防反接电路

合集下载

结合实际聊聊防反接电路(防反接电路总结)

结合实际聊聊防反接电路(防反接电路总结)

结合实际聊聊防反接电路(防反接电路总结)•前言•一、二极管防反接▪ 1.1 基本电路▪ 1.2 桥式整流电路•二、保险丝和二极管防反接•三、MOS管防反接▪ 3.1 PMOS电路▪ 3.2 NMOS电路•结语前言又到了电路小课堂时间,今天我们要聊的是防反接电路,防反接电路是硬件工程师必备的基础知识,在网上已经有大量的防反接电路总结文章,我也查阅了大量文章。

虽然说实用的电路就那么几种,这个可谓英雄所见略同,但是大部分文章的说明部分都一样,那么这就……(不符合我的风格,不浮夸,不将就。

即便是总结,原理可以一样,但是说明照搬那就说不过去了~ ~)说明一下,本文的防反接电路主要针对是单片机系统,因为博主是在智能家居领域工作的,我会结合自己的工作经验,设计的产品来说说这些电路。

一、二极管防反接又是从二极管开始(和MOS管一样,用得这么多,我得写一篇全面认识二极管的文章了),利用PN结的单向导电性(不要钻牛角尖说反向漏电流)。

1.1 基本电路直接在电源入口处串联一个二极管,电路简单,成本低,如下图(本图就是实际使用过的):在这里插入图片描述上图是最简单也是最常用的防反接方式,上图是二极管接在入口Vin 端,也可以接在GND端,二极管反着接,是一样的效果。

电路分析在单片机系统中,使用此电路一般一般一般只需要注意一个参数:最大整流电流。

首先你在设计自己电路的时候应该知道自己的负载功率,比如一般来说STM32 最小系统,也就是20/30 mA,加上其他的一些传感器,可以知道系统平时运行的功耗,要注意STM32 的功耗是3.3V状态下的,入口电源是 5V 或者 12V,电流需要就更小了,当然不要忘记DC/DC, 或者 LDO 的转换效率之类的。

每个二极管都有一个参数,最大整流电流,比如上图中的SS34:电路设计需要冗余,所以我一般直接使用一个SS34,基本上所有的项目都能满足要求,当然SS34封装稍微大一点。

网上的大部分介绍这个电路的时候都说到,二极管0.7V 的压降,2A电流或者更多电流的时候发热之类,我怎么看?首先,这个说法没有错,理论上就是这么分析的!实际应用我从以下几个点分析:二极管的选型,二极管压降与电流的关系,应用领域。

基于mos管的防反接电路

基于mos管的防反接电路

基于mos管的防反接电路
(最新版)
目录
1.介绍 MOS 管
2.防反接电路的背景和需求
3.基于 MOS 管的防反接电路设计
4.优点和应用范围
正文
一、介绍 MOS 管
MOS 管,全称为金属 - 氧化物 - 半导体场效应晶体管,是一种广泛应用于模拟和数字电路的半导体器件。

它具有高输入阻抗、低噪声和低功耗等特点,在电路设计中有着极大的灵活性。

二、防反接电路的背景和需求
在电子设备中,电源反接会导致设备损坏或者工作异常。

因此,防止电源反接是电路设计中的重要环节。

防反接电路可以在电源接反时,防止电流流过设备,保护设备正常工作。

三、基于 MOS 管的防反接电路设计
基于 MOS 管的防反接电路设计,主要是利用 MOS 管的导通特性,设计出一个能够在电源正反接转换时,自动切断电源的电路。

当电源正反接时,MOS 管的导通状态会发生改变,从而使得电源被切断,防止设备受到损坏。

四、优点和应用范围
基于 MOS 管的防反接电路具有响应速度快、工作稳定性好、结构简单等优点,广泛应用于各种电源保护电路中。

mos管防反接软启动电路

mos管防反接软启动电路

MOS管防反接软启动电路1. 引言在电子设备中,MOS管(金属氧化物半导体场效应管)的应用非常广泛。

然而,由于其特性,当MOS管遭受反向电压时,可能会发生损坏。

因此,为了保护MOS管不受反向电压的影响,在设计电路时需要考虑添加防反接软启动电路。

本文将详细介绍MOS管防反接软启动电路的原理、设计要点以及实际应用。

2. 原理2.1 MOS管的特性首先,我们需要了解一些关于MOS管的基本特性。

MOS管是一种三端器件,由栅极、漏极和源极组成。

它可以通过控制栅极上的电压来调整漏极和源极之间的导通状态。

2.2 反向击穿现象当MOS管遭受到超过其耐压能力的反向电压时,就会发生反向击穿现象。

这会导致漏极和源极之间瞬间产生高能量放电,从而损坏MOS管。

2.3 防反接软启动电路原理防反接软启动电路的主要原理是在供电电路中添加一个保护电路,以确保MOS管不受反向电压的影响。

防反接软启动电路通常由以下几个部分组成: - 电源开关:控制供电电源的连接和断开。

- 反向击穿保护器件:用于检测反向电压,并在检测到反向击穿时触发保护机制。

- 延时启动器件:用于延迟供电,以确保MOS管正常工作前,供电稳定。

3. 设计要点3.1 选择合适的反向击穿保护器件选择适当的反向击穿保护器件非常重要。

常见的保护器件包括二极管、瞬态抑制二极管(TVS)和快恢复二极管等。

根据具体应用场景和需求,选择合适的保护器件。

3.2 设计延时启动机制为了确保MOS管正常工作前,供电稳定,需要设计延时启动机制。

可以通过使用RC延时电路或者集成延时芯片来实现。

3.3 控制开关速度在防反接软启动电路中,控制开关速度非常重要。

如果开关速度过快,可能会导致电压尖峰和电流冲击,对MOS管造成损坏。

因此,需要合理控制开关速度,避免潜在的问题。

3.4 稳定性防反接软启动电路应具有良好的稳定性。

要确保在各种工作条件下,电路能够正常工作,并保护MOS管不受反向电压的影响。

4. 实际应用4.1 电源管理系统防反接软启动电路广泛应用于各种电源管理系统中。

几种直流供电防反接保护电路的分析

几种直流供电防反接保护电路的分析

电力电子 • Power Electronics216 •电子技术与软件工程 Electronic Technology & Software Engineering 【关键词】防反接 二极管 MOS 管 继电器直流供电设备的输入反接保护有很多方式可以实现,比如选择具备防插错功能的接插件可以在结构设计层面避免反接,但在很多场合中还是在电路设计中加入防反接电路的更具有可行性。

防反接电路必须具备电路简单可靠性高,成本低廉,本文对目前常用的几种防反接电路进行对比分析,对每种电路适用的场合作出了说明。

1 串联二极管防反接在电路中串联二极管是最为简单可行的方法之一,此方法利用二极管的单相导通性实现电路的防反接,当输入接反时,电路不导通。

在实际应用中,根据输入电压范围和额定电流选择合适的二极管,需要注意在电流较大的情况下二极管的功率和散热。

例如,当电路额定电流为5A 时,二极管的功耗为P=0.7*5=3.5瓦,就算选用压降为0.3V 的肖特基二极管功耗也有1.5瓦。

2 并联二极管防反接此防反接电路采用了一个保险丝和一个反向并联的二极管,电源极性正确,电路正常工作时,由于负载的存在电流较小,二极管处于反向阻断状态,保险丝不会被熔断,如图1 所示。

当电源接反时,二极管导通,此时的电流比较大,就会将保险丝熔断,从而切断电源的供给,起到保护负载的作用。

在选择二极管时需要注意选择合适的反向耐压值。

其优点是保险丝的压降很小,不存在发热问题,成本不高。

但是一旦接反需要更换保险丝,操作比较麻烦。

3 整流桥防反接在直流供电输入端加整流桥,输入的正负端接整流桥的两个AC 端,整流桥的输出端再接入电路的输入端。

在这种情况下,不论直几种直流供电防反接保护电路的分析文/王勤流输入的正负如何接,经过整流桥后输出的电压极性都是正确的,电路都可以正常工作。

但是电路中就会有两个二极管同时在工作,功耗为方案1的2倍,所以在选择整流桥时要注意电压和电流参数。

nmos防反接_原理_概述说明以及解释

nmos防反接_原理_概述说明以及解释

nmos防反接原理概述说明以及解释1. 引言1.1 概述引言部分旨在介绍本篇长文的主题,即NMOS防反接。

本文将详细说明NMOS 防反接的原理、方法和解释。

NMOS防反接是一种必要的电路设计策略,用于保护NMOS(MOSFET的一种形式)不被反向电压损坏。

1.2 文章结构为了展现逻辑性和层次清晰性,本文按照以下结构进行组织:引言部分提供了一个总体概述,紧接着是NMOS防反接原理、概述说明和解释三个主要部分。

每个部分都进一步细分为几个小节,以便更全面地探讨该主题。

1.3 目的文章的目标是向读者介绍和解释NMOS防反接的原理,并提供各种常见的防反接电路方案及其优缺点。

同时,我们还将详细解释如何保护NMOS不受到反向电压损坏,并对电流流向、开关特性以及直流偏置和交流耦合解决方法进行分析和说明。

通过这篇长文,读者将能够全面了解NMOS防反接,并且可以根据自身需求选择合适的设计方案。

以上是“1. 引言”部分的详细内容。

2. NMOS防反接原理:2.1 NMOS工作原理:NMOS(Negative-channel Metal-oxide-semiconductor)是一种常见的场效应晶体管。

它由金属电极、绝缘层和半导体材料构成。

当在栅极施加正电压时,形成电子气,使得通道内的N型半导体导电。

当源极施加正电压,漏极为负电压时,NMOS开启并允许电流通过。

2.2 反接的危害与问题:反接指的是在驱动NMOS过程中,源极与漏极之间的电压方向与NMOS设计要求相反。

如果源极为负电压且漏极为正电压,就会出现反接状况。

这样会导致两个主要问题:首先,会产生大量倒偏击穿电流损坏器件;其次,在大功率情况下可能引起温度升高,并使晶体管失效。

2.3 防止NMOS反接的方法:有几种常见的方法可以防止NMOS发生反接现象:- 使用二级保护回路:可以通过添加二级保护来控制源漏电路方向,以避免外部条件导致的误操作。

- 添加反向并联二极管:在NMOS的漏极和源极之间添加一个并联的反向二极管,这样当出现反接时,电流会通过二极管流回。

mos管防反接电路计算

mos管防反接电路计算

mos管防反接电路计算MOS管防反接电路是一种常见的电路保护装置,用于防止电源被误接反向而导致电路损坏。

本文将从原理、设计和应用三个方面对MOS管防反接电路进行介绍。

一、原理MOS管防反接电路的原理是利用MOS管的特性来实现电路的保护。

MOS管具有开关功能,当输入信号高电平时,MOS管导通;当输入信号低电平时,MOS管截止。

在正常工作情况下,输入信号高电平时,MOS管导通,电路正常工作;当电源被误接反向时,输入信号低电平,MOS管截止,起到了阻止电流流动的作用,有效保护了电路。

二、设计MOS管防反接电路的设计需要考虑以下几个方面:1. MOS管的选择:选用合适的MOS管是保证电路正常工作的关键。

一般选择导通电阻小、耐压高的MOS管。

同时,还需要考虑MOS 管的耐反向电压能力。

2. 限流电阻的选择:为了限制电流的大小,防止过大电流对电路造成损坏,需要选择适当的限流电阻。

限流电阻的大小可以根据电路的需求和MOS管的参数来确定。

3. 输入信号的处理:为了确保输入信号的稳定性和准确性,一般会对输入信号进行处理,如加入滤波器、稳压电路等。

4. 电源连接方式:为了防止电源被误接反向,可以采用特殊的电源连接方式,如使用插头和插座的方式,确保电源的正确连接。

三、应用MOS管防反接电路在实际应用中有着广泛的用途,下面以汽车电路为例进行说明:在汽车电路中,MOS管防反接电路可以用于保护汽车电子设备,如车载音响、车载导航等。

由于汽车的电源系统比较复杂,存在着电源被误接反向的风险。

如果没有保护电路,一旦电源被误接反向,将会对汽车电子设备造成严重的损坏。

通过加入MOS管防反接电路,当电源被误接反向时,MOS管会截断电路,起到保护电子设备的作用。

MOS管防反接电路还可以应用于其他领域,如工业控制、通信设备等。

在这些领域中,电源的稳定性和可靠性对设备的正常运行至关重要,而电源被误接反向可能会导致设备故障。

通过加入MOS管防反接电路,可以有效防止电源被误接反向,提高设备的可靠性和稳定性。

mos管加二极管防反接电路

mos管加二极管防反接电路

mos管加二极管防反接电路
MOS管加上二极管可以构成防反接电路,保护电路不受电源反接的损害。

以下是一些常见的实现方式:
1. NMOS防反接电路:在电源正确连接时,电流流过NMOS的体二极管(寄生二极管),由于体二极管压降很小,可以忽略不计。

此时,通过电阻分压网络使得NMOS的栅极电压足以使其导通,从而允许电流通过。

如果电源反接,NMOS则不会导通,从而防止了电流流向负载。

2. PMOS防反接电路:与NMOS类似,PMOS管也可以用于防反接,但连接方式不同。

当电源正确连接时,PMOS的寄生二极管导通,而PMOS管本身也会导通,允许电流流通。

电源接反时,PMOS管不导通,防止了电流流向负载。

3. 二极管防反接:这是最简单的防反接方法,利用二极管的单向导通特性。

但二极管会有一定的压降,例如硅管约0.7V,锗管约0.2-0.3V,这在电压较低的应用中可能不太合适。

此外,在大电流应用中,二极管上的功耗和发热可能会较大。

4. 整流桥防反接:使用四个二极管构成整流桥,无论电源正接还是反接,电路都能正常工作。

但这种方法的缺点与单一二极管防反接相同,且压降是两个二极管的总和。

在选择防反接电路时,需要根据具体的应用场景和要求来决定使用哪种方式。

例如,对于低压或大电流的应用,可能需要考虑压降和功耗的问题。

而对于一些小功率或者对成本敏感的应用,简单的二极管防反接可能就足够了。

(图文)防反接保护电路

(图文)防反接保护电路

防反接保护电路1,通常情况下直流电源输入防反接保护电路是利用二极管的单向导电性来实现防反接保护。

如下图1示:这种接法简单可靠,但当输入大电流的情况下功耗影响是非常大的。

以输入电流额定值达到2A,如选用Onsemi的快速恢复二极管MUR3020PT,额定管压降为0.7V,那么功耗至少也要达到:Pd=2A×0.7V=1.4W,这样效率低,发热量大,要加散热器。

2,另外还可以用二极管桥对输入做整流,这样电路就永远有正确的极性(图2)。

这些方案的缺点是,二极管上的压降会消耗能量。

输入电流为2A时,图1中的电路功耗为1.4W,图2中电路的功耗为2.8W。

图1,一只串联二极管保护系统不受反向极性影响,二极管有0.7V的压降图2 是一个桥式整流器,不论什么极性都可以正常工作,但是有两个二极管导通,功耗是图1的两倍MOS管型防反接保护电路图3利用了MOS管的开关特性,控制电路的导通和断开来设计防反接保护电路,由于功率MOS管的内阻很小,现在 MOSFET Rds(on)已经能够做到毫欧级,解决了现有采用二极管电源防反接方案存在的压降和功耗过大的问题。

极性反接保护将保护用场效应管与被保护电路串联连接。

保护用场效应管为PMOS场效应管或NMOS场效应管。

若为PMOS,其栅极和源极分别连接被保护电路的接地端和电源端,其漏极连接被保护电路中PMOS元件的衬底。

若是NMOS,其栅极和源极分别连接被保护电路的电源端和接地端,其漏极连接被保护电路中NMOS元件的衬底。

一旦被保护电路的电源极性反接,保护用场效应管会形成断路,防止电流烧毁电路中的场效应管元件,保护整体电路。

具体N沟道MOS管防反接保护电路电路如图3示图3. NMOS管型防反接保护电路N沟道MOS管通过S管脚和D管脚串接于电源和负载之间,电阻R1为MOS管提供电压偏置,利用MOS管的开关特性控制电路的导通和断开,从而防止电源反接给负载带来损坏。

正接时候,R1提供VGS电压,MOS饱和导通。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

防反接保护电路
1.通常情况下直流电源输入防反接保护电路是利用二极管的单向导电性来实现防反
接保护。

如下图1示:
这种接法简单可靠,但当输入大电流的情况下功耗影响是非常大的。

以输入电流额定值达到2A,如选用Onsemi的快速恢复二极管MUR3020PT,额定管压降为0.7V,那么功耗至少也要达到:Pd=2A×
0.7V=1.4W,这样效率低,发热量大,要加散热器。

2,另外还可以用二极管桥对输入做整流,这样电路就永远有正确的极性(图2)。

这些方案的缺点是,二极管上的压降会消耗能量。

输入电流为2A时,图1中的电路功耗为1.4W,图2中电路的功耗为2.8 W。

图1,一只串联二极管保护系统不受反向极性影响,二极管有0.7V 的压降
图2 是一个桥式整流器,不论什么极性都可以正常工作,但是有两个二极管导通,功耗是图1的两倍
MOS管型防反接保护电路
图3利用了MOS管的开关特性,控制电路的导通和断开来设计防反接保护电路,由于功率MOS管的内阻很小,现在MOSFET Rds(on)已经能够做到毫欧级,解决了现有采用二极管电源防反接方案存在的压降和功耗过大的问题。

极性反接保护将保护用场效应管与被保护电路串联连接。

保护用场效应管为PMOS场效应管或NMOS场效应管。

若为PMOS,其栅极和源极分别连接被保护电路的接地端和电源端,其漏极连接被保护电路中PMOS元件的衬底。

若是NMOS,其栅极和源极分别连接被保护电路的电源端和接地端,其漏极连接被保护电路中NMOS元件的衬底。

一旦被保护电路的电源极性反接,保护用场效应管会形成断路,防止电流烧毁电路中的场效应管元件,保护整体电路。

具体N沟道MOS管防反接保护电路电路如图3示
图3. NMOS管型防反接保护电路
N沟道MOS管通过S管脚和D管脚串接于电源和负载之间,电阻R1为MOS管提供电压偏置,利用MOS管的开关特性控制电路的导通和断开,从而防止电源反接给负载带来损坏。

正接时候,
R1提供VGS电压,MOS饱和导通。

反接的时候MOS不能导通,所以起到防反接作用。

功率MOS管的Rds(on)只有20mΩ实际损耗很小,2A的电流,功耗为(2×2)×0.02=0.08W根本不用外加散热片。

解决了现有采用二极管电源防反接方案存在的压降和功耗过大的问题。

VZ1为稳压管防止栅源电压过高击穿mos管。

NMOS管的导通电阻比PMOS的小,最好选NMOS。

NMOS管接在电源的负极,栅极高电平导通。

PMOS管接在电源的正极,栅极低电平导通。

相关文档
最新文档