抗沉性
第六章 船舶抗沉性

在船舶设计中,是通过在船壳内用水密舱 壁分隔船体成适当数量的舱室的方法来满 足船舶的抗沉性要求。
第一节 进水舱的分类及渗透率
一、进水舱的分类
在抗沉性计算中,根据船舱进水情况,可将船舱分为下列 三类
:
1.第一类舱 舱的顶部位于水线以下,船体破损后海水灌满整个舱室, 但舱顶未破损,因此舱内没有自由液面。双层底和顶盖在 水线以下的舱柜等属于这种情况。
三、渗透率
船舱内有各种结构构件、设备、机械和货物等,它们在舱 内已占据了一定的空间。因此, 船舱内实际进水的体积 V1 总是小于空舱的型体积V。两者的比值称为体积渗透率
μV :
体积渗透率μV的大小视舱室用途及货物装载情况而定
V1 v V0
各种处所及货物的渗透率
舱室名称 客舱、船员 住室、双层 95% 底、尖舱 蒸汽机舱 柴油机舱 80% 85% 罐装食物 30% 低渗透率货物 面粉(包装) 29% 高渗透率货物 家俱(箱装) 80% 机器(箱装) 85% 车 胎 85% 一般货物 羊肉,羊皮 55.2%
可浸长度的确定系假定进水舱的渗透率μ= 1.0 , 事实上 各进水舱的μ总是小于1.0 的, 故在 “可浸长度曲线图上” 通常还画出实际的可浸长度曲线,并注明μ的具体数值
二、分舱因数及许用舱长
如果船舶货舱的长度等于其长度中点处的可浸长度,则该 舱破损进水后,水线恰与下沉限界线相切。然而不同的船 舶对抗沉性的要求不同,因此在我国《船舶与海上设施法 定检验规则》中采用了一个分舱因数F来决定许用舱长
2.第二类舱 进水舱未被灌满,舱内的水与船外的海水不相联通,有自 由液面。为调整船舶浮态而灌水的舱以及船体破洞已被堵 塞但水还没有抽干的舱室属于这类情况。 3.第三类舱 舱的顶盖在水线以上,舱内的水与船外海水相通,因此舱 内水面与船外海水保持同一水平面。这是船体破舱中最为 普遍的典型情况,对船的危害也最大。
[工学]第五章 抗 沉 性
![[工学]第五章 抗 沉 性](https://img.taocdn.com/s3/m/6d54ed9bc77da26925c5b0bd.png)
V1 V
体积渗透率μv的大小视舱室用途及装载情况而定, 我国《海船法定检验技术规则》规定的μv的数值加表5-l 所示。
面积渗透率:进水面积a1与空舱面Байду номын сангаасa
船舱内实际进水的面积 面积渗透率 空舱的面积
a1 a a
或
a1 a a
y
x L/2
C L/2
z
W W1
xF
C
L1 d L
—,纵稳性高为GM —L,水线面面积为AW, 吃水为d),横稳性高为GM
进入该舱的水看成是在C处增加了重量为p=ωV的液体载荷,进水 舱内自由液面对于其本身的纵向主轴和横向主轴的惯性矩分别为ix
船舶原浮于水线WL处,排水量为△ ,首尾吃水为dF及dA(平均
漂心纵向坐标为xF,进水舱的体积为V,其重心在C(x,y,z)处。可把
及iy 。对于这类舱室,进水后船舶的浮态及稳性按下列步骤进行计算。
舱室进水后船舶的浮态及稳性计算
p 1.平均吃水增量: d wAW wix p d (d z GM ) 2.新的横稳性高: G1M 1 GM p 2 p wiy GM L 3.新的纵稳性高: G1M L1 p p py 4.横倾角正切: tg ( p)G1M 1
p d AW p d G1 M 1 GM (d z GM ) p 2 G1 M L1 GM L p py tg ( p)G 1 M 1
4.横倾角正切
5.纵倾角正切
p ( x xF ) tg ( p )G1M L1
L p ( x xF ) 6.由于纵倾而引起 d F ( xF ) 2 ( p )G1M L1
船舶抗沉性

船舶适航性控制 抗沉性
(3)限界线以上的船体结构开口关闭装置 )
在舱壁甲板以上, 在舱壁甲板以上,要求采取一切合理和可行的措 施限制海水从舱壁甲板以上浸入舱内。 施限制海水从舱壁甲板以上浸入舱内。 舱壁甲板或其上一层甲板都要求是风雨密的, ①舱壁甲板或其上一层甲板都要求是风雨密的,露 天甲板上的所有开口, 天甲板上的所有开口,均设有能迅速关闭的风雨 密关闭装置。 密关闭装置。 在限界线以上外板上的舷窗、舷门、 ②在限界线以上外板上的舷窗、舷门、装货门和装 煤门以及关闭开口的其他装置,应为风雨密的, 煤门以及关闭开口的其他装置,应为风雨密的, 且有足够的强度。 且有足够的强度。 ③在舱壁甲板以上第一层甲板以下处所内的所有舷 应配有有效的内侧舷窗盖, 窗,应配有有效的内侧舷窗盖,且易于关闭成水 密的。 密的。 露天甲板上都设有排水口和流水孔, ④露天甲板上都设有排水口和流水孔,以便在任何 天气情况下能迅速排除露天甲板上的积水。 天气情况下能迅速排除露天甲板上的积水。
情感目标:
(1)良好的职业道德;
(2)团队的合作精神; (3)面对船体破损情形不畏艰险;
3
任务介绍
1、船舶在大海中航行,偶尔会遭遇狂风巨 浪,海面固体漂浮物,与他船碰撞和擦底, 触礁等情况,这些都有可能使船体破损, 若不及时采取措施,可能会对船舶,人命 和财产安全构成威胁,严重时会导致沉船 事故。 2、若是船舶遇险导致船舱破损,我们该如何 应对?船舱进水如何判断?船舶抵抗能力 如何?如何正确选用堵漏器材对船体破损 部位进行堵漏?这些都是我们在该任务中 需要训练的目标。
7
船舶适航性控制 抗沉性
二、计算抗沉性的两种方法
1、增加重量法 、 2、损失浮力法(固定排水量法) 损失浮力法(固定排水量法)
抗沉性

1:舱顶在水线以下且封闭的。
进水后舱室充满水,进水量不变,无自由液面。
此类侵水对船舶的稳性和浮态影响较小,可作为装载固体质量来处理。
2:舱顶在水线以上,舱内和舱外水不相同,有自由液面,作为增加液体重量来考虑,并考虑自由液面。
3:舱顶在水线以上,破口在舷侧水线附近或以下,进水后舱内和舱外水想通,水面保持一致。
实质是损失了一部分浮力,用逐步逼近增重法来计算进水后的浮态和稳态。
:4:浮态:船体破损侵水后的最终平衡水线沿船舷距甲板上边缘至少要有76mm的干舷高度。
稳性;对称浸水,当采用固定排水量法计算时,最终平衡状态的剩余稳性高度GM》50mm,不对称时可允许横倾角大于7.
5:舱壁甲板:横向水密舱板所能够达到的最高一层的甲板。
限界线;舱壁甲板上表面以下76mm的线。
分舱载重线:决定分舱长度时的载重线。
可浸长度:沿着船长方向以某一点c为中心的舱,在规定的分舱载重线和渗透率的情况下,以C点所做的舱的长度。
许可舱长:考虑到船长和船舶业务性质对抗沉性要求时所允许的实际舱长,称为许可舱长。
渗透率:舱室实际进水量与理论进水量之比。
6:有区别,因为钢材和面粉的渗透率不同。
7:一:实际装载的渗透率的u值大于规定值二是:船舶破舱浸水钱的载重水线低于规定的分舱载重线。
第九章抗沉性

图 9-2 第一类进水计算图 (1)平均吃水增量
d
p wAW
3
(2)新横稳心高度
G1 M 1 GM
(3)新纵稳心高度
p d (d z GM ) p 2
G1 M L1
(4)横倾角正切
p GM L p
tan
(5)纵倾角正切
py ( p)G1 M 1
图 9-4 (1)平均吃水增量
第三类舱进水计算图
d
式中: ( AW a )——剩余水线面面积。
V AW a
(2)剩余水线面面积的漂心位置 F ( x F , yF )
x F y F AW x F axa AW a aya AW a
6
(3)剩余水线面积( AW a )对通过其漂心 F 的横轴和纵轴的惯性矩
第九章抗沉性
学习目标 知识目标 1、掌握渗透率、可浸长度、限界线、许用舱长等概念; 2、初步掌握舱室进水后船舶浮态和稳性计算; 3、理解可浸长度的计算原理和计算方法与步骤; 4、掌握抗沉性衡准方法。 能力目标 1、掌握第一、二类舱室进水后船舶浮态和稳性计算; 2、掌握可浸长度的计算原理,进而绘制可浸长度曲线。 第一节 进水舱的分类及渗透率 船舶在使用过程中,可能发生船体破损等海损事故,从而使大量海水进入船体,危及船舶 的安全。因此,船舶设计阶段需要考虑抗沉性问题。 所谓抗沉性, 是指如船舶发生海损事故, 一舱或数舱进水后仍然保持一定浮性和稳性的能 力,它是船舶的重要航海性能之一。船舶之所以具有抗沉性,主要与船舶的储备浮力和破舱 稳性有关, 而船舶具有的储备浮力或破舱稳性又与船舶的水密舱壁的合理布置有关, 具有一 定抗沉性要求的船舶,当一舱或数舱进水后,由于水密舱壁的存在,使水不至于漫延全船, 故船舶的下沉不会超过一定的极限位置,并且具有一定的稳性。 所以,抗沉性的研究主要是两类问题:一是在船舶舱壁已定的情况下,求船舶在一舱或数 舱进水后的浮态及稳性; 二是在船舶设计过程中, 从抗沉性要求出发, 计算分舱的极限长度, 亦即可浸长度。 船舶舱室的结构随船舶种类及舱室用途的不同而异, 并且舱室进水后淹没的状态也各不相 同。为了讨论方便,本节先将进水舱室进行分类并介绍渗透率的概念。 一、进水舱的分类 在抗沉性计算中,根据船舱进水情况,可将进水舱分为下列三类: (1)第一类舱:舱的顶部位于水线之下,船体破损后,水即灌满全舱;也即舱内的淹水 量不随淹水后的水线位置而变, 同时没有自由液面。 如双层低舱和顶盖在水线以下的深舱柜 等均属此类,如图 9-1a)所示。 (2)第二类舱:进水舱未被灌满,舱内水与船外水不香连通,有自由液面。为调整船舶浮 态而灌水的舱室,以及船体破损处已经堵塞但水未被抽干的舱室都属于此类,如图 9-1b) 所示。 (3)第三类舱:舱顶在水线以上,舱内水与船外水相通,因此舱内水面与船外水面保持同 一水平面。这是破舱中最为普遍的典型情况,如图 9-1c)所示。
抗沉性

课题四:船舶抗沉性的分析与计算
1、进水舱的分类和渗透率 2、舱室进水后船的浮态及稳性计算 3、可浸长度曲线、分舱因素和许用舱长
一、知识目标
1、掌握进水舱的分类和渗透率的概念 2、了解增加重量法和损失浮力法的基本原理 3、掌握安全限界线、极限破舱水线、可浸长度(曲线)、
张 远 双
水以后船舶的极限破舱水线恰与限界相切。
船舱在船长方向的位置不同,其可浸长度也不同。以可浸长度 的中点至中横剖面的距离为横坐标,以可浸长度为纵坐标所作的曲
线称为可浸长度曲线。
张 远 双
2018/9/22
12
船 舶 性 能 计 算
讨论:
1、以上绘制的是渗透率μv=1.0的情况,因而必须对求得的可浸 长度除以实际渗透率,以求得实际渗透率时的可浸长度曲线,并注明 实际渗透率的具体数值。 渗透率越小的舱室破损,可能的进水量就越小,可浸长度就可越 大。 2、可浸长度曲线的两端,被船舶首尾垂线处θ=arctan2的斜直 线所限制。
相邻三舱破损后仍能满足抗沉性要求(但相邻四舱破损后不满 足)的船称为三舱制船。
……
若用分舱因数F来表示,则: 对于一舱制船:1.0≥F>0.5。
张 远 双
2018/9/22
对于二舱制船:0.5≥F>0.33 。
对于三舱制船:0.33≥F>0.25 。
……
15
船 舶 性 能 计 算
思考题
P94 T5-10:已知某船的可浸长度曲线,现要在舱长的中点x1和 x2处分别布置两个货舱,试在习图5-1上画出该两个货舱的舱壁极限 位置。
张 远 双
2018/9/22
10
船 舶 性 能 计 算
二、极限破舱水线(或极限海损水线)
货运12 船舶抗沉性

第四节 《船舶破损控制手册》简介
二、船舶破损控制手册 5.如果破损控制手册中包括分舱和破舱稳性的分析结 果,应提供另外的指南,以确保参考这些信息的船上 高级船员意识到,包括这些分析结果仅为评估船舶相 关的残余稳性时提供帮助。 6.指南应采用与分舱和破舱稳性分析相同的衡准,并 明确指出分舱和破舱稳性分析中假定的船舶装载的初 始状态、破损的范围和位置、渗透率,可能与船舶的 实际破损情况没有关系。
l lp l FF 实际
l实际——任一实际舱的长度;
F——分舱因数。
第二节 船舶剩余浮性和破舱稳性衡准
• 分舱因数 . 00 F 0 . 5 当1 船舶任一舱破舱后不致沉没, 为一舱不沉制船舶;
. 5 F 0 . 33 当 0 船舶任意像邻两舱破舱后不 致沉没,为二舱不沉制船舶;
. 33 F 0 . 25 当 0 船舶任意像邻三舱破舱后不 致沉没,为三舱不沉制船舶;
第二节 船舶剩余浮性和破舱稳性衡准
3.剩余浮性和破舱稳性衡准 国际航行单体客船 船舶破损后以及不对称浸水情况下经采取平衡措施后,其 最终状态应如下: (1) 在对称浸水情况下,当采用固定排水量法计算时,应 至少有0.05m 的正值剩余初稳性高度;
• 抗沉性要求: 军用舰船﹥民用船舶 客船﹥货船 远洋船﹥沿海船 海船﹥河船
第一节 抗沉性基本概念
一、进水舱的分类
1.第一类舱:舱的顶部位于水线以下,船体破损后海水灌满 整个舱室,但舱顶未破损,因此舱内没有自由液面;双层 底和顶盖在水线以下的舱柜属于这种情况。 2.第二类舱:进水舱未被灌满,舱内的水与船外的海水不相 连通,有自由液面;为调整船舶的浮态而灌水的舱以及船 体破洞已被堵塞但水还没有抽干的舱室都属于这种情况。 3.第三类舱:舱的顶盖在水线以上,舱内的水与船外海水相 通,因此舱内水面与船外海水保持同一水平面。这种船体 破损较为普遍,也是最典型的情况。
抗沉性

张 远 双
为普遍的典型情况。
2018/9/22
3
船 舶 性 能 计 算
三、渗透率
对破损船的浮态和稳性起影响作用的是进水舱的实际进水体积, 而不是进水舱本身的型容积。
船舱内有各种结构、设备、机械和货物等,它们在舱内已占据 了一定的空间。因此,船舱内实际能进水的体积V1总是小于空舱的
型体积V,两者的比值称为(体积)渗透率μV。
2018/9/22
许用舱长和分舱因数等概念
二、能力目标
能用可浸长度曲线解决合理分舱问题
1
船 舶 性 能 计 算
1、进水舱的分类和渗透率
一、抗沉性的概念
所谓抗沉性,船舶遭受海损事故舱室破损进水,仍能保持一定的 浮性和稳性而不致于沉没或倾覆的能力。 抗沉性讨论的是破舱浮性和稳性,以前谈到的浮性和稳性可称为 完整浮性和稳性。 船舶具备抗沉性的主要原因:1、合理分舱(用水密舱壁将船体 分隔成适当数量的舱室,当一舱或数舱进水后,控制进水量,船舶的 下沉和倾斜不超过规定的极限位置);2、干弦(储备浮力) 在船舶静力学,抗沉性问题包括下列两个方面的内容: 1、破舱浮态和稳性计算:船舶在一舱或数舱进水后浮态及稳性 计算。 2、合理分舱:从保证船舶抗沉性的要求出发,计算分舱的极限 长度,即可浸长度的计算。我们主要学习“合理分舱”。
5
2018/9/22
船 舶 性 能 计 算
讨论
当船舶破损进水量不超过排水量的10%~15%时,可应用上面 两种方法并依据初稳性公式来计算船舶的破舱浮态和稳性。 1、两种方法均可用于三类进水舱的计算。 但一般来说,第一、二类舱用增加重量法,第三类舱用损失浮 力法计算较为方便。
2、若同一进水舱用上述两种方法计算,所得的最后结果:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抗沉性
定义
船体水下部分发生破损,船舱淹水后仍能浮而不沉和不倾覆的能力。
概述
规范对船长在50m及以上的客船和科学考察船、100m以上的货船和50m以上的渔船或拖船均有详细的规定和要求。
中国宋代造船时就首先发明了用水密隔舱来保证船舶的抗沉性,军舰的抗沉性尤为重要。
《国际海上人命安全公约》对船舶抗沉性作了规定,适用于载客超过12人的船舶(客船).公约对客船抗沉性的要求有两种体系,可任选一种进行核算.
一种体系为:全船任一舱,相邻两舱或三舱淹水后,船仍能保持不超过所限制的浮态并
具有不小于0.05米的初稳心高,称为一舱制,二舱制或三舱制.舱制依船的大小和载客人数通过计算来确定.另一体系为:在限定的允许破舱后的浮态和稳性的条件下,计入各部位的船舱的受损概率,计算出的船舶破舱后的生存力指数(概率)应达到规定值,这一指数依船的大小
和载客人数而定.
船舶主体部分的水密分舱的合理性,分舱甲板(水密舱壁所达到的那层甲板)的干舷值和完整船舶稳性的好坏等,是影响抗沉性的主要因素。
吃水对大角稳性及抗沉性影响
吃水对大角稳性及抗沉性影响:在型深D不变情况下,增加吃水降低了干舷,使储备浮力减少,大角横倾时,甲板边缘提前入水,对抗沉性及大角稳性都是不利的。
吃水深的船航行时不易产生砰击和漂移,吃水浅的船在海上航行时耐波性较差。
船长对抗沉性的影响
增加船长对改善抗沉性有利,包括可浸长度增加和海损时稳性损失相对下降。
型深对抗沉性影响
吃水d一定时,型深D大,则干舷F大,船舶储备浮力大。
当船舱破损淹水时,型深D大的船经下沉后,还可保留一定量的干舷(剩余干舷),而且具有足够的生存力和安全性。
对有抗沉性要求的船舶,按该规则计算出要求的许可舱长不能满足总布置的需要,而需将许可舱长加长时,就需加大型深。
型深是提高抗沉性极为重要的因素。