线性代数思维导图!!

合集下载

马同学图解线性代数

马同学图解线性代数

“正交变换是一种特殊的线性变换,它可以将一个向量空间中的所有向量映射 到一个标准正交基上。正交变换可以用一个正交矩阵来表示,它的逆变换也可 以用一个正交矩阵来表示。”
《马同学图解线性代数》是一本非常有价值的数学教材,它用生动形象的方式 介绍了线性代数的核心概念和基本理论。这本书的精彩摘录可以帮助读者更好 地理解线性代数的重要性和应用范围。
“矩阵的逆运算是一种非常有用的操作,它可以用来求解线性方程组、求解矩 阵的行列式等。矩阵的逆运算只有在矩阵可逆时才存在,而且它不是简单的矩 阵加法或乘法等简单运算,需要通过一定的算法来计算。”
“特征值和特征向量是矩阵的两个重要概念,它们可以用来描述矩阵的一些重 要性质。例如,如果一个矩阵的特征值都是正数,那么该矩阵就是正定矩阵; 如果一个矩阵的特征值都是负数,那么该矩阵就是负定矩阵。特征向量的计算 方法包括高斯消元法和幂法等。”
《马同学图解线性代数》这本书的目录结构清晰明了,内容丰富实用。从基础 知识到应用案例,涵盖了线性代数的各个方面,为读者提供了一本全面而实用 的参考书。
作者简介
作者简介
这是《马同学图解线性代数》的读书笔记,暂无该书作者的介绍。
谢谢观看
“行列式是一种由行和列组成的方阵,它可以用来表示一个矩阵是否可逆。如 果一个行列式的值为零,那么该矩阵就是奇异矩阵,即不可逆矩阵;如果一个 行列式的值不为零,那么该矩阵就是非奇异矩阵,即可逆矩阵。”
“线性变换是一种非常重要的数学工具,它可以用来描述一个向量空间到另一 个向量空间的映射关系。线性变换可以用一个矩阵来表示,它的逆变换可以用 该矩阵的逆矩阵来表示。”
这一章介绍了线性代数在科学计算、经济、工程等领域的应用案例。通过这一 章的介绍,读者可以了解线性代数的应用领域和应用效果,加深对线性代数的 认识和理解。

线性代数知识点框架图

线性代数知识点框架图

线性代数知识点框架图在学习线性代数时,我们常常会感到知识点众多、错综复杂。

为了更好地理解和掌握线性代数的核心概念和关联关系,我们可以构建一个线性代数知识点框架图。

这张框架图将有助于我们对线性代数知识的整体把握,使我们能够更加清晰地理解各个知识点之间的联系和难点所在。

1. 矩阵与向量矩阵和向量是线性代数的基础概念,它们是线性代数理论和计算的基石。

矩阵和向量的运算规则以及它们之间的关联关系是我们学习线性代数的起点。

2. 线性方程组线性方程组是线性代数的一个重要应用,解线性方程组的方法包括高斯消元法和矩阵的逆等。

了解线性方程组的求解方法以及解的几何意义对于理解线性代数的核心思想至关重要。

3. 线性变换线性变换是线性代数中的另一个重要概念,它描述了一个向量空间之间的映射关系。

线性变换的性质和基本定理为我们理解矩阵的特征和作用提供了重要参考。

4. 特征值与特征向量特征值和特征向量是矩阵的重要属性。

它们描述了矩阵在线性变换中的行为,有助于我们理解矩阵的性质和作用。

特征值和特征向量的求解方法以及它们在实际应用中的意义是我们学习线性代数时需要深入理解的内容之一。

5. 矩阵分解与应用矩阵分解是线性代数中的一个重要分支,它将矩阵分解为更简洁易懂的形式,从而更好地理解和应用矩阵。

常见的矩阵分解方法包括LU分解、QR分解和特征值分解等。

了解矩阵分解的原理与方法将为我们在实际应用中更好地处理和分析数据提供帮助。

6. 向量空间与基、维数向量空间是线性代数理论的核心,它描述了向量的性质和运算规则。

向量空间的基和维数是向量空间的重要属性,它们描述了向量空间的结构和性质,对于分析和解决线性代数问题非常关键。

7. 内积与正交性内积是线性代数中的一个重要概念,它揭示了向量之间的夹角和长度的关系。

正交性是内积的一个重要性质,它描述了向量空间中相互垂直的向量之间的重要关联。

了解内积和正交性将为我们理解和应用向量的几何意义提供重要帮助。

通过构建这样一个线性代数知识点框架图,我们可以更好地整理和理解线性代数的基本概念和内在关联。

精编考研线性代数知识框架图资料

精编考研线性代数知识框架图资料

考研线性代数知识框架图()000,nT A r A n A A Ax x Ax A Ax A A A E ββ==⇔∀≠≠≠⇔∀∈=≅可逆 的列(行)向量线性无关 的特征值全不为0 只有零解 ,0总有唯一解 是正定矩阵 R 12,s iA p p p p nB AB E AB E⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪=⋅⋅⋅⎪==⎪⎩ 是初等阵存在阶矩阵使得 或 注:全体n 维实向量构成的集合nR 叫做n 维向量空间.()0A r A n A A A Ax A λ<=⇔==不可逆 0的列(行)向量线性相关 0是的特征值 有非零解,其基础解系即为关于0的⎧⎪⎪⎪⎨⎪⎪⎪⎩特征向量注:()()0a b r aE bA n aE bA aE bA x λ+<⎧⎪+=⇔+=⎨⎪⎩0有非零解=-⎫⎪≅⎪−−−→⎬⎪⎪⎭具有向量组等价矩阵等价()反身性、对称性、传递性矩阵相似()矩阵合同() √ 关于12,,,n e e e ⋅⋅⋅:①称为n的标准基,n中的自然基,单位坐标向量152p 教材;②12,,,n e e e ⋅⋅⋅线性无关; ③12,,,1n e e e ⋅⋅⋅=; ④tr =E n ;⑤任意一个n 维向量都可以用12,,,n e e e ⋅⋅⋅线性表示.1212121112121222()1212()n n nn n j j j n j j nj j j j n n nna a a a a a D a a a a a a τ==-∑1√ 行列式的计算:①行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.②若A B 与都是方阵(不必同阶),则==()mn A OA A O A BO BO BBO A AA B B O B O*==**=-1③上三角、下三角、主对角行列式等于主对角线上元素的乘积.④关于副对角线:(1)211212112111()n n nnn n n n n n n a Oa a a a a a a Oa O---*==-1⑤范德蒙德行列式:()1222212111112n ij nn i j n n n nx x x xx x x x x x x ≥≥≥---=-∏111由m n ⨯个数排成的m 行n 列的表111212122212n n m m mn a a a a a a A a a a ⎛⎫⎪ ⎪= ⎪⎪⎝⎭称为m n ⨯矩阵.记作:()ij m n A a ⨯=或m nA ⨯()1121112222*12n Tn ijnnnn A A A A A A A A A A A ⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭,ij A 为A 中各个元素的代数余子式. √ 逆矩阵的求法:① 1A A A *-= 注: 1a b d b c d c a ad bc --⎛⎫⎛⎫= ⎪ ⎪--⎝⎭⎝⎭1②1()()AE E A -−−−−→初等行变换③1231111213a a a a a a -⎛⎫⎛⎫⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3211111213a a a a a a -⎛⎫⎛⎫⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭√ 方阵的幂的性质:m n m nA A A+= ()()m nmnA A =√ 设,,m n n s A B ⨯⨯A 的列向量为12,,,n ααα⋅⋅⋅,B 的列向量为12,,,s βββ⋅⋅⋅,则m sAB C ⨯=⇔()()1112121222121212,,,,,,s s n s n n ns b b b b b b c c c b b b ααα⎛⎫⎪ ⎪⋅⋅⋅= ⎪⎪⎝⎭⇔i iA c β= ,(,,)i s =1,2⇔iβ为iAx c =的解⇔()()()121212,,,,,,,,,s s s A A A A c c c ββββββ⋅⋅⋅=⋅⋅⋅=⇔12,,,s c c c 可由12,,,n ααα⋅⋅⋅线性表示. 同理:C 的行向量能由B 的行向量线性表示,T A 为系数矩阵.√ 用对角矩阵Λ左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的行向量; 用对角矩阵Λ右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘.√ 分块矩阵的转置矩阵:TTT TT A B A C C D BD ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭分块矩阵的逆矩阵:111A A B B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ 111A B B A---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭1111A C A A CB O B OB ----⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭ 1111A O A O CB B CA B ----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭分块对角阵相乘:11112222,A B A B A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭11112222A B AB A B ⎛⎫= ⎪⎝⎭分块对角阵的伴随矩阵:***A BA B AB ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭√ 矩阵方程的解法(0A ≠):设法化成AX B XA B ==(I) 或 (II)A B E X −−−−→初等行变换(I)的解法:构造()()T T T TA XB X X=(II)的解法:将等式两边转置化为, 用(I)的方法求出,再转置得√ 0Ax =与0Bx =同解(,A B 列向量个数相同),则:① 它们的极大无关组相对应,从而秩相等; ② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系.√ 矩阵m n A ⨯与l n B ⨯的行向量组等价⇔齐次方程组0Ax =与0Bx =同解⇔PA B =(左乘可逆矩阵P );101p 教材 矩阵m n A ⨯与l n B ⨯的列向量组等价⇔PQ B =(右乘可逆矩阵Q ). √ 判断12,,,s ηηη是0Ax =的基础解系的条件:① 12,,,s ηηη线性无关; ② 12,,,s ηηη都是0Ax =的解;③ ()s n r A =-=每个解向量中自由未知量的个数.√ 一个齐次线性方程组的基础解系不唯一.① 零向量是任何向量的线性组合,零向量与任何同维实向量正交. ② 单个零向量线性相关;单个非零向量线性无关. ③ 部分相关,整体必相关;整体无关,部分必无关.④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关.⑤ 两个向量线性相关⇔对应元素成比例;两两正交的非零向量组线性无关114p 教材.⑥ 向量组12,,,n ααα⋅⋅⋅中任一向量i α(1≤i ≤)n 都是此向量组的线性组合.⑦ 向量组12,,,n ααα⋅⋅⋅线性相关⇔向量组中至少有一个向量可由其余n -1个向量线性表示. 向量组12,,,n ααα⋅⋅⋅线性无关⇔向量组中每一个向量i α都不能由其余n -1个向量线性表示. ⑧ m 维列向量组12,,,n ααα⋅⋅⋅线性相关()r A n ⇔<; m 维列向量组12,,,n ααα⋅⋅⋅线性无关()r A n ⇔=. ⑨ ()r A A O =⇔=0.⑩ 若12,,,n ααα⋅⋅⋅线性无关,而12,,,,n αααβ⋅⋅⋅线性相关,则β可由12,,,n ααα⋅⋅⋅线性表示,且表示法唯一. ⑪ 矩阵的行向量组的秩=列向量组的秩=矩阵的秩. 行阶梯形矩阵的秩等于它的非零行的个数.可画出一条阶梯线,线的下方全为0;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线后面的第一个元素非零.当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是0⑫ 矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系;矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系. 即:矩阵的初等变换不改变矩阵的秩. √ 矩阵的初等变换和初等矩阵的关系:对A 施行一次初等行变换得到的矩阵,等于用相应的初等矩阵左乘A ; 对A 施行一次初等列变换得到的矩阵,等于用相应的初等矩阵右乘A .如果矩阵A 存在不为零的r 阶子式,且任意r +1阶子式均为零,则称矩阵A 的秩为r .记作()r A r =向量组12,,,n ααα的极大无关组所含向量的个数,称为这个向量组的秩.记作12(,,,)n r αααA 经过有限次初等变换化为B . 记作:A B =12,,,n ααα⋅⋅⋅和12,,,n βββ⋅⋅⋅可以相互线性表示. 记作:()()1212,,,,,,n n αααβββ⋅⋅⋅=⋅⋅⋅⑬ 矩阵A 与B 等价⇔PAQ B =,,P Q 可逆⇔()(),r A r B A B =≠>作为向量组等价,即:秩相等的向量组不一定等价.矩阵A 与B 作为向量组等价⇔1212(,,,)(,,,)n n r r αααβββ⋅⋅⋅=⋅⋅⋅=1212(,,,,,,)n n r αααβββ⋅⋅⋅⋅⋅⋅⇒ 矩阵A 与B 等价.⑭ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示⇔AX B =有解⇔12(,,,)=n r ααα⋅⋅⋅1212(,,,,,,)n s r αααβββ⋅⋅⋅⋅⋅⋅⇒12(,,,)s r βββ⋅⋅⋅≤12(,,,)n r ααα⋅⋅⋅.⑮ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且s n >,则12,,,s βββ⋅⋅⋅线性相关.向量组12,,,s βββ⋅⋅⋅线性无关,且可由12,,,n ααα⋅⋅⋅线性表示,则s ≤n .⑯ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且12(,,,)s r βββ⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅,则两向量组等价;p 教材94,例10 ⑰ 任一向量组和它的极大无关组等价.向量组的任意两个极大无关组等价. ⑱ 向量组的极大无关组不唯一,但极大无关组所含向量个数唯一确定. ⑲ 若两个线性无关的向量组等价,则它们包含的向量个数相等.⑳ 若A 是m n ⨯矩阵,则{}()min ,r A m n ≤,若()r A m =,A 的行向量线性无关;若()r A n =,A 的列向量线性无关,即:12,,,n ααα⋅⋅⋅线性无关.√ 矩阵的秩的性质:①()A O r A ≠⇔若≥1 0≤()m n r A ⨯≤min(,)m n ②()()()TTr A r A r A A == p 教材101,例15③()()r kA r A k =≠ 若0④()r A B ±≤()()r A r B + {}max (),()r A r B ≤(,)r A B ≤()()r A r B + p 教材70⑤ ()()A O O A r r A r B O B B O ⎛⎫⎛⎫==+⎪ ⎪⎝⎭⎝⎭ ()()A C r r A r B O B ⎛⎫≠+ ⎪⎝⎭⑥()r AB ≤{}min (),()r A r B⑦ ,,()()()m n n s A B r AB r A r B ⨯⨯=⇒+若且0≤n ⑧()()A r AB r B ⇒=若可逆()()B r AB r A ⇒=若可逆⑨若0()()()m n Ax r A n r AB r B ⨯⇔=⎧=⇒⎨=⎩ 只有零解且A 在矩阵乘法中有左消去律0AB B AB AC B C =O ⇒=⎧⎨=⇒=⎩;若()()()n s r B n r AB r B ⨯=⇒= 且B 在矩阵乘法中有右消去律.√ 初等矩阵的性质:1212,,,0,,,()()A n n Ax n Ax A Ax r A r A Ax n βαααβαααβββ⇔=<⇔⇒⇔=−−−−−→=⇔=⇔=⇔==当为方阵时有无穷多解 表示法不唯一线性相关有非零解0 可由线性表示有解有唯一组解 1212,,,0()(),,,()(A n n Ax A r A r A Ax r A r αααββαααβ⎧⎪⎪⎪⎪⎨⎪⎪⇔⎪⇒⇔=−−−−−→≠⇒⎪⎩⇔≠⇔=⇔<当为方阵时表示法唯一 线性无关只有零解0克莱姆法则 不可由线性表示无解)()1()A r A r A ββ⎧⎪⎨⎪⇔+=⎩注:Ax Ax ββ⇒=<≠⇒=<≠有无穷多解其导出组有非零解有唯一解其导出组只有零解Ax β=1122n n x x x αααβ+++=1112111212222212,,n n m m mn n m a a a x b a a a x b A x a a a x b β⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 12,,2,,j j j mj j n αααα⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪⎝⎭11212(,,,)n n x x x αααβ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭线性方程组解的性质:1212121211221212(1),0,(2)0,,(3),,,0,,,,,(4),0,(5),,0(6k k k k Ax Ax k k Ax k Ax Ax Ax Ax Ax ηηηηηηηηηλλλληληληγβηγηβηηβηη=+⎫⎪=⎪⎬=⎪⎪++⎭==+==-= 是的解也是它的解 是的解对任意也是它的解齐次方程组 是的解对任意个常数 也是它的解 是的解是其导出组的解是的解是的两个解是其导出组的解211212112212112212),0(7),,,,100k k k k k k k Ax Ax Ax Ax Ax ηβηηηηηηβληληληβλλλληληληλλλ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪=⇔-=⎪=⎪⎪++=⇔++=⎪⎪++=⇔++=⎩ 是的解则也是它的解是其导出组的解 是的解则也是的解 是的解 √ 设A 为m n ⨯矩阵,若()r A m =,⇒()()r A r A β=⇒Ax β=一定有解, 当m n <时,一定不是唯一解⇒<方程个数未知数的个数向量维数向量个数,则该向量组线性相关.m 是()()r A r A β和的上限.n 个n 维线性无关的向量,两两正交,每个向量长度为1.(,)0αβ=.1α==.√ 内积的性质: ① 正定性:(,)0,(,)0αααααο≥=⇔=且 ② 对称性:(,)(,)αββα=③ 双线性:1212(,)(,)(,)αββαβαβ+=+ 1212(,)(,)(,)ααβαβαβ+=+(,)(,)(,)c c c αβαβαβ==E A λ-.()E A f λλ-=.√ ()f λ是矩阵A 的特征多项式⇒()f A O =E A λ-=0. Ax x Ax x λ=→ 与线性相关√12n A λλλ= 1ni A λ=∑tr ,A tr 称为矩阵A √ 上三角阵、下三角阵、对角阵的特征值就是主对角线上的n 各元素.√ 若0A =,则λ=0为A 的特征值,且0Ax =的基础解系即为属于λ=0的线性无关的特征向量.√ ()1r A =⇔A 一定可分解为A =()1212,,,n n a a b b b a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭、21122()n n A a b a b a b A =+++,从而A 的特征值为:11122n n A a b a b a b λ==+++tr ,23n λλλ====0 p 指南358.√ 若A 的全部特征值12,,,n λλλ,()f A 是多项式,则:① ()f A 的全部特征值为12(),(),,()n f f f λλλ;12()()()()n f A f f f λλλ=② 若A 满足()0f A =,则A 的任何一个特征值必满足()i f λ=0.√ 设1110()m m m m f x a x a x a x a --=++++,对n 阶矩阵A 规定:1110()m m m m f A a A a A a A a E --=++++为A 的一个多项式.√ 1231122,T A mm k kAa b aA bE A A AA A Aλλλλλλλλλλλ-*⎧⎪++⎪⎪⎨= 是的特征值则:分别有特征值 .⎪⎪⎪⎪⎪⎩ √ 1231122,A mm k kAa b aA bEAx A x A A A λλλλλλλλλλ-*⎧⎪++⎪⎪⎪⎨=⎪⎪⎪⎪⎩是关于的特征向量则也是关于的特征向量. √ 2,mA A 的特征向量不一定是A 的特征向量. √ A 与TA 有相同的特征值,但特征向量不一定相同.1B P AP -= (P 为可逆矩阵) 记为:A B1B P AP -= (P 为正交矩阵)A 与对角阵Λ相似. 记为:AΛ (称Λ是A√ A 可相似对角化⇔()i i n r E A k λ--= i k 为i λ的重数⇔A 恰有n 个线性无关的特征向量. 这时,P 为A 的特征向量拼成的矩阵,1P AP -为对角阵,主对角线上的元素为A 的特征值.设i α为对应于i λ的线性无关的特征向量,则有:121212112212(,,,)(,,,)(,,,)(,,,)n n n n n n PPA A A A λλααααααλαλαλααααλΛ⎛⎫⎪⎪=== ⎪ ⎪⎝⎭. 注:当i λ=0为A 的特征值时,A 可相似对角化⇔i λ的重数()n r A =-= 0Ax =基础解系的个数. √ 若A 可相似对角化,则其非零特征值的个数(重数重复计算)()r A =. √ 若n 阶矩阵A 有n 个互异的特征值,则A 可相似对角化.√ 若A Λ⇒k A =1k P P -Λ=,1211()()()()()n A P P P P ϕλϕλϕϕϕλ--⎛⎫⎪⎪=Λ= ⎪ ⎪⎝⎭√ 相似矩阵的性质:① A B =tr tr② A B = 从而,A B 同时可逆或不可逆 ③ ()()r A r B = ④TT AB ;11A B -- (若,A B 均可逆);**A B⑤kk AB (k 为整数);()()f A f B ,()()f A f B =⑥,A B A B CD C D ⎛⎫⎛⎫⇒ ⎪ ⎪⎝⎭⎝⎭⑦E A E B λλ-=-,从而,A B 有相同的特征值,但特征向量不一定相同.注:x 是A 关于0λ的特征向量,1P x -是B 关于0λ的特征向量.√ 数量矩阵只与自己相似.√ 对称矩阵的性质: ① 特征值全是实数,特征向量是实向量;② 不同特征值对应的特征向量必定正交;注:对于普通方阵,不同特征值对应的特征向量线性无关;③ 必可用正交矩阵相似对角化,即:任一实二次型可经正交变换化为标准形; ④ 与对角矩阵合同,即:任一实二次型可经可逆线性变换化为标准形;⑤ 一定有n 个线性无关的特征向量,A 可能有重的特征值,该特征值i λ的重数=()i n r E A λ--).TAA E =√ A 为正交矩阵⇔A 的n 个行(列)向量构成n的一组标准正交基.√ 正交矩阵的性质:① 1TA A -=;② TTAA A A E ==;③ 正交阵的行列式等于1或-1;④ A 是正交阵,则TA ,1A -也是正交阵; ⑤ 两个正交阵之积仍是正交阵;⑥ A 的行(列)向量都是单位正交向量组.1211(,,,)n nTn ij i j i j f x x x x Ax a x x ====∑∑ ij ji a a =,即A 为对称矩阵,12(,,,)T n x x x x =T B C AC =. 记作:A B (,,A B C 为对称阵为可逆阵)二次型的规范形中正项项数pr p -;2p r -. (r 为二次型的秩)√ 两个矩阵合同的充分必要条件是:它们有相同的正负惯性指数. √ 两个矩阵合同的充分条件是:AB√ 两个矩阵合同的必要条件是:()()r A r B =√ 12(,,,)Tn f x x x x Ax =经过正交变换合同变换可逆线性变换x Cy =化为21ni i f d y =∑√ 二次型的标准形不是唯一的,与所作的正交变换有关,但非零系数的个数是由()r A +正惯性指数负惯性指数唯一确定的.√ 当标准形中的系数i d 为-1或0或1时,√ 实对称矩阵的正(负)惯性指数等于它的正(负)特征值的个数.√ 惯性定理:任一实对称矩阵A 与唯一对角阵1111⎛⎫⎪ ⎪ ⎪ ⎪-⎪⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭合同. √ 用正交变换法化二次型为标准形:① 求出A 的特征值、特征向量;② 对n 个特征向量正交化、单位化;③ 构造C (正交矩阵),作变换x Cy =,则1112221()()TT T T Tn n n y d y y d y Cy A Cy y C ACY y C ACY y d y -⎛⎫⎛⎫⎛⎫ ⎪⎪⎪ ⎪⎪⎪=== ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭新的二次型为21ni if d y =∑,Λ的主对角上的元素i d 即为A 的特征值.123,,ααα线性无关,112122111313233121122()()()()()()T TT T T Tβααββαβββαβαββαββββββ=⎧⎪⎪⎪⎪=-⎨⎪⎪=--⎪⎪⎩正交化 单位化:111βηβ=222βηβ= 333βηβ= 技巧:取正交的基础解系,跳过施密特正交化。

简明线性代数教程(第三版)(柴伟文主编)思维导图

简明线性代数教程(第三版)(柴伟文主编)思维导图

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

线性代数思维导图

线性代数思维导图

线性代数是数学的一个分支,其研究对象是向量,向量空间(或称为线性空间),线性变换和有限维线性方程组。

向量空间是现代数学中的重要课题。

因此,线性代数被广泛用于抽象代数和泛函分析。

通过解析几何,可以具体表达线性代数。

线性代数理论已经推广到算子理论。

由于科学研究中的非线性模型可以近似为线性模型,因此线性代数在自然科学和社会科学中被广泛使用。

概念线性代数是代数的一个分支,主要处理线性关系。

线性关系是指数学对象之间的关系以单一形式表示。

例如,在解析几何中,平面上的直线方程是二元线性方程;空间平面的方程是三次方程,而空间直线被视为两个平面的交点,并由由两个三次线性方程组成的方程组表示。

具有n个未知数的线性方程称为线性方程。

具有一度变量的函数称为线性函数。

线性关系问题称为线性问题。

求解线性方程式的问题是最简单的线性问题。

所谓“线性”是指以下数学关系。

其中f称为线性算子或线性映射。

所谓的“代数”是指用符号代替元素和运算。

换句话说,我们不在乎上面的x,y是实数还是函数,以及f是多项式还是微分。

我们将它们抽象为一个符号或一类矩阵。

线性代数共同研究了哪种线性算子f满足线性关系以及它们分别具有什么性质。

[1]历史作为线性代数的一个独立分支,它仅在20世纪形成九章算术九章算术很久以前了“鸡和兔子在同一个笼子里”的问题实际上是解决线性方程组的一个简单问题。

最古老的线性问题是线性方程的解。

在中国古代的“九章算术·方程式”一章中对此进行了完整的描述。

本文描述的方法本质上等效于在方程组的增广矩阵的行上执行基本变换并消除未知变量的现代方法。

由于费马和笛卡尔的工作,现代意义上的线性代数基本上出现在17世纪。

直到18世纪末,线性代数的领域仅限于平面和空间。

在19世纪上半叶,完成了向n维线性空间的过渡。

随着对线性方程的研究和变量的线性变换的深入,在18和19世纪相继产生了行列式和矩阵,这为处理线性问题提供了有力的工具,并促进了线性代数的发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档