遗传规律学第2章遗传规律物质基础

合集下载

高二生物遗传的基本规律

高二生物遗传的基本规律

高二生物遗传的基本规律遗传是生物学中重要的概念,涉及到个体和物种的特征传递与演变。

在高二生物课程中,遗传的基本规律是一个重要的内容。

本文将介绍高二生物遗传的基本规律,包括孟德尔遗传规律、染色体遗传规律以及基因突变等内容。

一、孟德尔遗传规律孟德尔是遗传学的奠基人,他通过对豌豆的实验观察,总结出了遗传的基本规律。

他的观察实验主要涉及到对豌豆形态特征的遗传。

1. 隔代遗传规律孟德尔观察到,豌豆的某一性状如果在第一代杂交(父本为纯合种)中不表现,但在第二代杂交(父本为纯合种与F1代杂交)中重新出现。

这就是隔代遗传规律,也被称为势两性状遗传规律。

2. 分离规律孟德尔的实验中,他还观察到了不同性状的分离现象。

例如,豌豆的籽粒颜色遗传现象中,黄色籽粒和绿色籽粒的比例为3:1。

这说明了不同基因对于性状表现的分离和重新组合。

二、染色体遗传规律染色体遗传规律主要涉及到基因在染色体上的分布和遗传关系。

染色体具有双螺旋结构,上面携带着基因。

1. 遗传链的规律在染色体上,基因按照一定次序线性排列,形成了遗传链。

这意味着染色体上的基因遵循特定的排列顺序。

2. 遗传分离规律染色体具有自由组合和重新组合的能力,这使得基因在染色体上进行遗传分离。

这一规律保证了不同基因之间的独立性。

三、基因突变基因突变是遗传学中一个重要的概念,它指的是基因发生的变异和突变。

基因突变可以分为基因型突变和表型突变。

1. 基因型突变基因型突变是指基因的序列发生变化,导致基因功能的改变。

常见的基因型突变包括点突变、插入突变和缺失突变等。

2. 表型突变表型突变则是指基因型突变导致的特征表现的改变。

例如,某一基因的突变可能导致某一性状的增加或减少,甚至完全消失。

综上所述,高二生物遗传的基本规律主要包括孟德尔遗传规律、染色体遗传规律以及基因突变。

这些规律帮助我们理解遗传现象的发生和演化,对于生物学的学习和研究具有重要意义。

通过深入学习这些基本规律,我们能够更好地理解和解释生物多样性的产生和发展过程。

遗传学-第2章_遗传的细胞学基础

遗传学-第2章_遗传的细胞学基础

内膜系统 细胞质
细胞壁成分 细胞增殖
真核生物的细胞由细胞膜、细胞质、细胞核三部分 组成 (一)细胞膜(质膜) 细胞膜是细胞外围的一层薄膜,主要由蛋白质和类 脂构成。 功能:能够有选择地通过某些物质。 在植物细胞的细胞膜外面,还有一层由纤维素和果 胶质组成的细胞壁(支持和保护作用)。
(二)细胞质(胞质) 细胞质是细胞膜内环绕着细胞核外围的原生质,呈胶体状 态。里面有许多蛋白质、脂肪等物质,细胞质中包含着各种 细胞器:线粒体、质体(植)、核糖体、内质网、高尔基体、 中心体(动)、溶酶体和液泡(植)。 其中,质体和液泡只有植物才具有,中心体只是动物细胞才具 有。 线粒体是动植物细胞中普遍存在的细胞器,是细胞内呼吸作用和 氧化作用的中心,是贮藏能量的场所。 质体包括叶绿体、有色体和白色体,其中最重要的是叶绿体, 是植物光合作用的场所。 核糖体是极其微小的细胞器,由RNA和蛋白质组成,是细胞中合 成蛋白质的主要场所。 内质网是运输蛋白质的合成原料和合成产物的通道。
线粒体
线粒体DNA
叶绿体
叶绿体DNA
电镜下内质网
电镜下粗面内质网
(三)细胞核(胞核)

除细菌和蓝藻(原核生物)之外,各种生物的 细胞内都有细胞核,细胞核由核膜、核液、核 仁和染色质(染色体)组成。

细胞核是遗传物质聚集的主要场所,对细胞发 育和性状遗传起着指导作用。
植物细胞和动物细胞的区别
上各个微小的区段。这些区段长度各不相同,各有不同的分子结
构,规定着不同性状的遗传。 提问:染色体、DNA、基因有何不同?
第三节 细胞分裂

细胞分裂是生物进行生长和繁殖的基础,亲代 的遗传物质就是通过细胞分裂向子代传递的。 19世纪末,Flemming W(1882)和Boveri T(1891)分别发现了有丝分裂和减数分裂,为遗 传的染色体学说提供了理论基础。

02第二章连锁遗传规律

02第二章连锁遗传规律

双交换
2
Σ
6708
第一步:判断三对基因是否连锁
三对基因的三种关系: ①独立 ②连锁 ③有独立亦有连锁
基因间的关系 ① 独立 ② 连锁
③ 独立亦连锁
测交后代的表现
8种表型比例相等。 每2种表型比例一样,
共有4类比例值。 每4种表型比例一样,
共有2类比例值。
从试验结果看,这三对基因是连锁的, 即位于一对同源染色体上。
P
AB //AB × ab//ab


AB
ab
F1
AB//ab
完全连锁 : F1只产生亲型配子( AB 和ab)。
不完全连锁 :F1不仅产生亲型配子, 也产生重组型配子( Ab 和 aB )。
如果A、a和B、b完全连锁,则它们 的遗传行为就如同一对基因(C、c)一样。
P F1 F2
基因型比例 表型比例
2、相斥组 在相斥组中,AB和ab为重组型配子,故 Rf = 2 双隐性个体数 / F2个体总数
如上述香豌豆相斥组试验: Rf = 2 1 / 419 = 9.8%
交换值在0-50%之间变动,交换值越 接近0,连锁强度越大,两个连锁的非等 位基因之间发生交换越少。反之,连锁强 度越小,发生交换越多。
因此,我们可以推论: 在连锁遗 传中,F2 不表现出独立遗传的典型比 例(9:3:3:1),可能是F1 形成的四种 配子数量不相等的缘故。这一推论正 确与否可通过测交法加以验证。
三、连锁遗传的验证
这里,我们选用玉米为试验材料。 其好处是:①很多性状可以在种子上看 到,种子虽然长在母株的果穗上,但已 是下一代了。② 同一果穗上有几百粒种 子,便于记数分析。③雌雄蕊长在不同 花序上,去雄容易,杂交也方便。④ 玉 米是一种经济作物,有些试验结果可以 直接用在生产上。

第二章 微生物的遗传物质

第二章 微生物的遗传物质
数病毒和噬菌体的核酸是线装开放类型,但常 具有特殊的末端结构以利于它们在进入宿主中 形成环状结构)
3.基因组有连续的,有不连续的 大多数连续
流感病毒:8条单链RNA
4.编码序列>90%(基因组)
5.
多为单拷贝,即每个基因只出现一次
6..基因有连续的和间断的 (有内含子) 7.相关基因丛集: 功能上相关的基因排列在一起 8.有重叠基因 9.含有不规则结构基因 基 因 之 间 无 间 隔 区 . mRNA5'端无帽子结构. 结构基因本身无翻译起始序列
7、基因组中重复序列很少
8、具有编码同工酶的基因(isogene) 9、存在可移动DNA序列
10、分子中有多功能识别区域
复制、转录起始区 复制、转录终止区
二、质粒(plasmid)
是细菌内携带的染色体以外的DNA分子 是共价闭合环状DNA(covalent closed circular DNA, cccDNA) 1、最大特点: 可独立复制
第三节 真核生物基因组 一 、特点
1、体细胞: 两套基因组 性细胞: 一套基因组 2、基因组结构复杂,数目庞大, 多个复制起始点 3、mRNA为单顺反子. 4、含大量重复序列. 5、非编码序列占90%以上. 6、基因间有间隔区(spacer DNA),基因为断裂基因(split环状 (450kb+200kb) 6个(每个> 50kb) 多个环状和1个线状(5~ 200Kb)
根癌土壤杆菌 枯草芽孢杆菌 苏云金芽孢杆菌 疏螺旋体 大豆慢生根瘤菌 马尔他布鲁菌 猪布鲁菌生物型1,2, 4 猪布鲁菌生物型3 巴克纳菌APS 耐放射异常球菌 大肠杆菌 问号钩端螺旋体 脱氮副球菌 铜绿假单胞菌 苜蓿根瘤菌 解尿脲支原体 霍乱弧菌 副溶血弧菌 苛养木杆菌

遗传学三个基本规律的主要内容

遗传学三个基本规律的主要内容

遗传学三个基本规律的主要内容
遗传规律有三大规律,分别是基因分离定律,基因自由组合定律,和基因连锁、交换定律。

第一规律,分离定律是遗传学中最基本的一个规律,它从本质上阐明了控制生物性状的遗传物质是以自成单位的基因活动的,基因作为遗传单位在体细胞中是成双的,它在遗传上具有高度的独立性,因此在减数分裂的配子形成过程中,成对的基因在杂种细胞中能够彼此互不干扰,独立分离,通过基因重组,在子代继续表现各自的作用,这一规律从理论上说明了生物界由于杂交和分离所出现的变异的普遍性。

第二规律,是自由组合定律,就是当具有两对或者更多对相对性状的亲本杂交,在此一代产生配子时,在等位基因分离的同时,非同源染色体上的非等位基因表现为自由组合。

第三个定律,就是连锁与互换定律,连锁与互换定律是指原来为同一亲本所具有的两个性状,在f2中常常有连系在一起遗传的倾向,这种现象成为连锁遗传。

连锁遗传定律的发现,证实了染色体是控制性状遗传基因的载体,通过交换的测定,进一步证明了基因在染色体上具有一定的距离的顺序,呈直线排列。

《遗传的基本规律》课件

《遗传的基本规律》课件

20世纪初,科学家们发现了染 色体和基因,揭示了遗传信息 的载体和传递机制。
1953年,沃森和克里克发现了 DNA双螺旋结构,为现代遗传 学的发展奠定了基础。
20世纪90年代,人类基因组计 划启动,旨在测定人类基因组 的全部DNA序列,为疾病诊断 、治疗和预防提供更深入的见 解。
02
遗传物质基础
DNA的结构和功能
转基因技术
利用转基因技术,可以将有益基因导 入作物中,创造出具有优良性状的转 基因作物。
基因工程和基因治疗
基因工程
通过基因工程技术,可以对生物体的遗传物质进行改造和修饰,实现定向进化、基因表 达调控等功能。
基因治疗
基因治疗是指将正常的基因导入病变细胞或组织中,以纠正或补偿缺陷基因引起的疾病 。基因治疗在某些遗传病的治疗中具有广阔的应用前景。
基因和染色体的关系
总结词
解释基因和染色体的关系以及它们在 遗传中的作用。
详细描述
基因是染色体上携带遗传信息的片段 ,它们通过编码蛋白质或RNA分子来 发挥功能。染色体是细胞核中的结构 ,负责储存基因。
03孟德尔遗传定律 Nhomakorabea孟德尔的生平简介
总结词:科学先驱
详细描述:孟德尔出生于奥地利,是遗传学的奠基人,他通过豌豆实验发现了遗 传定律。
05
遗传与环境
遗传与环境对表型的影响
遗传因素
基因通过编码蛋白质或RNA等分子,影 响个体的形态、生理和生化特征,即表 型。
VS
环境因素
环境通过影响基因的表达,或者直接作用 于个体,也影响表型。
表型可塑性和进化
表型可塑性
同一基因型在不同环境条件下表现出不同的 表型特征。
进化
在自然选择作用下,适应环境的表型得以保 留并传递给下一代,从而实现物种的进化。

第二章孟德尔遗传规律精品文档

第二章孟德尔遗传规律精品文档

F2 代基因型 YYRR yyRR YYrr yyrr YyRR Yyrr YYRr yyRr YyRr
所占比例 1/16 1/16 1/16 1/16 2/16 2/16 2/16 2/16 4/16
四、多对基因的自由组合
当具有3个和3个以上不同相对性状的植株杂交时,只要控制各个性 状的基因分别位于非同源的染色体上,它们的遗传都符合独立分配规律。
一、一对性状的杂交试验
几个概念: 1.性状:生物体所表现的形态特 征和生理特性,在遗传学上统称 为性状。 2.单位性状:每一种性状作为一 个研究对象,称为单位性状。 例如:豌豆的花色、种子形状、 株高、子叶颜色、豆荚形状及豆 荚颜色(未成熟)。 3.相对性状:遗传学中将同一单 位性状的相对差异称为相对性状。 如红花与白花、高秆与矮秆等。
七、显性的表现类型
完全显性:具有相对性状差异的纯合亲本杂交,F1 只出现亲本之一的性状,这称为完全显性。F2表 型呈3:1分离。
1
玉米蛋白质层有色与无色的分离
不完全显性:若具有相对性状 差异的纯合亲本杂交,F1 呈 现双亲性状的中间型,这称 为不完1 全显性。 F2表型呈 1:2:1分离。
1
马的毛色
1Tt
1Tt
1Tt
1Aa 1tt
1Aa 1tt
1RR
2Rr
1rr
1Tt
1Tt
1aa
1aa
1Aa 1tt 1Tt
1aa
1tt
1tt
1tt
1RRAaTt、1RRAatt、1RRaaTt、1RRaatt、 2RrAaTt、2RrAatt、2RraaTt、2Rraatt、 1rrAaTt、1rrAatt、1rraaTt、1rraatt 。

初中生物遗传规律课件

初中生物遗传规律课件

初中生物遗传规律课件遗传是生物学的重要分支,研究个体间遗传信息的传递和变异规律。

遗传规律揭示了生物种群及物种的形成和演化过程。

本课件将介绍初中生物遗传规律的基本概念和原理。

一、遗传物质的基本单位1.1 DNA是遗传物质DNA(脱氧核糖核酸)是构成遗传物质的重要分子,由核酸链条组成,每个链条由碱基序列构成。

DNA分子携带着遗传信息,决定了个体的生长和发育。

二、基因的概念和特点2.1 基因是遗传的基本单位基因是指可以决定一个性状的DNA片段,每个基因对应着一个具体的生物特征。

2.2 遗传物质的结构与功能基因序列的不同排列决定了不同的基因型,而基因型则决定了个体的表现型。

三、遗传规律的基本原理3.1 孟德尔的遗传实验孟德尔从豌豆实验中总结出了遗传的基本规律,包括隐性和显性遗传、分离规律以及基因的自由组合等。

3.2 分离规律当杂交个体自交繁殖时,第一代后代(F1代)表现为一种特征,而第二代后代(F2代)则表现出两种特征的比例,符合1:2:1的分离比例。

3.3 隐性和显性遗传某些基因以隐性的方式表现,只有在纯合子状态下才能表现出来。

而显性基因则可以在杂合子状态下表现出来。

四、单基因和多基因遗传4.1 单基因遗传有些性状只由一个基因控制,如血型、耳垂形状等。

这种遗传方式称为单基因遗传。

4.2 多基因遗传大部分性状受多个基因共同作用,如人的身高、眼睛颜色等。

这种遗传方式称为多基因遗传,符合正态分布。

五、基因突变与遗传变异5.1 基因突变的原因基因突变是指基因序列的改变,主要由突变原因和突变机制两个方面决定。

5.2 遗传变异的产生遗传变异指的是群体中个体间遗传性状的差异。

遗传变异是进化的基础,利于物种的适应性和生存能力的提高。

六、遗传工程与生物技术6.1 遗传工程的定义和应用遗传工程是对生物体的基因进行改造和调整,以达到特定目的的一种技术。

遗传工程已经在农业、医学等领域有着广泛的应用。

6.2 生物技术的发展和前景生物技术是利用生物体的物质、能量和信息进行科学研究和应用的新兴技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
遗传规律学第2章遗传规律物质基 础
第三节 染色体在细胞分裂中的行为
一、染色体在有丝分裂中的行为
❖ 细胞的增殖是通过有丝分裂(mitosis)实现的, 有丝分裂的结果是把一个细胞的整套染色体均 等地分向两个子细胞,所以新形成的两个子细 胞在遗传物质上跟原来的细胞是相同的。
遗传规律学第2章遗传规律物质基 础
二、染色体的形态结构
——随体 ——次缢痕 ——短臂 ——主缢痕 ——长臂
遗传规律学第2章遗传规律物质基 础
三、染色体的类型
遗传规律学第2章遗传规律物质基 础
四、染色体的数目
❖ 不同物种存在差异 ❖ 同一物种相对恒定 ❖ 体细胞中成双 ❖ 生殖细胞中成单
水稻2n=24 玉米2n=20 陆地棉2n=52 萝卜2n=18 番茄2n=24
遗传规律学第2章遗传规律物质基 础
灯刷染色体(lampbrush chromosome)
存在于动物卵母细胞中,是双 线期4个染色单体;此期细胞 合成mRNA和储备物质。爪蟾卵 母细胞灯刷染色体含有上万个 loops,虽然大部分DNA仍凝集 在chromomeres,每个loop对 应于一个特定的DNA序列。
遗传规律学第2章遗传规律物质基 础
五、染色体的结构
超螺线管 supersolenoid
核小体 nulieosome
螺线管 solenoid
染色体 chromosome
遗传规律学第2章遗传规律物质基 础
一级结构——核小体 二级结构——螺线体 三级结构——超螺线体 四级结构——中期染色体
遗传规律学第2章遗传规律物质基 础
❖ 具有由磷脂双分子层与镶嵌蛋白构成的 生物膜。
❖ 所有细胞都具有两种核酸:DNA与RNA。 ❖ 所有细胞都具有蛋白质合成的机器-核
糖体。 ❖ 所有细胞都以一分为二的分裂方式进行
增殖。
遗传规律学第2章遗传规律物质基 础
第二节 染色体的结构
一、 染色质与染色体
1. 染色质(chromatin)
• 染色质:间期细胞核内由DNA、组蛋白、非组
遗传规律学第2章遗传规律物质基 础
细胞周期(cell cycle)
上一次细胞分裂结束起到下一次细胞分裂止,细 胞所经历的变化过程和时间。
例如:蚕豆根尖 19.5小时。
间期
分裂期
G1 — S — G2 — M 5 7.5 5 2
遗传规律学第2章遗传规律物质基 础
❖ 图 真核生物细胞周期示意图
遗传规律学第2章遗传规律物质基 础
遗传规律学第2章遗传规律物质基 础
果蝇唾腺多线染色体
多线染色体的产生
遗传规律学第2章遗传规律物质基 础
2. 灯刷染色体
❖ 从上世纪末到本世纪初,自鱼类、爬行类、鸟类以及 某些无脊椎动物的卵母细胞中发现了另一类巨染色 体,其特点是在中轴的两侧有许多精细而成对的环状 突起,类似灯刷,因而称为灯刷染色体.
1. 细菌的有丝分裂
❖ 细菌属原核类(prokaryote)。细菌染色体位于细胞 内的核区,核区外面没有核膜,所以称为原核。每 一原核类细胞中通常只有一个染色体,染色体的结 构简单,是一个裸露的DNA分子。
பைடு நூலகம்遗传规律学第2章遗传规律物质基 础
❖ 图 遗细传规菌律学细第2胞章遗的传规有律物丝质基分裂

Color-enhanced electron micrograph of E.coli undergoing cell division.
遗传规律学第2章遗传规律物质基 础
2. 真核类的有丝分裂
❖ 因为真核类的细胞所含有的染色体数目往往较多, 因而其细胞分裂也更为复杂。
❖ 有丝分裂过程是一个连续的过程,但为说明的方便 起见,通常将其分成前期、中期、后期和末期四个 时期,在两次有丝分裂中间的时期称为间期。
❖ 染色体是染色质在细胞分裂过程中经过紧密缠绕、 折叠、凝缩、精巧包装而成的具有固定形态的遗传 物质存在形式,是高度螺旋化的DNA蛋白质纤维。
❖ 染色质和染色体是真核生物遗传物质存在的两种不 同形态,两者不存在成分上的差异,仅反映它们处 于细胞分裂周期的不同功能阶段而已。
遗传规律学第2章遗传规律物质基 础
真核细胞的一般结构
❖ 细胞:是由膜包围的,能进行独立繁殖的 最小原生质团。
❖ 原生质:指细胞内所含的生活物质,真核 细胞包括细胞膜、细胞质与细胞核。
❖ 细胞器:指存在于细胞中,利用光学或者 电子显微镜可以分辨的、具有一定形态特 点并执行特定功能的结构。
遗传规律学第2章遗传规律物质基 础
细胞的基本特征
从DNA到染色体
DNA→核小体→螺线 管→超螺线管→染色单 体
遗传规律学第2章遗传规律物质基 础
六、特殊染色体
1. 多线染色体
❖ 双翅目昆虫(如果蝇)幼虫的唾腺细胞、肠细胞、气管细胞等 就发现多线染色体。
❖ 在幼虫发育期间, 染色体要进行4-15次复制,复制后的新老链 不分离,因而一个染色体中就有24-215条DNA分子,果蝇幼虫 唾腺细胞核中DNA的含量就比一般细胞多了1000多倍,这种 只复制不分离的巨大染色体就称为多线染色体.由于多线染色 体中平行排列的染色体纤维各段凝缩紧密程度不同,因而呈现 出横行带纹现象.
蛋白和少量RNA组成、易被碱性染料染色的线
性复合结构。包括常染色质和异染色质。 0
• 常染色质(euchromatina)
间期着色浅、螺旋化程度低、较伸展。
• 异染色质(heterochromatin)
间期着色深、螺旋化程度高、凝集状态
遗传规律学第2章遗传规律物质基 础
2. 染色体(chromosome)
第二章 遗传的物质基础
遗传规律学第2章遗传规律物质基 础
第一节 细胞的基本结构 第二节 染色体的结构 第三节 染色体在细胞分裂中的行为 第四节 DNA的结构 第五节 RNA的分子结构 第六节 DNA的复制
遗传规律学第2章遗传规律物质基 础
第一节 细胞的基本结构
遗传规律学第2章遗传规律物质基 础
❖ 自学
间期(interphase):光学显微镜下,细胞核是均匀一致 的,看不到染色体,似乎静止 (活跃的代谢状态) 。
间期可分为三个时期: G1期: DNA合成前期 S 期: DNA合成期 G2期: DNA合成后期
遗传规律学第2章遗传规律物质基 础
(1) 前期(prophase):
❖ 间期核内的染色体细丝开始螺旋化,缩短变粗,染色体逐渐 清晰起来。每一染色体含有纵向并列的两条染色单体,前期 快结束时,染色体缩得很短。核膜核仁逐渐消失。
相关文档
最新文档