一元二次方程概念和解法测试题
一元二次方程的解法综合练习题及答案

一元二次方程之概念一、选择题1.在下列方程中,一元二次方程的个数是().①3x2+7=0 ②ax2+bx+c=0 ③(x-2)(x+5)=x2-1 ④3x2-5x=0A.1个B.2个C.3个D.4个2.方程2x2=3(x-6)化为一般形式后二次项系数、•一次项系数和常数项分别为().A.2,3,-6 B.2,-3,18 C.2,-3,6 D.2,3,63.px2-3x+p2-q=0是关于x的一元二次方程,则().A.p=1 B.p>0 C.p≠0 D.p为任意实数二、填空题1.方程3x2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________.2.一元二次方程的一般形式是__________.3.关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是________.三、综合提高题1.a满足什么条件时,关于x的方程a(x2+x)x-(x+1)是一元二次方程?2.关于x的方程(2m2+m)x m+1+3x=6可能是一元二次方程吗?为什么?一元二次方程之根一、选择题1.方程x(x-1)=2的两根为().A.x1=0,x2=1 B.x1=0,x2=-1 C.x1=1,x2=2 D.x1=-1,x2=22.方程ax(x-b)+(b-x)=0的根是().A.x1=b,x2=a B.x1=b,x2=1aC.x1=a,x2=1aD.x1=a2,x2=b23.已知x=-1是方程ax2+bx+c=0的根(b≠0)().A.1 B.-1 C.0 D.2二、填空题1.如果x2-81=0,那么x2-81=0的两个根分别是x1=________,x2=__________.2.已知方程5x2+mx-6=0的一个根是x=3,则m的值为________.3.方程(x+1)2x(x+1)=0,那么方程的根x1=______;x2=________.三、综合提高题1.如果x=1是方程ax2+bx+3=0的一个根,求(a-b)2+4ab的值.2.如果关于x的一元二次方程ax2+bx+c=0(a≠0)中的二次项系数与常数项之和等于一次项系数,求证:-1必是该方程的一个根.一元二次方程之根的判别一、选择题1.一元二次方程x2-ax+1=0的两实数根相等,则a的值为().A.a=0 B.a=2或a=-2C.a=2 D.a=2或a=02.已知k≠1,一元二次方程(k-1)x2+kx+1=0有根,则k的取值范围是().A.k≠2 B.k>2 C.k<2且k≠1 D.k为一切实数二、填空题1.已知方程x2+px+q=0有两个相等的实数,则p与q的关系是________.2.不解方程,判定2x2-3=4x的根的情况是______(•填“二个不等实根”或“二个相等实根或没有实根”).3.已知b≠0,不解方程,试判定关于x的一元二次方程x2-(2a+b)x+(a+ab-2b2)•=0的根的情况是________.三、综合提高题1.不解方程,试判定下列方程根的情况.(1)2+5x=3x2(2)x2-(+4=02.当c<0时,判别方程x2+bx+c=0的根的情况.3.不解方程,判别关于x的方程x2-2kx+(2k-1)=0的根的情况.4.某集团公司为适应市场竞争,赶超世界先进水平,每年将销售总额的8%作为新产品开发研究资金,该集团2000年投入新产品开发研究资金为4000万元,2002年销售总额为7.2亿元,求该集团2000年到2002年的年销售总额的平均增长率.一元二次方程解法1、利用因式分解法解下列方程(x -2) 2=(2x-3)2 042=-x x 3(1)33x x x +=+x 2-23x+3=0 ()()0165852=+---x x2、利用开平方法解下列方程51)12(212=-y 4(x-3)2=25 24)23(2=+x3、利用配方法解下列方程25220x x -+= 012632=--x x7x=4x 2+2 01072=+-x x4、利用公式法解下列方程-3x 2+22x -24=0 2x (x -3)=x -3. 3x 2+5(2x+1)=039922=--x x课后练习1、方程2x2-3x+1=0化为(x+a)2=b的形式,正确的是 ( )A、23162x⎛⎫-=⎪⎝⎭B、2312416x⎛⎫-=⎪⎝⎭C、231416x⎛⎫-=⎪⎝⎭D、以上都不对2、用__________________法解方程(x-2)2=4比较简便。
一元二次方程专项训练

一元二次方程专题讲练一、知识点归纳及题型:概念——解法——实际应用——根的判别式、根系关系——二次函数 (一)概念:)0(02≠=++a c bx ax 叫一元二次方程。
相关题型:1、判断一个方程是否是一元二次方程;2、求一个一元二次方程中相关字母的值。
例:○1、下列方程中,不是一元二次方程的是_________.[ ] A .2x 2+7=0 B .2x 2+23x +1=0 C .5x 2+x1+4=0 D .3x 2+(1+x ) 2+1=0 小结:判断一个方程是否是一元二次方程的条件是:○1是整式方程;○2未知数的指数为2;○3二次项系数不等于0,即a ≠0。
○2、若关于x 的方程a (x -1)2=2x 2-2是一元二次方程,则a 的值是_________. 判断a 的取值范围需要把方程整理为一般形式后才进行解答。
(二)解法:1、 直接开平方法:方程有根的前提:A ≥02、 配方法:(适用所有方程,但方程易化成022=++C kx x 的形式)3、 公式法:02=++c bx ax 有根的前提⊿≥0,aac b b x 2422,1-±-=一元二次方程根02=++c bx ax 的判别式:⊿另外:⊿≥0时,方程有实数根;4、因式分解法:提公因式法、公式法(完全平方公式、平方差公式)、十字相乘法、5、换元法解方程解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。
换元的实质是转化,关键是构造元和设元,它可以化高次为低次、化分式为整式。
换元法体现了数学中的转化思想。
6、解含绝对值的方程。
相关题型:1、解方程;2、利用配方法求代数式的最值或证明恒为正(负);3、利用根的判别式判断根的几种情况或相关字母的取值范围;4、用换元法解方程。
5、解含绝对值的方程 例:1、请你选择最恰当的方法解下列一元二次方程ac b 42-=1、3x ² -1=02、x (2x +3)=5(2x +3)3、x ² - 3 x +2=04、2 x ² -5x+1=0小结:○1、形如(x-k )²=h 的方程可以用直接开平方法求解○2、千万记住:方程的两边有相同的含有未知数的因式的时候不能两边都除以这个因式,因为这样能把方程的一个跟丢失了,要利用因式分解法求解。
一元二次方程经典例题及详细解答

一、概述二、一元二次方程的定义三、一元二次方程的解法1.配方法2.公式法四、一元二次方程的经典例题及详细解答1.例题一2.例题二3.例题三五、总结概述一元二次方程是数学中常见的代数方程,它的解法丰富多样,具有很高的实用价值。
本文将详细介绍一元二次方程的定义、解法,以及一些经典例题的详细解答。
一元二次方程的定义一元二次方程是指形式为ax²+bx+c=0的方程,其中a≠0,x是未知数,a、b、c均为已知系数。
一元二次方程的一般形式是ax²+bx+c=0,其中a、b、c是常数,且a≠0。
一元二次方程的解法一元二次方程的解法主要包括两种:配方法和公式法。
1.配方法配方法也称补全平方法,是指利用平方公式将一元二次方程转化为一个完全平方式。
这种方法常用于一元二次方程系数a=1的情况。
2.公式法公式法是通过一元二次方程的求根公式来解方程,一元二次方程ax²+bx+c=0的根可以用公式x1,2=(-b±√(b²-4ac))/(2a)求得。
一元二次方程的经典例题及详细解答下面将结合具体的例题,详细解答一元二次方程的解题过程。
1.例题一已知一元二次方程x²-5x+6=0,求方程的根。
解:根据公式法,将方程的系数代入求根公式x1,2=(-b±√(b²-4ac))/(2a)中,得到:x1,2=(5±√(5²-4*1*6))/(2*1)= (5±√1)/2即x1=3,x2=2。
所以方程的根为x1=3,x2=2。
2.例题二已知一元二次方程2x²-7x+3=0,求方程的根。
解:同样使用公式法,将方程的系数代入求根公式x1,2=(-b±√(b²-4ac))/(2a)中,得到:x1,2=(7±√(7²-4*2*3))/(2*2)即x1=3/2,x2=2。
所以方程的根为x1=3/2,x2=2。
一元二次方程的解法综合练习题及答案

3 4
2
1 16
3x2+5(2x+1)=0
D、以上都不对
D、
2x2 1
3
=
3
(x-4)2=21
11、关于 x 的一元二次方程(m-2)x2+(2m—1)x+m2—4=0 的一个根是 0,则
m 的值是( A、 2
) B、—2
x2 2x 3 12、要使代数式 x2 1 的值等于 0,则 x 等于( )
二、填空题 1.已知方程 x2+px+q=0 有两个相等的实数,则 p 与 q 的关系是________. 2.不解方程,判定 2x2-3=4x 的根的情况是______(填“二个不等实根”或“二个相等
实根或没有实根”). 3.已知 b≠0,不解方程,试判定关于 x 的一元二次方程 x2-(2a+b)x+(a+ab-2b2)=0
3 4
2
2x(x-3)=x-3.
3、一元二次方程 x2-ax+6=0, 配方后为(x-3)2=3, 则 a=______________.
4、解方程(x+a)2=b 得(
A、x=± b -a
C、当 b≥0 时,x=-a± b
1 16
)
C、
B、x=±a+ b
x
D、当 a≥0 时,x=a± b
x2 7x 10 0
例 4、利用公式法解下列方程
2
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资0配不料置仅试技可卷术以要是解求指决,机吊对组顶电在层气进配设行置备继不进电规行保范空护高载高中与中资带资料负料试荷试卷下卷问高总题中体2资2配,料置而试时且卷,可调需保控要障试在各验最类;大管对限路设度习备内题进来到行确位调保。整机在使组管其高路在中敷正资设常料过工试程况卷中下安,与全要过,加度并强工且看作尽护下可关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,卷.编保工写护况复层进杂防行设腐自备跨动与接处装地理置线,高弯尤中曲其资半要料径避试标免卷高错调等误试,高方要中案求资,技料编术试写5交、卷重底电保要。气护设管设装备线备置4高敷、调动中设电试作资技气高,料术课中并3试中、件资且卷包管中料拒试含路调试绝验线敷试卷动方槽设技作案、技术,以管术来及架避系等免统多不启项必动方要方式高案,中;为资对解料整决试套高卷启中突动语然过文停程电机中气。高课因中件此资中,料管电试壁力卷薄高电、中气接资设口料备不试进严卷行等保调问护试题装工,置作合调并理试且利技进用术行管,过线要关敷求运设电行技力高术保中。护资线装料缆置试敷做卷设到技原准术则确指:灵导在活。分。对线对于盒于调处差试,动过当保程不护中同装高电置中压高资回中料路资试交料卷叉试技时卷术,调问应试题采技,用术作金是为属指调隔发试板电人进机员行一,隔变需开压要处器在理组事;在前同发掌一生握线内图槽部纸内故资,障料强时、电,设回需备路要制须进造同行厂时外家切部出断电具习源高题高中电中资源资料,料试线试卷缆卷试敷切验设除报完从告毕而与,采相要用关进高技行中术检资资查料料和试,检卷并测主且处要了理保解。护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
一元二次方程经典例题及答案

一.一元二次方程的概念:例1;若关于的方程(a-5)x ∣a ∣-3+2x-1=0是一元二次方程,求a 的值?1、下列方程:(1)x 2-1=0; (2)4 x 2+y 2=0; (3)(x-1)(x-3)=0; (4)xy+1=3. (5)3212=-x x其中,一元二次方程有( ) A .1个 B .2个 C .3个 D .4个2、一元二次方程(x+1)(3x-2)=10的一般形式是 ,二次项 , 二次项系数 ,一次项 ,一次项系数 ,常数项 。
3.判断下列关于x 的方程是否为一元二次方程: (1)2(x 2-1)=3y ; (2)4112=+x ; (3)(x -3)2=(x +5)2; (4)mx 2+3x -2=0; (5)(a 2+1)x 2+(2a -1)x +5―a =0.4.把下列方程化成一元二次方程的一般形式,并写出它们的二次项系数,一次项系数及常数项。
(1)(3x-1)(2x+3)=4; (2)(x+1)(x-2)=-2.5.当m 为何值时,关于x 的方程(m-2)x 2-mx+2=m-x 2是关于x 的一元二次方程?二.一元二次方程的解法(1)直接开平方法1.方程036)5(2=--x 的解为( )A 、0B 、1C 、2D 、以上均不对2.已知一元二次方程)0(02≠=+m n mx ,若方程有解,则必须( )A 、n=0B 、n=0或m ,n 异号C 、n 是m 的整数倍D 、m ,n 同号 3.方程(1)x 2=2的解是 ; (2)x 2=0的解是 。
4.用直接开平方法解方程(x +h )2=k ,方程必须满足的条件是( ) A .k≥o B .h≥o C .hk >o D .k <o 5.方程(1-x )2=2的根是( )A.-1、3B.1、-3C.1-2、1+2D.2-1、2+16.、方程 (3x -1)2=-5的解是 。
7.用直接开平方法解下列方程:(1)4x 2=9; (2)(x+2)2=16(3)(2x-1)2=3; (4)3(2x+1)2=12三.一元二次方程的解法(2)配方法例:试用配方法证明:代数式x 2+3x-23的值不小于-415。
一元二次方程单元测试题(含答案) (24)

一元二次方程单元测试题(典型题汇总)测试1 一元二次方程的有关概念及直接开平方法学习要求1.掌握一元二次方程的有关概念,并应用概念解决相关问题. 2.掌握一元二次方程的基本解法——直接开平方法.课堂学习检测一、填空题1.一元二次方程中,只含有______个未知数,并且未知数的______次数是2.它的一般形式为__________________.2.把2x 2-1=6x 化成一般形式为__________,二次项系数为______,一次项系数为______,常数项为______.3.若(k +4)x 2-3x -2=0是关于x 的一元二次方程,则k 的取值范围是______.4.把(x +3)(2x +5)-x (3x -1)=15化成一般形式为______,a =______,b =______,c =______. 5.若x x m -m+-222)(-3=0是关于x 的一元二次方程,则m 的值是______.6.方程y 2-12=0的根是______. 二、选择题7.下列方程中,一元二次方程的个数为( ). (1)2x 2-3=0 (2)x 2+y 2=5 (3)542=-x (4)2122=+xx A .1个B .2个C .3个D .4个 8.在方程:3x 2-5x =0,,5312+=+x x7x 2-6xy +y 2=0,322,052222--=+++xx x x ax =0,3x 2-3x =3x 2-1中必是一元二次方程的有( ). A .2个 B .3个 C .4个 D .5个 9.x 2-16=0的根是( ). A .只有4 B .只有-4 C .±4 D .±8 10.3x 2+27=0的根是( ).A .x 1=3,x 2=-3B .x =3C .无实数根D .以上均不正确 三、解答题(用直接开平方法解一元二次方程) 11.2y 2=8. 12.2(x +3)2-4=0.13..25)1(412=+x14.(2x +1)2=(x -1)2.综合、运用、诊断一、填空题15.把方程x x x +=-2232化为一元二次方程的一般形式(二次项系数为正)是______ ____,一次项系数是______.16.把关于x 的一元二次方程(2-n )x 2-n (3-x )+1=0化为一般形式为_______________,二次项系数为______,一次项系数为______,常数项为______. 17.若方程2kx 2+x -k =0有一个根是-1,则k 的值为______. 二、选择题18.下列方程:(x +1)(x -2)=3,x 2+y +4=0,(x -1)2-x (x +1)=x ,,01=+xx ,5)3(21,42122=+=-+x x x 其中是一元二次方程的有( ).A .2个B .3个C .4个D .5个19.形如ax 2+bx +c =0的方程是否是一元二次方程的一般形式,下列说法正确的是( ).A .a 是任意实数B .与b ,c 的值有关C .与a 的值有关D .与a 的符号有关 20.如果21=x 是关于x 的方程2x 2+3ax -2a =0的根,那么关于y 的方程y 2-3=a 的解是( ). A .5±B .±1C .±2D .2±21.关于x 的一元二次方程(x -k )2+k =0,当k >0时的解为( ).A .k k +B .k k -C .k k -±D .无实数解三、解答题(用直接开平方法解下列方程) 22.(3x -2)(3x +2)=8. 23.(5-2x )2=9(x +3)2.24..063)4(22=--x25.(x -m )2=n .(n 为正数)拓广、探究、思考26.若关于x 的方程(k +1)x 2-(k -2)x -5+k =0只有唯一的一个解,则k =______,此方程的解为______.27.如果(m -2)x |m |+mx -1=0是关于x 的一元二次方程,那么m 的值为( ).A .2或-2B .2C .-2D .以上都不正确 28.已知关于x 的一元二次方程(m -1)x 2+2x +m 2-1=0有一个根是0,求m 的值.29.三角形的三边长分别是整数值2cm ,5cm ,k cm ,且k 满足一元二次方程2k 2-9k -5=0,求此三角形的周长.测试2 配方法与公式法解一元二次方程学习要求掌握配方法的概念,并能熟练运用配方法与公式法解一元二次方程.课堂学习检测一、填空题1.+-x x 82_________=(x -__________)2. 2.x x 232-+_________=(x -_________)2. 3.+-px x 2_________=(x -_________)2.4.x abx -2+_________=(x -_________)2. 5.关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的根是______.6.一元二次方程(2x +1)2-(x -4)(2x -1)=3x 中的二次项系数是______,一次项系数是______,常数项是______. 二、选择题 7.用配方法解方程01322=--x x 应该先变形为( ). A .98)31(2=-xB .98)31(2-=-x C .910)31(2=-xD .0)32(2=-x8.用配方法解方程x 2+2x =8的解为( ). A .x 1=4,x 2=-2 B .x 1=-10,x 2=8 C .x 1=10,x 2=-8 D .x 1=-4,x 2=29.用公式法解一元二次方程x x 2412=-,正确的应是( ). A .252±-=xB .252±=x C .251±=x D .231±=x 10.方程mx 2-4x +1=0(m <0)的根是( ).A .41 B .m m-±42 C .mm-±422D .mm m -±42 三、解答题(用配方法解一元二次方程)11.x 2-2x -1=0. 12.y 2-6y +6=0.四、解答题(用公式法解一元二次方程) 13.x 2+4x -3=0.14..03232=--x x五、解方程(自选方法解一元二次方程) 15.x 2+4x =-3.16.5x 2+4x =1.综合、运用、诊断一、填空题17.将方程x x x 32332-=++化为标准形式是______________________,其中a =____ __,b =______,c =______.18.关于x 的方程x 2+mx -8=0的一个根是2,则m =______,另一根是______. 二、选择题19.若关于x 的二次三项式x 2-ax +2a -3是一个完全平方式,则a 的值为( ).A .-2B .-4C .-6D .2或6 20.4x 2+49y 2配成完全平方式应加上( ).A .14xyB .-14xyC .±28xyD .0 21.关于x 的一元二次方程ax a x 32222=+的两根应为( ).A .22a±-B .a 2,a 22C .422a± D .a 2±三、解答题(用配方法解一元二次方程) 22.3x 2-4x =2. 23.x 2+2mx =n .(n +m 2≥0).四、解答题(用公式法解一元二次方程)24.2x -1=-2x 2.25.x x 32132=+26.2(x -1)2-(x +1)(1-x )=(x +2)2.拓广、探究、思考27.解关于x 的方程:x 2+mx +2=mx 2+3x .(其中m ≠1)28.用配方法说明:无论x 取何值,代数式x 2-4x +5的值总大于0,再求出当x 取何值时,代数式x 2-4x +5的值最小?最小值是多少?测试3 一元二次方程根的判别式学习要求掌握一元二次方程根的判别式的有关概念,并能灵活地应用有关概念解决实际问题.课堂学习检测一、填空题1.一元二次方程ax 2+bx +c =0(a ≠0)根的判别式为∆=b 2-4ac , (1)当b 2-4ac ______0时,方程有两个不相等的实数根; (2)当b 2-4ac ______0时,方程有两个相等的实数根; (3)当b 2-4ac ______0时,方程没有实数根.2.若关于x 的方程x 2-2x -m =0有两个相等的实数根,则m =______. 3.若关于x 的方程x 2-2x -k +1=0有两个实数根,则k ______. 4.若方程(x -m )2=m +m 2的根的判别式的值为0,则m =______. 二、选择题5.方程x 2-3x =4根的判别式的值是( ). A .-7 B .25 C .±5 D .56.一元二次方程ax 2+bx +c =0有两个实数根,则根的判别式的值应是( ). A .正数 B .负数 C .非负数 D .零 7.下列方程中有两个相等实数根的是( ). A .7x 2-x -1=0 B .9x 2=4(3x -1) C .x 2+7x +15=0D .02322=--x x8.方程03322=++x x 有( ).A .有两个不等实根B .有两个相等的有理根C .无实根D .有两个相等的无理根 三、解答题9.k 为何值时,方程kx 2-6x +9=0有:(1)不等的两实根;(2)相等的两实根;(3)没有实根.10.若方程(a -1)x 2+2(a +1)x +a +5=0有两个实根,求正整数a 的值.11.求证:不论m 取任何实数,方程02)1(2=++-mx m x 都有两个不相等的实根.综合、运用、诊断一、选择题12.方程ax 2+bx +c =0(a ≠0)根的判别式是( ).A .242ac b b -±- B .ac b 42-C .b 2-4acD .abc13.若关于x 的方程(x +1)2=1-k 没有实根,则k 的取值范围是( ).A .k <1B .k <-1C .k ≥1D .k >1 14.若关于x 的方程3kx 2+12x +k +1=0有两个相等的实根,则k 的值为( ).A .-4B .3C .-4或3D .21或32- 15.若关于x 的一元二次方程(m -1)x 2+2mx +m +3=0有两个不等的实根,则m 的取值范围是( ).A .23<m B .23<m 且m ≠1 C .23≤m 且m ≠1 D .23>m16.如果关于x 的二次方程a (1+x 2)+2bx =c (1-x 2)有两个相等的实根,那么以正数a ,b ,c为边长的三角形是( ). A .锐角三角形 B .钝角三角形 C .直角三角形 D .任意三角形 二、解答题17.已知方程mx 2+mx +5=m 有相等的两实根,求方程的解.18.求证:不论k 取任何值,方程(k 2+1)x 2-2kx +(k 2+4)=0都没有实根.19.如果关于x 的一元二次方程2x (ax -4)-x 2+6=0没有实数根,求a 的最小整数值.20.已知方程x 2+2x -m +1=0没有实根,求证:方程x 2+mx =1-2m 一定有两个不相等的实根.拓广、探究、思考21.若a ,b ,c ,d 都是实数,且ab =2(c +d ),求证:关于x 的方程x 2+ax +c =0,x 2+bx +d =0中至少有一个方程有实数根.测试4 因式分解法解一元二次方程学习要求掌握一元二次方程的重要解法——因式分解法.课堂学习检测一、填空题(填出下列一元二次方程的根) 1.x (x -3)=0.______ 2.(2x -7)(x +2)=0.______ 3.3x 2=2x .______ 4.x 2+6x +9=0.______ 5..03222=-x x ______ 6..)21()21(2x x -=+______7.(x -1)2-2(x -1)=0.______. 8.(x -1)2-2(x -1)=-1.______ 二、选择题9.方程(x -a )(x +b )=0的两根是( ). A .x 1=a ,x 2=b B .x 1=a ,x 2=-b C .x 1=-a ,x 2=b D .x 1=-a ,x 2=-b 10.下列解方程的过程,正确的是( ).A .x 2=x .两边同除以x ,得x =1.B .x 2+4=0.直接开平方法,可得x =±2.C .(x -2)(x +1)=3×2.∵x -2=3,x +1=2, ∴x 1=5, x 2=1.D .(2-3x )+(3x -2)2=0.整理得3(3x -2)(x -1)=0,.1,3221==∴x x 三、解答题(用因式分解法解下列方程,*题用十字相乘法因式分解解方程) 11.3x (x -2)=2(x -2).12..32x x =*13.x 2-3x -28=0. 14.x 2-bx -2b 2=0.*15.(2x -1)2-2(2x -1)=3. *16.2x 2-x -15=0.四、解答题17.x 取什么值时,代数式x 2+8x -12的值等于2x 2+x 的值.综合、运用、诊断一、写出下列一元二次方程的根18.0222=-x x .______________________. 19.(x -2)2=(2x +5)2.______________________. 二、选择题20.方程x (x -2)=2(2-x )的根为( ).A .-2B .2C .±2D .2,2 21.方程(x -1)2=1-x 的根为( ).A .0B .-1和0C .1D .1和022.方程0)43)(21()43(2=--+-x x x 的较小的根为( ).A .43-B .21C .85D .43 三、用因式分解法解下列关于x 的方程23..2152x x =- 24.4(x +3)2-(x -2)2=0.25..04222=-+-b a ax x26.abx 2-(a 2+b 2)x +ab =0.(ab ≠0)四、解答题27.已知关于x 的一元二次方程mx 2-(m 2+2)x +2m =0.(1)求证:当m 取非零实数时,此方程有两个实数根; (2)若此方程有两个整数根,求m 的值.测试5 一元二次方程解法综合训练学习要求会用适当的方法解一元二次方程,培养分析问题和解决问题的能力.课堂学习检测一、填空题(写出下列一元二次方程的根) 1.3(x -1)2-1=0.__________________2.(2x +1)2-2(2x +1)=3.__________________ 3.3x 2-5x +2=0.__________________ 4.x 2-4x -6=0.__________________二、选择题5.方程x 2-4x +4=0的根是( ). A .x =2 B .x 1=x 2=2C .x =4D .x 1=x 2=46.5.27.0512=+x 的根是( ).A .x =3B .x =±3C .x =±9D .3±=x7.072=-x x 的根是( ). A .77=x B .77,021==x x C .x 1=0,72=xD .7=x8.(x -1)2=x -1的根是( ). A .x =2 B .x =0或x =1 C .x =1 D .x =1或x =2 三、用适当方法解下列方程 9.6x 2-x -2=0. 10.(x +3)(x -3)=3.11.x 2-2mx +m 2-n 2=0. 12.2a 2x 2-5ax +2=0.(a ≠0)四、解下列方程(先将你选择的最佳解法写在括号中) 13.5x 2=x .(最佳方法:______)14.x 2-2x =224.(最佳方法:______)15.6x 2-2x -3=0.(最佳方法:______)16.6-2x 2=0.(最佳方法:______)17.x 2-15x -16=0.(最佳方法:______)18.4x 2+1=4x .(最佳方法:______)19.(x -1)(x +1)-5x +2=0.(最佳方法:______)综合、运用、诊断一、填空题20.若分式1872+--x x x 的值是0,则x =______.21.关于x 的方程x 2+2ax +a 2-b 2=0的根是____________. 二、选择题22.方程3x 2=0和方程5x 2=6x 的根( ).A .都是x =0B .有一个相同,x =0C .都不相同D .以上都不正确 23.关于x 的方程abx 2-(a 2+b 2)x +ab =0(ab ≠0)的根是( ).A .b ax a b x 2,221==B .b ax a b x ==21,C .0,2221=+=x abb a xD .以上都不正确三、解下列方程24.(x +1)2+(x +2)2=(x +3)2. 25.(y -5)(y +3)+(y -2)(y +4)=26.26..02322=+-x x 27.kx 2-(k +1)x +1=0.四、解答题28.已知:x 2+3xy -4y 2=0(y ≠0),求yx yx +-的值.29.已知:关于x 的方程2x 2+2(a -c )x +(a -b )2+(b -c )2=0有两相等实数根.求证:a +c =2b .(a ,b ,c 是实数)拓广、探究、思考30.若方程3x 2+bx +c =0的解为x 1=1,x 2=-3,则整式3x 2+bx +c 可分解因式为______________________.31.在实数范围内把x 2-2x -1分解因式为____________________.32.已知一元二次方程ax 2+bx +c =0(a ≠0)中的两根为,24,221aac b b x x -±-=请你计算x 1+x 2=____________,x 1·x 2=____________.并由此结论解决下面的问题:(1)方程2x 2+3x -5=0的两根之和为______,两根之积为______.(2)方程2x 2+mx +n =0的两根之和为4,两根之积为-3,则m =______,n =______.(3)若方程x 2-4x +3k =0的一个根为2,则另一根为______,k 为______.(4)已知x 1,x 2是方程3x 2-2x -2=0的两根,不解方程,用根与系数的关系求下列各式的值: ①;1121x x + ②;2221x x + ③|x 1-x 2|; ④;221221x x x x + ⑤(x 1-2)(x 2-2).测试6 实际问题与一元二次方程学习要求会灵活地应用一元二次方程处理各类实际问题.课堂学习检测一、填空题1.实际问题中常见的基本等量关系。
一元二次方程概念同步练习含答案
一元二次方程概念1、了解一元二次方程的概念和它的一般形式ax 2+bx+c= 0(a≠0),正确理解和掌握一般形式中的a≠0,“项”和“系数”等概念;会根据实际问题列一元二次方程;一、磨刀不误砍柴工,上新课之前先来热一下身吧!1、下列方程:(1)x 2-1=0; (2)4 x 2+y 2=0; (3)(x-1)(x-3)=0; (4)xy+1=3. (5)3212=-x x 其中,一元二次方程有( ) A .1个 B .2个 C .3个 D .4个2、一元二次方程(x+1)(3x-2)=10的一般形式是 ,二次项,二次项系数 ,一次项 ,一次项系数 ,常数项 。
二、牛刀小试正当时,课堂上我们来小试一下身手!3、小区在每两幢楼之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,则绿地的长和宽各为多少?4、一个数比另一个数大3,且两个数之积为10,求这两个数。
5、下列方程中,关于x 的一元二次方程是( )A.3(x+1)2= 2(x+1) B .05112=-+x xC.ax 2+bx+c= 0D.x 2+2x= x 2-1 6、把下列方程化成ax 2+bx+c= 0的形式,写出a 、b 、c 的值:(1)3x 2= 7x-2 (2)3(x-1)2 = 2(4-3x)7、当m 为何值时,关于x 的方程(m-2)x 2-mx+2=m-x 2是关于x 的一元二次方程?8、若关于的方程(a-5)x ∣a ∣-3+2x-1=0是一元二次方程,求a 的值?三、新知识你都掌握了吗?课后来这里显显身手吧!9、一个正方形的面积的2倍等于15,这个正方形的边长是多少?10、一块面积为600平方厘米的长方形纸片,把它的一边剪短10厘米,恰好得到一个正方形。
求这个正方形的边长。
11、判断下列关于x 的方程是否为一元二次方程:(1)2(x 2-1)=3y ; (2)4112=+x ; (3)(x -3)2=(x +5)2; (4)mx 2+3x -2=0;(5)(a 2+1)x 2+(2a -1)x +5―a =0.12、把下列方程化成一元二次方程的一般形式,并写出它们的二次项系数,一次项系数及常数项。
一元二次方程解法练习题
一元二次方程解法练习题在数学学习中,我们经常会遇到一元二次方程,它是一个常见而重要的数学概念。
掌握一元二次方程的解法对于解决实际问题和提高数学思维能力都具有重要意义。
在本文中,我们将通过一些练习题来巩固和应用我们对一元二次方程解法的理解。
练习题1:解下列一元二次方程:1. x^2 - 4x + 3 = 02. 2x^2 + 5x - 3 = 03. 3x^2 - 6x - 9 = 04. -x^2 + 7x - 10 = 0练习题2:根据以下条件列出一元二次方程,并求解:1. 已知方程有两个实数解,且解为3和-1。
2. 已知方程有一个实数解x=4,并且另一个解是方程x^2 + bx + c = 0的解。
练习题3:解下列一元二次方程组:1.x^2 - y^2 = 16x + y = 62.2x^2 + xy = 153x - y = 2练习题4:解下列应用题:1. 一个长方形的长比宽多2cm,长方形的周长是26cm,求长和宽分别是多少?2. 小明和小红两人总共获得了36个奖牌,小明获得的奖牌数是小红的两倍,小红获得了几个奖牌?练习题5:解下列一元二次不等式:1. x^2 - 4x > 02. 2x^2 - 3x < 03. x^2 + 6x + 8 ≥ 0以上是一些一元二次方程解法的练习题。
通过解这些题目,我们可以巩固和提高对一元二次方程解法的掌握程度。
在解题过程中,我们要注意将方程转化为标准形式,分离出x的系数、常数项,并应用求根公式或配方法进行求解。
此外,对于一些实际问题,我们需要将问题抽象为一元二次方程,再进行求解。
掌握一元二次方程的解法不仅仅是为了解答数学题目,更重要的是培养我们的逻辑思维和解决实际问题的能力。
通过反复练习和深入理解解题过程,我们可以在数学学习和实际生活中更加灵活地应用一元二次方程解法,进一步提高自己的数学水平。
这些练习题只是一元二次方程解法的一小部分,希望大家能够通过这些练习题加深对一元二次方程解法的理解,提高解题的准确性和效率。
一元二次方程的解法及其根的判别式
§2.2 一元二次方程的解法及其根的判别式一、温故互查知识要点一元二次方程的概念及解法,根的判别式,根与系数的关系(选学).二、题组训练一1.(2011钦州)下列方程中,有两个不相等的实数根的是 ( )A .x 2+1=0B .x 2-2x +1=0C .x 2+x +2=0D .x 2+2x -1=02.用配方法解方程x 2-4x +2=0,下列配方正确的是( )A .(x -2)2=2B .(x +2)2=2C .(x -2)2=-2D .(x -2)2=63.已知关于x 的方程250x mx +-=的一个根是5,那么m = ,另一根是 .4.若关于x 的一元二次方程kx 2-3x +2=0有实数根,则k 的非负整数值是 .三、题组训练二1 解下列方程:(1) 3(x +1)2=13; (2) 3(x -5)2=2(x -5);(3) x 2+6x -7=0; (4) x 2-4x +1=0(配方法).例2 关于x 的一元二次方程2(4)210k x x ---= . (1)若方程有两个不相等的实数根,求k 的取值范围;(2)在(1)的条件下,自取一个整数k 的值,再求此时方程的根.四、中考连接1.下列方程中有实数根的是( )A .x 2+2x +3=0B .x 2+1=0C .x 2+3x +1=0D .x x -1= 1x -12.若关于x 的方程(a -1)x 2-2x +1=0有两个不相等的实数根,则a 的取值范围是( )A .a <2B .a >2C .a <2且a ≠1D .a <-23.若直角三角形的两条直角边a 、b 满足(a 2+b 2)(a 2+b 2+1)=12,则此直角三角形的斜边长为 .4.阅读材料:若一元二次方程ax 2+bx+c =0(a ≠0)的两个实数根为x 1、x 2,则两根与方程系 数之间有如下关系:x 1+x 2=-b a ,x 1x 2=c a. 根据上述材料填空:已知x 1、x 2是方程x 2+4x +2=0的两个实数根,则1x 1 + 1x 2= . 5.解下列方程:(1)(y +4)2=4y ; (2)2x 2+1=3x (配方法);(3)2x (x -1)=x 2-1; (4)4x 2-(x -1)2=0.6.先阅读,然后回答问题:解方程x 2-|x |-2=0,可以按照这样的步骤进行:(1)当x ≥0时,原方程可化为x 2-x -2=0,解得x 1=2,x 2=-1(舍去).(2)当x ≤0时,原方程可化为x 2+x -2=0,解得x 1=-2,x 2=1(舍去).则原方程的根是_____________________.仿照上例解方程:x 2 -|x -1|-1=0.。
一元二次方程解法及其配套练习-精心--方法全面-例题经典
一元二次方程解法及其配套练习定义:只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx 是一次项,b是一次项系数;c是常数项.解法一: ——直接开方法适用围:可解部分一元二次方程直接开平方法就是用直接开平方求解一元二次方程的方法。
用直接开平方法解形如(x-m)^2=n (n≥0)的方程,其解为x=m±√n我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,我们也可以用直接开方法来解方程。
例1:解方程:(1)(2x-1) 2=5 (2)x 2+6x+9=2 (3)x 2-2x+4=-1分析:很清楚,x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.解:(2)由已知,得:(x+3)2=2直接开平方,得:x+3=即所以,方程的两根x1,x2例2.市政府计划2年将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x.•一年后人均住房面积就应该是10+•10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2解:设每年人均住房面积增长率为x,则:10(1+x)2=14.4(1+x)2=1.44直接开平方,得1+x=±1.2即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.所以,每年人均住房面积增长率应为20%.例3.如图,在△ABC中,∠B=90°,点P从点B开始,沿AB边向点B以1cm/s•的速度移动,点Q从点B开始,沿BC边向点C以2cm/s的速度移动,如果AB=6cm,BC=12cm,•P、Q都从B点同C时出发,几秒后△PBQ的面积等于8cm2?解:设x秒后△PBQ的面积等于8cm2 则PB=x,BQ=2x依题意,得:12x·2x=8x2=8根据平方根的意义,得x=±即x1,x2可以验证,和都是方程12x·2x=8的两根,但是移动时间不能是负值.所以PBQ的面积等于8cm2.例4.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少?分析:设该公司二、三月份营业额平均增长率为x,•那么二月份的营业额就应该是(1+x),三月份的营业额是在二月份的基础上再增长的,应是(1+x)2.解:设该公司二、三月份营业额平均增长率为x.那么1+(1+x)+(1+x)2=3.31把(1+x)当成一个数,配方得:(1+x+12)2=2.56,即(x+32)2=2.56x+32=±1.6,即x+32=1.6,x+32=-1.6方程的根为x1=10%,x2=-3.1因为增长率为正数,所以该公司二、三月份营业额平均增长率为10%.归纳小结:共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.•我们把这种思想称为“降次转化思想”.由应用直接开平方法解形如x2=p(p≥0),那么x=转化为应用直接开平方法解形如(mx+n)2=p(p≥0),那么mx+n=p<0则方程无解配套练习题一、选择题1.若x2-4x+p=(x+q)2,那么p、q的值分别是().A.p=4,q=2 B.p=4,q=-2 C.p=-4,q=2 D.p=-4,q=-22.方程3x2+9=0的根为().A.3 B.-3 C.±3 D.无实数根3.用配方法解方程x2-23x+1=0正确的解法是().A.(x-13)2=89,x=13B.(x-13)2=-89,原方程无解C .(x-23)2=59,x 1=23x 2 D .(x-23)2=1,x 1=53,x 2=-13二、填空题1.若8x 2-16=0,则x 的值是_________.2.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是________.3.如果a 、b 2-12b+36=0,那么ab 的值是_______.三、综合提高题1.解关于x 的方程(x+m )2=n .2.某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m ),•另三边用木栏围成,木栏长40m .(1)鸡场的面积能达到180m 2吗?能达到200m 吗?(2)鸡场的面积能达到210m 2吗?3.在一次手工制作中,某同学准备了一根长4米的铁丝,由于需要,现在要制成一个矩形方框,并且要使面积尽可能大,你能帮助这名同学制成方框,•并说明你制作的理由吗?解法二——配方法适用围:可解全部一元二次方程引例:要使一块矩形场地的长比宽多6m ,并且面积为16m 2,场地的长和宽各是多少? 列出方程化简后得:x 2+6x-16=0 x 2+6x-16=0移项→x 2+6x=16两边加(6/2)2使左边配成x 2+2bx+b 2的形式 → x 2+6x+32=16+9左边写成平方形式 → (x+3)2=25 降次→x+3=±5 即 x+3=5或x+3=-5 解一次方程→x 1=2,x 2= -8可以验证:x 1=2,x 2= -8都是方程的根,但场地的宽不能使负值,所以场地的宽为2m ,常为8m. 像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法. 可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.配方法解一元二次方程的一般步骤:(1)现将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边; (4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q 的形式,如果q ≥0,方程的根是x=-p ±√q ;如果q <0,方程无实根.用配方法解一元二次方程小口诀 二次系数化为一 常数要往右边移 一次系数一半方两边加上最相当例1.用配方法解下列关于x的方程(1)x2-8x+1=0 (2)x2-2x-12=0分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.解:略例2.如图,在Rt△ACB中,∠C=90°,AC=8m,CB=6m,点P、Q同时由A,B•两点出发分别沿AC、BC方向向点C匀速移动,它们的速度都是1m/s,•几秒后△PCQ•的面积为Rt△ACB面积的一半.分析:设x秒后△PCQ的面积为Rt△ABC面积的一半,△PCQ也是直角三角形.•根据已知列出等式.解:设x秒后△PCQ的面积为Rt△ACB面积的一半.根据题意,得:12(8-x)(6-x)=12×12×8×6整理,得:x2-14x+24=0(x-7)2=25即x1=12,x2=2x1=12,x2=2都是原方程的根,但x1=12不合题意,舍去.所以2秒后△PCQ的面积为Rt△ACB面积的一半.例3.解下列方程(1)2x2+1=3x (2)3x2-6x+4=0 (3)(1+x)2+2(1+x)-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方.解:略例4.用配方法解方程(6x+7)2(3x+4)(x+1)=6分析:因为如果展开(6x+7)2,那么方程就变得很复杂,如果把(6x+7)看为一个数y,那么(6x+7)2=y2,其它的3x+4=12(6x+7)+12,x+1=16(6x+7)-16,因此,方程就转化为y•的方程,像这样的转化,我们把它称为换元法.解:设6x+7=y则3x+4=12y+12,x+1=16y-16依题意,得:y2(12y+12)(16y-16)=6去分母,得:y2(y+1)(y-1)=72 y2(y2-1)=72,y4-y2=72(y2-12)2=2894y2-12=±172y2=9或y2=-8(舍)∴y=±3当y=3时,6x+7=3 6x=-4 x=-2 3当y=-3时,6x+7=-3 6x=-10 x=-5 3所以,原方程的根为x1=-23,x2=-53CAQP例5. 求证:无论y 取何值时,代数式-3 y 2+8y-6恒小于0. 解:略配套练习题一、选择题1.配方法解方程2x 2-43x-2=0应把它先变形为( ). A .(x-13)2=89 B .(x-23)2=0C .(x-13)2=89D .(x-13)2=1092.下列方程中,一定有实数解的是( ).A .x 2+1=0 B .(2x+1)2=0 C .(2x+1)2+3=0 D .(12x-a )2=a 3.已知x 2+y 2+z 2-2x+4y-6z+14=0,则x+y+z 的值是( ). A .1 B .2 C .-1 D .-24.将二次三项式x 2-4x+1配方后得( ).A .(x-2)2+3B .(x-2)2-3C .(x+2)2+3D .(x+2)2-35.已知x 2-8x+15=0,左边化成含有x 的完全平方形式,其中正确的是( ).A .x 2-8x+(-4)2=31B .x 2-8x+(-4)2=1C .x 2+8x+42=1D .x 2-4x+4=-116.如果mx 2+2(3-2m )x+3m-2=0(m ≠0)的左边是一个关于x 的完全平方式,则m 等于( ). A .1 B .-1 C .1或9 D .-1或9二、填空题1.方程x 2+4x-5=0的解是________.2.代数式2221x x x ---的值为0,则x 的值为________.3.已知(x+y )(x+y+2)-8=0,求x+y 的值,若设x+y=z ,则原方程可变为_______,所以求出z 的值即为x+y 的值,所以x+y 的值为______.4.如果x 2+4x-5=0,则x=_______.5.无论x 、y 取任何实数,多项式x 2+y 2-2x-4y+16的值总是_______数.6.如果16(x-y )2+40(x-y )+25=0,那么x 与y 的关系是________. 三、综合提高题1.用配方法解方程.(1)9y 2-18y-4=0 (2)x 2x2.已知三角形两边长分别为2和4,第三边是方程x 2-4x+3=0的解,求这个三角形的周长.3.如果x 2-4x+y 2,求(xy )z的值.4.新华商场销售某种冰箱,每台进货价为2500•元,•市场调研表明:•当销售价为2900元时,平均每天能售出8台;而当销售价每降50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达5000元,每台冰箱的定价应为多少元? 5.已知:x 2+4x+y 2-6y+13=0,求222x yx y-+的值.6.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,•为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,•如果每件衬衫每降价一元,商场平均每天可多售出2件. ①若商场平均每天赢利1200元,每件衬衫应降价多少元?②每件衬衫降价多少元时,商场平均每天赢利最多?请你设计销售方案.解法三——公式法适用围:可解全部一元二次方程首先,要通过Δ=b 2-4ac 的根的判别式来判断一元二次方程有几个根 1.当Δ=b 2-4ac<0时 x 无实数根(初中)2.当Δ=b 2-4ac=0时 x 有两个相同的实数根 即x1=x2 3.当Δ=b 2-4ac>0时 x 有两个不相同的实数根当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:求根公式的推导用配方法解方程(1) ax 2-7x+3 =0 (2)a x 2+bx+3=0(3)如果这个一元二次方程是一般形式ax 2+bx+c=0(a ≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax 2+bx+c=0(a ≠0),试推导它的两个根x 1=2b a -+,x 2=2b a--(这个方程一定有解吗?什么情况下有解?)分析:因为前面具体数字已做得很多,我们现在不妨把a 、b 、c•也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:ax 2+bx=-c二次项系数化为1,得x 2+b a x=-c a 配方,得:x 2+b a x+(2b a )2=-c a +(2b a)2 即(x+2b a)2=2244b aca -∵4a 2>0,4a2>0,当b 2-4ac ≥0时2244b aca-≥0∴(x+2b a)2)2直接开平方,得:x+2ba = 即∴x 1x 2 由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b 2-4ac ≥0时,将a 、b 、c 代入式子(公式所出现的运算,恰好包括了所学过的六中运算,加、减、乘、除、乘方、开方,这体现了公式的统一性与和谐性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程概念与解法测试题
姓名: 得分: ⑤2
2230x x x
+-=;⑥x x 322
+=;⑦231223x x -+=
;是一元二次方程的是 。
3.下列关于x 的方程中,一定是一元二次方程的是( )
A .2(2)210m x x ---=
B .2530k x k ++=
C 21203x --= D.22
340x x +-=
4、已知关于x 的一元二次方程5)12(2
=+--a x a x 的一个解为1,则a= 。
5.方程22(4)(2)310m x m x m -+-+-=,当m = 时,为一元一次方程; 当m 时,为一元二次方程。
6.已知关于x 的一元二次方程22(2)340m x x m -++-=有一个解是0,则m = 。
8、2
2
___)(_____6+=++x x x ; 2
2
____)(_____3-=+-x x x
9、方程0162
=-x 的根是 ; 方程 0)2)(1(=-+x x 的根是 ;
10、如果二次三项式16)122
++-x m x (
是一个完全平方式,那么m 的值是_______________. 11、下列方程是关于x 的一元二次方程的是( ); A 、02
=++c bx ax B 、
2112
=+x x
C 、122
2-=+x x x D 、)1(2)1(32+=+x x 12、方程()()2
4330x x x -+-=的根为( );
(A )3x = (B )125x = (C )12123,5
x x =-= (D )1212
3,5x x ==
13、解下面方程:(1)()2
25x -=(2)2320x x --=(3)2
60x x +-=,较适当的方法分别为( ) (A )(1)直接开平法方(2)因式分解法(3)配方法(B )(1)因式分解法(2)公式法(3)直接开平方法 (C )(1)公式法(2)直接开平方法(3)因式分解法(D )(1)直接开平方法(2)公式法(3)因式分解法 14、方程5)3)(1(=-+x x 的解是 ( );
A. 3,121-==x x
B. 2,421-==x x
C. 3,121=-=x x
D. 2,421=-=x x 15、方程0322
=-+x x 的两根的情况是( );
A 、没有实数根;
B 、有两个不相等的实数根
C 、有两个相同的实数根
D 、不能确定 16、一元二次方程0624)2(2
=-+--m mx x m 有两个相等的实数根,则m 等于 ( ) A. 6- B. 1 C. 6-或1 D. 2
17、以3和1-为两根的一元二次方程是 ( );
(A )0322=-+x x (B )0322=++x x (C )0322=--x x (D )0322
=+-x x
18.用适当的方法解下列方程:
(1)2925x = (2)216810x -= (直接开平方法) (3)24(3)250x --=
(4)x x 432
=
(5)0)2(3)2(5=---x x x
(6)204)5(2
+=+x x
(7)x (x +1)-5x =0. (8))3(2)3(32
x x -=- (因式分解法)(9)(23)(4)(32)(15)x x x x -+=--
(10)2
2
)23(x x =-
(11)=++1692
x x 0
(12)=+-3322
y y 0
(13)2314x x -= (公式法) (14)235(21)0x x ++= (配方法) 解方程x 2-|x -1|-1=0.。