集合的含义及其表示(一)
高中数学 第一章 集合(含解析)苏教版必修1

第1课时集合的含义及其表示(1)教学过程一、问题情境(1) 小于10的所有偶数;(2) 中国的直辖市;(3) 单词book中的字母;(4) 到一个角的两边距离相等的所有的点;(5) 方程x2-5x+6=0的所有实数根;(6) 不等式x-3>0的所有解;(7) 某高中全体高一学生.二、数学建构问题1以上实例有什么共同特征?(引导学生说出:一定范围内,确定的,不同对象.然后通过学生回答,总结出集合的含义)一定范围内某些确定的、不同的对象的全体构成一个集合.集合常用大写的拉丁字母来表示,如集合A、集合B.集合中的每一个对象称为该集合的元素,简称元.集合的元素常用小写的拉丁字母来表示,如元素a、元素b.问题2回答下列问题:(1) 已知A={1, 3},问:3, 5哪个是A的元素?(2) “所有素质好的人”能否构成一个集合A?(3) A={2, 2, 4}表示是否准确?(4) A={太平洋,大西洋},B={大西洋,太平洋}是否表示同一个集合?由上述问题可以归纳出集合中元素的特征:①确定性:设A是一个给定的集合,x是某一个具体对象,则“x是A的元素”或者“x不是A的元素”这两种情况必有一种且只有一种成立.②互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不能重复出现同一元素.③无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照由小到大的数轴顺序书写.问题3元素与集合之间有怎样的关系?解如果a是集合A中的元素,就记作a∈A,读作“a属于A”;如果a不是集合A中的元素,就记作a∉A或a⋷A,读作“a不属于A”.问题4常用的数集有哪些?它们分别用什么数学符号表示?解自然数集(非负整数集):N,正整数集:N*或N+,整数集:Z,有理数集:Q,实数集:R.问题5集合的表示方法有哪些?(1) 列举法:将集合的元素一一列举出来,并置于“{}”中,元素之间用逗号分隔.列举时与元素次序无关,如{北京,上海,天津,重庆}.集合的相等关系:如果两个集合所含的元素完全相同,那么称这两个集合相等,如{北京,上海,天津,重庆}={天津,重庆,北京,上海}.思考“问题情境”中的集合都能用列举法表示吗?如果能,请表示出来.(2) 描述法:将集合中所有元素都具有的性质(满足的条件)表示出来,写成{x|p(x)}的形式.{x|p(x)}中x为集合的代表元素,p(x)指元素x具有的性质,如{x|x为中国的直辖市},{x|x-3>0, x∈R}. (3) Venn图:有时用Venn图示意集合(如图1),更显直观.(图1)问题6按照元素的个数,集合该怎样分类?(1) 有限集:含有有限个元素的集合称为有限集.(2) 无限集:含有无限个元素的集合称为无限集.(3) 空集:不含任何元素的集合称为空集,记作⌀,如{x|x2+x+1=0, x∈R}=⌀.三、数学运用【例1】下列各组对象能否构成集合:(1) 所有的好人;(2) 小于2012的数;(3) 和2012非常接近的数;(4) 小于5的自然数;(5) 不等式2x+1>7的整数解;(6) 方程x2+1=0的实数解. (见学生用书课堂本P1~2)[处理建议]引导学生根据定义判断.[规范板书]解(1)(3)不符合集合中元素的确定性,因此,只有(2)(4)(5)(6)能够构成集合.[题后反思]解决这类题目要抓住集合中元素的两个特征:确定性,互异性.【例2】用符号“∈”或“∉”填空:-错误!未找到引用源。
高中数学题库-集合(精华)

1. 集合的含义及其表示(一)集合元素的互异性1. 已知xR ,则集合2{3,,2}x xx 中元素x 所应满足的条件为变式:已知集合}33,)1(,2{22a a a a A,若A 1,则实数a 的值为_______2.c b a M,,中三个元素可以构成一个三角形的三边长,那么此三角形可能是①直角三角形②锐角三角形③钝角三角形④等腰三角形(二)集合的表示方法1. 用列举法表示下列集合(1)||||{|,,}a b Ax xa b ab为非零实数__________________________变式:已知a,b,c 为非零实数,则||||||||a b c abc a b c abc 的值组成的集合为___(2)},36|),{(*N x Z xyy x A ____)}1,9(),2,6(),3,5(),6,4(),6,2(),3,1{(A 变式1:12,6A x xN Nx 变式2:Ny N x yxy x A ,,6,(3)集合},,|{},22,|{2A xx y y BxZ xx A 用列举法表示集合B(4)已知集合M=}56|{*N a Z a ,则集合M 中的元素为变式:已知集合M=}|56{*N aZ a,则集合M 中的元素为2. 用描述法表示下列集合(1)直角坐标系中坐标轴上的点_______________________________变式:直角坐标平面中一、三象限角平分线上的点______________Rx x yy x ,),((2)能被3整除的整数_______________________Z n n x x ,3.3. 已知集合10,A ,A x x B ,Ax x C (1)用列举法写出集合C B,;(2)研究集合C B A ,,之间的包含或属于关系4. 命题(1) 200x;(2)00,0;(3)0;(4)0N 表述正确的是.5. 使用和和数集符号来替代下列自然语言:(1)“255是正整数” (2)“2的平方根不是有理数”(3)“3.1416是正有理数” (4)“-1是整数”(5)“x 不是实数”6. 用列举法表示下列集合:(1)不超过30的素数(2)五边形ABCDE 的对角线(3)左右对称的大写英文字母(4)60的正约数7. 用描述法表示:若平面上所有的点组成集合E ,EB E A,(1)平面上以A 为圆心,5为半径的圆上所有点的集合为_________5PA E P (2)说明下列集合的几何意义:5PA E P ;PBPA E P 8. 当b a,满足什么条件时,集合0bax x 是有限集?无限集?空集?9. 元素0、空集、0、三者的区别?10. 请用描述法写出一些集合A ,使它满足:(i )集合A 为单元素集,即A 中只含有一个元素;(ii )集合A 只含有两个元素;(iii )集合A 为空集11. 试用集合概念分析命题:先有鸡还是先有鸡蛋?解释:表述问题时把有关集合的元素说清楚,大有好处。
高一数学集合的含义及其表示

; / 快转 ;
言活着并且再次杀到宋家,而是他感觉得出来,鞠言の实历似乎比上壹次,提升了极多.上壹次の事候,老族长就觉得与鞠言厮杀胜少输多,那么现在鞠言实历再度提升,他の胜算就等于零!“鞠言小友,你呐是何意?”宋家老族长沙哑の声音,喝问道.鞠言,冷笑了笑.在宋家老族长现身后,鞠言 倒是暂事の停止了杀戮宋家人,他散发着冷意の目光紧紧の盯着呐位白发飘舞の老族长.“老族长!俺再来宋家の原因,你应该很清楚!俺鞠言,最痛恨の就是那种出尔反尔の小人.对你,俺真の很失望!俺以为你呐位老族长,是值得信任の人,可你做出の事情,却辜负了俺の信任!”鞠言の 声音极其高昂,并且带着令人心悸の愤怒.“呵呵,你们呐些人,是认为俺已经死了吧?可惜,俺没让你们如愿!俺,还活着!”鞠言手中天吙剑再闪,剑芒瞬间凝聚而出.“鞠言!俺宋家,似乎没有做出让你如此愤怒の事情.呐其中,有误会!”老族长见鞠言又要动手,连忙急促の解释说道.“老 族长,说呐些没有任何意义,俺也不想听你更多の解释.”鞠言摇头.再绝对の实历面前,鞠言也懒得多说废话.“快看宋家上空!”“那是……鞠言?”“哪个?他没死?他不是被暗夜杀手给杀掉了吗?怎么还活着?”“鞠言没死,宋家要完蛋了!”宋家宅院四周の许多修行者,也都发现了鞠言. 鞠言还活着,让他们意外.可鞠言出现在宋家,倒是没有让他们吃惊.他们知道鞠言为何会再杀到宋家.最近宋家の壹连串动作……呵呵……既然鞠言还活着,那宋家确实要完蛋了.上壹次鞠言为烈焰杀到宋家斩杀宋家拾多名强者,宋家老族长出面许下诺言.可是之后,宋家所做の事,明眼人壹 眼就能看出宋家是背信弃义了.不过就算看出呐壹点,最多也就能暗中鄙夷壹下,要他们出面主持公道,他们没有那个实历.鞠言知道宋家背叛了他,呐样の愤怒,也是理所当然の事情.赤色剑光凝聚,壹柄巨大の长达上百名の剑影,带着无与伦比の威能和杀意,横扫而下.宋家老族长来不及再多 说话
集合的含义与表示

集合的含义与表示目录集合的含义与表示 (1)知识点: (1)一、集合的三性:确定性、互异性、无序性 (3)①确定性 (3)②互异性 (4)二、集合的表示方法 (7)①元素与集合的关系 (7)②列举法 (8)③描述法 (10)三、区别点集与数集 (11)知识点:1.集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。
一般的研究对象统称为元素,一些元素组成的总体叫集合,简称为集。
2.集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。
例:世界上最高的山、中国古代四大美女、教室里面所有的人……(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。
例:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合例:{a,b,c}和{a,c,b}是表示同一个集合.3.集合的表示:{…} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
①列举法:将集合中的元素一一列举出来{a,b,c……}②描述法:将集合中元素的公共属性描述出来,写在大括号内表示集合。
{x∈R| x-3>2} ,{x| x-3>2}③语言描述法:例:{不是直角三角形的三角形}4.集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合例:{x|x2=-5}5.元素与集合的关系:(1)元素在集合里,则元素属于集合,即:a∈A∉(2)元素不在集合里,则元素不属于集合,即:a A注意:常用数集及其记法:非负整数集(即自然数集)记作:N;正整数集N*或N+;整数集Z;有理数集Q;实数集R.一、集合的三性:确定性、互异性、无序性①确定性1.下列各组对象能够构成集合的是( )A. 我国所有的老人B. 我们班的高个子C. 长命万岁的人D. 我国的小河流答案:C。
集合的含义与表示

(x-2a)<0
当B A时,画数轴知2a≥1或a+1≤-1, 1 即a≥ 或 a≤-2. 2 而a<1,∴满足条件的a的取值范围是 1 (-∞,-2]∪[ ,1). 2
所有奇数组成的集合可以表示为:
B={x| x=2k+1,k∈Z}.
说明:
(1)列举法和描述法是集合的常用表示方法,两种方 法各有优点,用什么方法表示集合,要具体问题具 体分析.
要注意,一般集合中元素较多或有无限个元素时, 不宜采用列举法
强调:描述法表示集合应注意集合的代表元素 {(x,y)|y= x2 +3x+2}与 {y|y= x2+3x+2}不同,只要 不引起误解,集合的代表元素也可省略,
集合的含义与表示
一、集合的含义:
(1)1~20以内的所有质数; (2)我国从1991~2005年的15年内所发射的所有人造卫星;
(3)金星汽车厂2003年生产的所有汽车;
(4)2004年1月1日之前与我国建立立外交关系的所有国家 ;
(5)所有的正方形;
归纳总结这些 例子 (6)到直线l的距离等于定长3cm的所有点 ; ,你能说出 它们的特征吗? (7)方程x2+3x+2=0的所有实数解;
n ② {x|x= n 2
, n ∈ N*且n≤5}
2.用列举法表示下列集合:
6 (1)A=﹛x∈N︱1 x∈Z﹜
6 B=﹛1 x∈N
(2)
︱ x∈ Z ﹜
3. 求集合{3 ,x , x2-2x}中,元素x应满足的条件。
4. 若-3 ∈ {a-3, 2a+1, a2+1},求实数a的值.
●
集合理论是由德国数学家康托尔发现的,他 创造的集合论是近代许多数学分支的基础.
集合的概念及其表示(第1课时)教案1

集合的含义及其表示(一)教学目标:使学生初步理解集合的基本概念,了解“属于”关系的意义、常用数集的记法和集合中元素的特性.教学重点:集合概念、性质;教学难点:集合概念的理解;课型:新授课教学手段:多媒体教学过程:一、创设情境训前学校通知:8月15日8点,高一年段在体育馆集合进行训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
二、活动尝试“物以类聚,人以群分”数学中也有类似的分类。
如:用到过的“正数的集合”、“负数的集合”、“质数”、“合数”如:2x-1>3,即x>2所有大于2的实数组成的集合称为这个不等式的解集。
如:几何中,圆是到定点的距离等于定长的点的集合。
如:自然数的集合0,1,2,3,……结论:一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
三、师生探究思考1:列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。
例1:判断下列一组对象是否属于一个集合呢?(1)所有3的倍数(2)很大的数的全体(3)中国的直辖市(4)young中的字母(5)book中的字母(6)所有的偶数(7)所有直角三角形(8)满足3x-2>x+3的全体实数(9)方程210x x++=的实数解(10)评注:判断集合要注意有三点:范围是否确定;元素是否明确;能不能指出它的属性。
四、数学理论△集合理论是由德国数学家康托尔发现的,他创造的集合论是近代许多数学分支的基础。
△集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
1.1.1集合的概念及其表示(一)

用列举法表示下列集合: 例1 用列举法表示下列集合: (1) 小于 的所有自然数组成的集合; 小于10的所有自然数组成的集合 的所有自然数组成的集合;
(2) 方程x 2 = x的所有实数根组成的集合;
(3) 由1~20以内的所有质数组成的集合. 以内的所有质数组成的集合. ~ 以内的所有质数组成的集合
• 全体非负整数组成的集合称为自然数集,记为 N 全体非负整数组成的集合称为自然数集, • 所有正整数组成的集合称为正整数集,记为 N *或N + 所有正整数组成的集合称为正整数集, • 全体整数组成的集合称为整数集,记为 Z 全体整数组成的集合称为整数集, • 全体有理数组成的集合称为有理数集,记为 Q 全体有理数组成的集合称为有理数集, • 全体实数组成的集合称为实数集,记为 R 全体实数组成的集合称为实数集,
一般形式: 一般形式:{ x ∈ A x满足的条件}
说明: 1、不能出现未被说明的字母; 说明: 、不能出现未被说明的字母; 2、多层描述时,准确使用“且”、“或”; 、多层描述时,准确使用“ 3、描述语言力求简明、准确; 、描述语言力求简明、准确; 4、多用于元素无限多个时。 、多用于元素无限多个时。
的所有自然数组成的集合为A, 解:⑴设小于10的所有自然数组成的集合为A,那么 设小于 的所有自然数组成的集合为A,那么 A={0,1,2,3,4,5,6,7,8,9}. } A={
由于元素完全相同的两个集合相等,而与列举的顺序无关, 由于元素完全相同的两个集合相等,而与列举的顺序无关,因此 集合A可以有不同的列举方法. 集合A可以有不同的列举方法.例如 A={9 A={9,8,7,6,5,4,3,2,1,0}. }
具体方法:在花括号内先写上表示这个集合元素的一般符 具体方法 在花括号内先写上表示这个集合元素的一般符 号及以取值(或变化 范围,再画一条竖线 或变化)范围 再画一条竖线,在竖线后写出这个 号及以取值 或变化 范围 再画一条竖线 在竖线后写出这个 集合中元素所具有的共同特征. 集合中元素所具有的共同特征
1.11集合的含义及其表示方法1(1

知识引入:
一:集合的含义:一般地,指定的某些对象的全体称为集合,标记:A,B,C,D,… 二:集合的元素:
集合中的每个对象叫做这个集合的元素,标记:a,b,c,d,…
三:集合的中元素的三个特性:
集合的元素满足以下要求: I. 确定性:给定一个集合,那么任何一个元素在 不在这个集合中是确定的. II. 互异性:集合中的元素是不重复出现的. III. 无序性:集合中的元素排列是没有顺序的. 四:集合相等:只要构成两个集合的元素是一样 的,我们就称这两个集合是相等的.
提出问题
①请我们班的全体女生起立!接下来问:“咱班的所有女生能不能 构成一个集合啊?” ②下面请班上身高在1.75以上的男生起立!他们能不能构成一 个集合啊?
③其实,生活中有很多东西能构成集合,比如新华字典里所有的 汉字可以构成一个集合等等.那么,大家能不能再举出一些生活 中的实际例子呢?请你给出集合的含义.
例题2.下列结论中,不正确的是( A ) 2 a z A.若a∈N,则aN B.若a∈Z,则 C.若a∈Q,则|a|∈Q D.若a∈R,则 3 a R
练习2 用合适的符号填空: 1. 1__N 1__Z 1__Q 1__R 2. -1__N -1__Z -1__Q -1__R 3. 0.5__N 0.5__Z 0.5__Q 0.5__R 4. π __N π__Z π__Q π__R 练习3 用合适的符号填空: 1. 若A={x|x2=x},则-1__A; 2. 若B={x|x2+x-6=0},则3___B; 3. 若C={x∈N|1≤x≤10},则8___C,9.1___C.
(1)集合的定义:指定的某些对象的全体构成一个集合 (2)集合的元素:集合中每个对象叫做这个集合的的元素。 ④如果用A表示高一(8)班全体学生组成的集合,用a表示高一(8) 班的一位同学,b是高一(9)班的一位同学,那么a、b与集合A分 别有什么关系?由此看见元素与集合之间有什么关系? ⑤世界上最高的山能不能构成一个集合?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1-1集合的含义及其表示(一)
教学目标:使学生初步理解集合的基本概念,了解“属于”关系的意义、常用数集的记法和集合中元素的特性. 了解有限集、无限集、空集概念,
教学重点:集合概念、性质;“∈”,“∉”的使用
教学难点:集合概念的理解;
课型:新授课
教学手段:
教学过程:
一、引入课题
军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
研究集合的数学理论在现代数学中称为集合论,它不仅是数学的一个基本分支,在数学中占据一个极其独特的地位,如果把数学比作一座宏伟大厦,那么集合论就是这座宏伟大厦的基石。
集合理论创始者是由德国数学家康托尔,他创造的集合论是近代许多数学分支的基础。
(参看阅教材中读材料P17)。
下面几节课中,我们共同学习有关集合的一些基础知识,为以后数学的学习打下基础。
二、新课教学
“物以类聚,人以群分”数学中也有类似的分类。
如:自然数的集合0,1,2,3,……
如:2x-1>3,即x>2所有大于2的实数组成的集合称为这个不等式的解集。
如:几何中,圆是到定点的距离等于定长的点的集合。
1、一般地,指定的某些对象的全体称为集合,标记:A,B,C,D,…
集合中的每个对象叫做这个集合的元素,标记:a,b,c,d,…
2、元素与集合的关系
a是集合A的元素,就说a属于集合A ,记作a∈A ,
a不是集合A的元素,就说a不属于集合A,记作a∉A
思考1:列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,
进而讲解下面的问题。
例1:判断下列一组对象是否属于一个集合呢?
(1)小于10的质数(2)著名数学家(3)中国的直辖市(4)maths中的字母
(5)book中的字母(6)所有的偶数(7)所有直角三角形(8)满足3x-2>x+3的全体实数
(9)方程210
++=的实数解
x x
评注:判断集合要注意有三点:范围是否确定;元素是否明确;能不能指出它的属性。
3、集合的中元素的三个特性:
1.元素的确定性:对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
2.元素的互异性:任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
比如:book中的字母构成的集合
3.元素的无序性:集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
集合元素的三个特性使集合本身具有了确定性和整体性。
4、数的集简称数集,下面是一些常用数集及其记法:
非负整数集(即自然数集)记作:N 有理数集Q
正整数集N*或N+ 实数集R
整数集Z注:实数的分类
5、集合的分类原则:集合中所含元素的多少
①有限集含有限个元素,如A={-2,3}
②无限集含无限个元素,如自然数集N,有理数
③空集不含任何元素,如方程x2+1=0实数解集。
专用标记:Φ
三、课堂练习
1、用符合“∈”或“∉”填空:课本P15练习惯1
2、判断下面说法是否正确、正确的在( )内填“√”,错误的填“×”
(1)所有在N中的元素都在N*中()
(2)所有在N中的元素都在Z中( )
(3)所有不在N *中的数都不在Z 中( )
(4)所有不在Q 中的实数都在R 中( )
(5)由既在R 中又在N *中的数组成的集合中一定包含数0( )
(6)不在N 中的数不能使方程4x =8成立( )
四、 回顾反思
1、集合的概念
2、集合元素的三个特征
其中“集合中的元素必须是确定的”应理解为:对于一个给定的集合,它的元素的意义是明确的.
“集合中的元素必须是互异的”应理解为:对于给定的集合,它的任何两个元素都是不同的.
3、常见数集的专用符号.
五、 作业布置
1.下列各组对象能确定一个集合吗?
(1)所有很大的实数
(2)好心的人
(3)1,2,2,3,4,5.
2.设a,b 是非零实数,那么b b
a a
+可能取的值组成集合的元素是 3.由实数x,-x,|x |,332,x x -所组成的集合,最多含( )
(A )2个元素 (B )3个元素 (C )4个元素 (D )5个元素
4.下列结论不正确的是( )
A.O ∈N
B. 2∉Q
C.O ∉Q
D.-1∈Z
5.下列结论中,不正确的是( )
A.若a ∈N ,则-a ∉N
B.若a ∈Z ,则a 2∈Z
C.若a ∈Q ,则|a |∈Q
D.若a ∈R ,则R a ∈3
6.求数集{1,x ,x 2-x}中的元素x 应满足的条件;
板书设计(略)。