船舶的结构防火设计。尽 量使船体结构和防火结构两者结合起来,完成防 火主竖区的水平方向和垂直方向的分隔,也尽量 减轻上层建筑的整体重量,保证船舶(特别是客 船)具有足够的完整稳性。
舱室设计的总体原则为适用、合理、安全、舒适和经济。 适用就是设计中充分考虑其使用要求,并研究如何能有效地 发挥舱室的使用功能。如驾驶室能有利于驾驶、操作和全船 指挥;居住舱室利于船员或乘客休息和活动;厨房利于烹调 和配膳。
(l )沟通上层建筑内部的各个区域; (2 )对房舱与邻居住区域或其他区域进行隔音、隔热,并维

船舶抗沉性

船舶抗沉性

2012-2-27
船舶抗沉性 船舶抗沉性船舶抗沉性
14
四 机舱进水的应急措施
机舱当值人员发现机舱进水时, 1 ) 机舱当值人员发现机舱进水时 , 应迅速报告值班轮机员或 轮机长, 轮机长,同时应设法进行抢救以防止事态扩大 。 值班轮机员或轮机长闻讯后应迅速进入机舱到达现场, 2 ) 值班轮机员或轮机长闻讯后应迅速进入机舱到达现场 , 同 时命令机舱全体人员进入机舱听候分配, 时命令机舱全体人员进入机舱听候分配,并将进水情况上报驾驶 台或船长 。 值班人员应保证主、副机正常运转,必要时可减速、 3)值班人员应保证主、副机正常运转,必要时可减速、备车航 行或停车,以及开启应急发电机。 行或停车,以及开启应急发电机。 在保证船舶安全航行前提下,奋力做好堵漏抢救工作。 4)在保证船舶安全航行前提下,奋力做好堵漏抢救工作。
2012-2-27 船舶抗沉性船舶抗沉性 9
三 船舶堵漏
1)破损位置的确定
判断和确定破洞位置和大小的方法有: 判断和确定破洞位置和大小的方法有: (1)预判 触礁或搁浅时,船体破损部位多在船底; ①触礁或搁浅时,船体破损部位多在船底; 船舶碰撞时,破洞部位多在水线附近; ②船舶碰撞时,破洞部位多在水线附近; 根据船体纵横倾来判断,破洞部位一般在船舶倾斜—侧 ③根据船体纵横倾来判断,破洞部位一般在船舶倾斜 侧。 ( 2 )听 仔细倾听漏水声音和冒气声。 仔细倾听漏水声音和冒气声。 双层底舱进水,则其空气管和测深管会有出气声; ①双层底舱进水,则其空气管和测深管会有出气声; 大舱进水可从舱内听到流水声; ②大舱进水可从舱内听到流水声; 邻舱进水可通过敲击钢板发出的声音来判断水位。 ③邻舱进水可通过敲击钢板发出的声音来判断水位。 ( 3) 看 察看舱内水流的动向可判定破洞位置; ①察看舱内水流的动向可判定破洞位置; 当进水水位超过破洞口时,水面会冒出气泡, ②当进水水位超过破洞口时,水面会冒出气泡,从气泡的大小和间隔时间可推测破洞的 大小; 大小; 观察舷外是否有油渍外渗,可判断油舱柜内是否有漏损。 ③观察舷外是否有油渍外渗,可判断油舱柜内是否有漏损。 (4)测 通过测量各污水沟、压载舱等水量变化来判断船体是否破损。 通过测量各污水沟、压载舱等水量变化来判断船体是否破损。

抗沉性

抗沉性

2、计算步骤及计算公式
(1)平均吃水的增量
v d Aw a
( xF , y F ) (2)剩余水线面面积的漂心位置F′
A x axa xF w F Aw a
yF

ay a Aw a w
(3)剩余水线面面积(Aw-a)对通过其漂心F′的横向及纵向惯性距
I T I T (i x ay a ) ( Aw a) y F
i y GM L P P
tg
tg
Py ( P )G1 M 1
P( x x F ) ( P )G1 M L1
(6)由纵倾引起的首尾吃水变化
d F ( x F )
d A ( x F )
L 2
L 2
P( x x F ) ( P)G1 M L1
第五章 抗沉性
本章重点
1 、船舶在一舱或数舱进水后浮态及稳性 ( 破舱稳性 Impaired stability)的计算。 2、从保证船舶抗沉性的要求出发,计算分舱的极 限长度即可浸长度的计算。
● 抗沉性定义:指船舶在一舱或数舱破损进水 后仍能保持一定浮性和稳性。 ● 在船舶设计阶段,需要考虑抗沉性问题,抗 沉性是用水密舱壁将船体分隔成适当数量的 舱室来保证的,要求一舱或数舱进水后,船 舶的下沉不超过规定的极限位置,并保持一 定的稳性。
P( x x F ) ( P)G1 M L1
(7)船舶最后的首尾吃水
' dF d F d d F
' dA d A d d A
三、第三类舱室
这类舱室舱内的水面与船外海水保持在同一水平面上,其进水量需 由最后水线来确定,而最后水线位置又与进水量有关。

工学分析化学第五章氧化还原滴定分析法1

工学分析化学第五章氧化还原滴定分析法1
Sn2++2HgCl2=Sn4++Hg2Cl2↓+2Cl6Fe2++Cr2O72-+14H+=6Fe3++2Cr3++7H2O
指示剂:二苯胺磺酸钠,浅绿→蓝紫 ' 0.85V
变色点 落在突跃范围之外,加入
H3PO4. [Fe(HPO4)2]-:改变滴定的突跃范围,消除了
Fe 的颜色干扰。 3+ 1000 6cK2Cr2O7 VK2Cr2O7 M Fe m
/Fe 2
0.0592lg
c(Fe3 c(Fe2
) )
当 V=19.98mL时, 有99.9%的Fe2+被氧化
,则
19.98 0.1000 cFe3 20.00 19.98
20.00 0.1000 19.98 0.1000
c Fe2
20.00 19.98
Fe3 / Fe2 0.86V
3.计量点
k 10
3( n1 n2 )
将此式代入上右式得
' 1
2
'
0.177
n1 n2 n1n2
若上两式之一成立,认为氧化还原反应进行 的完全,可用于滴定分析,且Er≤0.1% .
一般
, ' 1
2
'
0.4V 反应就能定量完成,符合
滴定分析的要求。
§3 氧化还原滴定曲线
一、滴定曲线 -V
Ce(SO4)2 FeSO4 , 1mol/LH2SO4 Fe3++e = Fe2+
θ'(Fe3 / Fe2 ) 0.75
0.70
0.68
0.44
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
船舱内实际进水体积 体积渗透率 空舱的型体积

V1 V
体积渗透率μv的大小视舱室用途及装载情况而定, 我国《海船法定检验技术规则》规定的μv的数值加表5-l 所示。
面积渗透率:进水面积a1与空舱面Байду номын сангаасa
船舱内实际进水的面积 面积渗透率 空舱的面积
a1 a a

a1 a a
y
x L/2
C L/2
z
W W1
xF
C
L1 d L
—,纵稳性高为GM —L,水线面面积为AW, 吃水为d),横稳性高为GM
进入该舱的水看成是在C处增加了重量为p=ωV的液体载荷,进水 舱内自由液面对于其本身的纵向主轴和横向主轴的惯性矩分别为ix
船舶原浮于水线WL处,排水量为△ ,首尾吃水为dF及dA(平均
漂心纵向坐标为xF,进水舱的体积为V,其重心在C(x,y,z)处。可把
及iy 。对于这类舱室,进水后船舶的浮态及稳性按下列步骤进行计算。
舱室进水后船舶的浮态及稳性计算
p 1.平均吃水增量: d wAW wix p d (d z GM ) 2.新的横稳性高: G1M 1 GM p 2 p wiy GM L 3.新的纵稳性高: G1M L1 p p py 4.横倾角正切: tg ( p)G1M 1
p d AW p d G1 M 1 GM (d z GM ) p 2 G1 M L1 GM L p py tg ( p)G 1 M 1
4.横倾角正切
5.纵倾角正切
p ( x xF ) tg ( p )G1M L1
L p ( x xF ) 6.由于纵倾而引起 d F ( xF ) 2 ( p )G1M L1
' F
7.船舶最后的 d d F d d F 首尾吃水: '
d A d A d d A
三、第三类舱室
这类舱室破损进水后,舱内的水面与船外海水保持同一水平面, 其进水量需由最后的水线来确定,而最后的水线位置又与进水量 有关。因此,用增加重量法进行计算就很不方便。对于这类舱室 宜采用损失浮力法来进行计算,并认为舱室进水后船的排水量和 重心位置保持不变。
应该指出,用上述两种方法计算所得的最后结果 (如复原力矩、横倾角、纵倾角、船舶的首尾吃水等)是
完全一致的。但由于两种方法计算的排水量▽不同, — — 它们的横稳性高GM和纵稳性高GML也不同。
三、渗透率
由于舱内有各种结构构件、设备、机械和货物,舱内 实际进水的体积V1总是小于空舱的型体积V,两者之比成 为体积渗透率:
二、计算抗沉性的两种基本方法
船舶破损进水后,如进水量不超过10~15%, 则可以应用初稳性公式来计算船舶进水后的浮态和 稳性,其结果误差甚小。
计算船舱进水后船舶浮态和稳性的基本 方法:
1. 增加重量法:把破舱后进入船内的水看成是增加的 液体重量; 2. 损失浮力法(固定排水量法):把破舱后的进水区 域看成是不属于船的,即该部分的浮力已经损失, 损失的浮力借增加吃水来补偿。对于整个船舶来说, 其排水量不变,故又称为固定排水量法。
v与a 之间并无一定联系,通常v小于a,但并 非一定 。在一般计算中,可取v=a 。
5-2 舱室进水后船舶浮态及稳性计算
一、第一类舱室
对于这类舱室,用增加重量法进行计算比较方便,可直接应 用第3章中的有关结论。
— 及dA(平均吃水为d),排水量为△,横稳性高为GM,纵稳性高 为— GML,水线面面积为AW,漂心纵向坐标为xF,进水舱的体积
我国船舶检验局颁发的《船舶与海上设施法定 检验规则》有明确规定,以保证安全航行。
保证船舶的不沉性或抗沉性的基本措施是:
用水密舱壁将船体分隔成适当数量的舱室来保证 的,要求当一舱或数舱进水后,船舶的下沉不超过规 定的极限位置,并保持一定的稳性。
抗沉性研究的问题:
船舶在一舱或数舱进水后浮态及稳性的计算;从 保证船舶抗沉性要求出发,计算分舱的极限长度,即 可浸长度。
第五章
第一节
抗 沉 性
进水舱的分类及渗透率 第二节 舱室进水后船舶浮态及稳性的计算 第三节 可浸长度的计算 第四节 分舱因数及许可舱长 第五节 客舱分舱和破舱稳性计算
概述
抗沉性——指船舶在一舱或数舱破损后仍能 保持一定的浮性和稳性的能力。
抗沉性要求:
军用舰船﹥民用船舶(客船﹥货船)
§5-1 进水舱的分类及渗透率
一、进水舱的分类
1.第一类舱:舱的顶部位于水线以下,船体破损后 海水灌满整个舱室,但舱顶未破损,因此舱内没 有自由液面;双层底和顶盖在水线以下的舱柜属 于这种情况。 2.第二类舱:进水舱未被灌满,舱内的水与船外的 海水不相连通,有自由液面;为调整船舶的浮态 而灌水的舱以及船体破洞已被堵塞但水还没有抽 干的舱室都属于这种情况。 3.第三类舱:舱的顶盖在水线以上,舱内的水与船 外海水相通,因此舱内水面与船外海水保持同一 水平面。这种船体破损较为普遍,也是最典型的 情况。
首尾吃水变化
7.船舶最后的首 尾吃水
L p ( x xF ) d A ( x F ) 2 ( p )G1M L1
' dF d F d d F ' dA d A d d A
二、第二类舱室
舱内的水虽与船外海水不相联通,但因舱室未被灌 满,故存在自由液面。在用增加重量法进行计算时, 要考虑到自由液面对稳性的影响。
为V,其重心在C(x,y,z)处。可把进入该舱的水看成是在C处增
如图所示,船在舱室进水前浮于水线WL处,首尾吃水为dF
加了重量为p=ωV的液体载荷,且没有自由液面。因此,舱室 进水后船舶的浮态及稳性可按下列步骤进行计算。
舱室进水后船舶的浮态及稳性计算步骤
1.平均吃水增量
2.新的横稳性高 3.新的纵稳性高
5.纵倾角正切: tg
p ( x xF ) ( p )G1M L1
6.由于纵倾而引 d ( L x ) p ( x xF ) F F 起首尾吃水变 2 ( p )G1M L1 化:
L p ( x xF ) d A ( x F ) 2 ( p )G1M L1
相关文档
最新文档