2018年高中数学人教A版必修3第3章概率 3.1.2习题含解析

合集下载

高中数学 第三章 函数的概念与性质 3.1.2 函数的表示法课时作业(含解析)新人教A版必修第一册-

高中数学 第三章 函数的概念与性质 3.1.2 函数的表示法课时作业(含解析)新人教A版必修第一册-

3.1.2 函数的表示法一、选择题1.如图是反映某市某一天的温度随时间变化情况的图象.由图象可知,下列说法中错误的是( )A .这天15时的温度最高B .这天3时的温度最低C .这天的最高温度与最低温度相差13 ℃D .这天21时的温度是30 ℃解析:这天的最高温度与最低温度相差为36-22=14 ℃,故C 错. 答案:C2.已知f (x -1)=1x +1,则f (x )的解析式为( ) A .f (x )=11+x B .f (x )=1+xxC .f (x )=1x +2D .f (x )=1+x 解析:令x -1=t ,则x =t +1,∴f (t )=1t +1+1=12+t,∴f (x )=1x +2. 答案:C3.函数y =x 2|x |的图象的大致形状是( )解析:因为y =x 2|x |=⎩⎪⎨⎪⎧x ,x >0,-x ,x <0,所以函数的图象为选项A.答案:A4.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,且f (a )+f (1)=0,则a 等于( )A .-3B .-1C .1D .3解析:当a >0时,f (a )+f (1)=2a +2=0⇒a =-1,与a >0矛盾;当a ≤0时,f (a )+f (1)=a +1+2=0⇒a =-3,符合题意.答案:A 二、填空题5.f (x )=⎩⎪⎨⎪⎧x ,x ∈[0,1]2-x ,x ∈(1,2]的定义域为______,值域为______.解析:函数定义域为[0,1]∪(1,2]=[0,2].当x ∈(1,2]时,f (x )∈[0,1),故函数值域为[0,1)∪[0,1]=[0,1]. 答案:[0,2] [0,1]6.已知函数f (2x +1)=3x +2,且f (a )=4,则a =________.解析:因为f (2x +1)=32(2x +1)+12,所以f (a )=32a +12.又f (a )=4,所以32a +12=4,a =73.答案:737.若f (x )-12f (-x )=2x (x ∈R ),则f (2)=________.解析:∵f (x )-12f (-x )=2x ,∴⎩⎪⎨⎪⎧f (2)-12f (-2)=4,f (-2)-12f (2)=-4,得⎩⎪⎨⎪⎧2f (2)-f (-2)=8,f (-2)-12f (2)=-4,相加得32f (2)=4,f (2)=83.答案:83三、解答题8.某同学购买x (x ∈{1,2,3,4,5})X 价格为20元的科技馆门票,需要y 元.试用函数的三种表示方法将y 表示成x 的函数.解析:(1)列表法x /X 1 2 3 4 5 y /元20406080100(2)图象法:如下图所示.(3)解析法:y =20x ,x ∈{1,2,3,4,5}. 9.求下列函数解析式:(1)已知f (x )是一次函数,且满足3f (x +1)-f (x )=2x +9,求f (x ); (2)已知f (x +1)=x 2+4x +1,求f (x )的解析式. 解析:(1)由题意,设函数为f (x )=ax +b (a ≠0), ∵3f (x +1)-f (x )=2x +9, ∴3a (x +1)+3b -ax -b =2x +9, 即2ax +3a +2b =2x +9,由恒等式性质,得⎩⎪⎨⎪⎧2a =2,3a +2b =9,∴a =1,b =3.∴所求函数解析式为f (x )=x +3. (2)设x +1=t ,则x =t -1,f (t )=(t -1)2+4(t -1)+1,即f (t )=t 2+2t -2.∴所求函数为f (x )=x 2+2x -2.[尖子生题库]10.画出下列函数的图象:(1)f (x )=[x ]([x ]表示不大于x 的最大整数); (2)f (x )=|x +2|.解析:(1)f (x )=[x ]=⎩⎪⎨⎪⎧…-2,-2≤x <-1,-1,-1≤x <0,0,0≤x <1,1,1≤x <2,2,2≤x <3,…函数图象如图1所示.图1 图2(2)f (x )=|x +2|=⎩⎪⎨⎪⎧x +2,x ≥-2,-x -2,x <-2.画出y =x +2的图象,取[-2,+∞)上的一段;画出y =-x -2的图象,取(-∞,-2)上的一段,如图2所示.。

高中数学第三章直线与方程3.1.1倾斜角与斜率练习含解析新人教A版必修208192187

高中数学第三章直线与方程3.1.1倾斜角与斜率练习含解析新人教A版必修208192187

对应学生用书P57知识点一直线的倾斜角高中数学第三章直线与方程3.1.1倾斜角与斜率练习含解析新人教A 版必修2081921871.给出下列命题:①任意一条直线有唯一的倾斜角;②一条直线的倾斜角可以为-30°;③倾斜角为0°的直线只有一条,即x 轴;④若直线的倾斜角为α,则sinα∈(0,1);⑤若α是直线l 的倾斜角,且sinα=22,则α=45°. 其中正确命题的个数是( ) A .1 B .2 C .3 D .4 答案 A解析 任意一条直线有唯一的倾斜角,倾斜角不可能为负,倾斜角为0°的直线有无数条,它们都垂直于y 轴,因此①正确,②③错误. ④中α=0°时sinα=0,故④错误.⑤中α有可能为135°,故⑤错误.2.已知直线l 过点(m ,1),(m +1,1-tanα),则( ) A .α一定是直线l 的倾斜角 B .α一定不是直线l 的倾斜角 C .180°-α不一定是直线l 的倾斜角 D .180°-α一定是直线l 的倾斜角 答案 C解析 设θ为直线l 的倾斜角,则tanθ=1-tanα-1m +1-m =-tanα.当α=0°时,tanθ=0,此时θ=0°;当α=30°时,tanθ=-33,此时θ=150°.比较各选项可知选C .知识点二直线的斜率3.下列叙述不正确的是( )A.若直线的斜率存在,则必有倾斜角与之对应B.若直线的倾斜角为α,则必有斜率与之对应C.与y轴垂直的直线的斜率为0D.与x轴垂直的直线的斜率不存在答案 B解析每一条直线都有倾斜角且倾斜角唯一,但并不是每一条直线都有斜率;垂直于y 轴的直线的倾斜角为0°,其斜率为0;垂直于x轴的直线的倾斜角为90°,其斜率不存在,故A,C,D正确.4.如图,在平面直角坐标系中有三条直线l1,l2,l3,其对应的斜率分别为k1,k2,k3,则下列选项中正确的是( )A.k3>k1>k2B.k1-k2>0C.k1·k2<0D.k3>k2>k1答案 D解析由图可知,k1<0,k2<0,k3>0,且k2>k1,故选D.知识点三斜率公式的应用①A(-2,0),B(-5,3);②A(3,2),B(5,2);③A(3,-1),B(3,3);(2)已知直线l过点A(2,1),B(m,3),求直线l的斜率及倾斜角的范围.解(1)①∵A(-2,0),B(-5,3),∴k AB=3-0-5--2=3-3=-1,直线AB的倾斜角为135°.②∵A(3,2),B(5,2),∴k AB =2-25-3=0.直线AB 的倾斜角为0°.③∵A(3,-1),B(3,3);∴直线AB 的倾斜角为90°,斜率不存在. (2)设直线l 的斜率为k ,倾斜角为α, 当m =2时,A(2,1),B(2,3).直线AB 的倾斜角为90°,斜率k 不存在; 当m >2时,k =3-1m -2=2m -2>0,此时,直线l 的倾斜角为锐角,即α∈(0°,90°); 当m <2时,k =3-1m -2=2m -2<0,此时,直线l 的倾斜角为钝角,即α∈(90°,180°).知识点四三点共线问题6.若A(a ,0),B(0,b),C(-2,-2)三点共线,则a +b =________.答案 -12解析 由题意得b +22=2a +2,ab +2(a +b)=0,1a +1b =-12.对应学生用书P58一、选择题1.已知直线l 的倾斜角为β-15°,则下列结论中正确的是( ) A .0°≤β<180° B.15°<β<180° C .15°≤β<180° D.15°≤β<195° 答案 D解析 因为直线l 的倾斜角为β-15°,所以0°≤β-15°<180°,即15°≤β<2.在平面直角坐标系中,正三角形ABC 的BC 边所在直线的斜率是0,则AC ,AB 边所在直线的斜率之和为( )A .-2 3B .0C . 3D .2 3 答案 B解析 由BC 边所在直线的斜率是0,知直线BC 与x 轴平行,所以直线AC ,AB 的倾斜角互为补角,根据直线斜率的定义,知直线AC ,AB 的斜率之和为0.故选B .3.若直线l 的斜率为k ,且二次函数y =x 2-2kx +1的图象与x 轴没有交点,则直线l 的倾斜角的取值范围是( )A .(0°,90°) B.(135°,180°)C .[0°,45°)∪(135°,180°) D.[0°,180°) 答案 C解析 由抛物线y =x 2-2kx +1与x 轴没有交点,得(-2k)2-4<0,解得-1<k<1,所以直线l 的倾斜角的取值范围是[0°,45°)∪(135°,180°),故选C .4.如果直线l 先沿x 轴负方向平移2个单位长度,再沿y 轴正方向平移2个单位长度后,又回到原来的位置,那么直线l 的斜率是( )A .-2B .-1C .1D .2 答案 B解析 设A(a ,b)是直线l 上任意一点,则平移后得点A′(a-2,b +2),于是直线l 的斜率k =k AA′=b +2-b a -2-a=-1.故选B .5.已知点A(2,-3),B(-3,-2),直线l 过点P(1,1),且与线段AB 相交,则直线l 的斜率k 满足( )A .k≥34或k≤-4B .k≥34或k≤-14C .-4≤k≤34D .34≤k≤4答案 A解析 如图所示,过点P 作直线PC⊥x 轴交线段AB 于点C ,作出直线PA ,PB .①直线l 与线段AB 的交点在线段AC(除去点C)上时,直线l 的倾斜角为钝角,斜率的范围是k≤k PA .②直线l 与线段AB 的交点在线段BC(除去点C)上时,直线l 的倾斜角为锐角,斜率的范围是因为k PA =-3-12-1=-4,k PB =-2-1-3-1=34,所以直线l 的斜率k 满足k≥34或k≤-4.二、填空题6.已知M(2m ,m +1),N(m -2,1),则当m =________时,直线MN 的倾斜角为直角. 答案 -2解析 由题意得,直线MN 的倾斜角为直角,则2m =m -2,解得m =-2.7.已知点M(5,3)和点N(-3,2),若直线PM 和PN 的斜率分别为2和-74,则点P 的坐标为________.答案 (1,-5)解析 设P 点坐标为(x ,y),则⎩⎪⎨⎪⎧y -3x -5=2,y -2x +3=-74,解得⎩⎪⎨⎪⎧x =1,y =-5,即P 点坐标为(1,-5).8.若经过点P(1-a ,1)和Q(2a ,3)的直线的倾斜角为钝角,则实数a 的取值范围是________.答案 ⎝⎛⎭⎪⎫-∞,13解析 ∵直线PQ 的斜率k =3-12a -1-a =23a -1,且直线的倾斜角为钝角,∴23a -1<0,解得a<13.三、解答题9.已知点A(1,2),在坐标轴上有一点P ,使得直线PA 的倾斜角为60 °,求点P 的坐标.解 ①当点P 在x 轴上时,设点P(a ,0). ∵A(1,2),∴k PA =0-2a -1=-2a -1.又直线PA 的倾斜角为60 °, ∴-2a -1=3,解得a =1-233, ∴点P 的坐标为⎝ ⎛⎭⎪⎫1-233,0.②当点P 在y 轴上时,设点P(0,b). 同理可得b =2-3, ∴点P 的坐标为(0,2-3).综上,点P 的坐标为⎝ ⎛⎭⎪⎫1-233,0或(0,2-3).10.已知实数x ,y 满足关系式x +2y =6,当1≤x≤3且x≠2时,求y -1x -2的取值范围.解y -1x -2的几何意义是过M(x ,y),N(2,1)两点的直线的斜率.因为点M 在y =3-12x 的图象上,且1≤x≤3,所以可设该线段为AB ,其中A1,52,B3,32.由于k NA =-32,k NB =12,所以y -1x -2的取值范围是-∞,-32∪12,+∞.。

最新人教A版高中数学必修一第3章3.1.2同步训练习题(含解析)

最新人教A版高中数学必修一第3章3.1.2同步训练习题(含解析)

高中数学必修一同步训练及解析1.定义在R上地奇函数f(x)( )A.未必有零点B.零点地个数为偶数C.至少有一个零点D.以上都不对解析:选C.∵函数f(x)是定义在R上地奇函数,∴f(0)=0,∴f(x)至少有一个零点,且f(x)零点地个数为奇数.2.已知函数f(x)地图象是连续不断地曲线,有如下地x与f(x)地对应值表那么,函数()在区间[1,6]上地零点至少有( ) A.5个B.4个C.3个D.2个解析:选C.观察对应值表可知,f(1)>0,f(2)>0,f(3)<0,f(4)>0,f(5)<0,f(6)<0,f(7)>0,∴函数f(x)在区间[1,6]上地零点至少有3个,故选C.3.用二分法研究函数f(x)=x3+3x-1地零点时,第一次算得f(0)<0,f(0.5)>0,可得其中一个零点x0∈________,第二次应计算________.答案:(0,0.5) f(0.25)4.用二分法求函数f(x)=3x-x-4地一个零点,其参考数据如下:030.0290.060据此数据,可得()=3x--4地一个零点地近似值(精确度0.01)为________.解析:由参考数据知,f(1.5625)≈0.003>0,f(1.55625)≈-0.029<0,即f(1.5625)·f(1.55625)<0,且 1.5625-1.55625=0.00625<0.01,∴f(x)=3x-x-4地一个零点地近似值可取为1.5625.答案:1.5625[A级基础达标]1.用二分法求函数f(x)=3x3-6地零点时,初始区间可选为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析:选B.∵f (1)=-3,f (2)=18,∴f (1)·f (2)<0.∴可选区间为(1,2).2.下列函数中,有零点但不能用二分法求零点近似值地是( )①y =3x 2-2x +5②y =⎩⎪⎨⎪⎧ -x +1,x ≥0x +1,x <0③y =2x+1,x ∈(-∞,0) ④y =x 3-2x +3⑤y=12x2+4x+8A.①③B.②⑤C.⑤D.①④解析:选C.二分法只适用于在给定区间上图象连续不间断地函数变号零点地近似值地求解.题中函数①无零点,函数②③④都有变号零点.函数⑤有不变号零点-4,故不能用二分法求零点近似值,应选C.3.设f(x)=3x+3x-8,用二分法求方程3x+3x-8=0在x∈(1,2)内近似解地过程中得f(1)<0,f(1.5)>0,f(1.25)<0,则方程地根落在区间( )A.(1,1.25)B.(1.25,1.5)C.(1.5,2)D. 不能确定解析:选B.由已知f(1)<0,f(1.5)>0,f(1.25)<0,∴f(1.25)f(1.5)<0,因此方程地根落在区间(1.25,1.5)内,故选B.4.用二分法求函数y=f(x)在区间(2,4)上地近似解.验证f(2)·f(4)<0,给定精确度ε=0.01,取区间(2,4)地中点,x1=2+42=3.计算f(2)·f(x1)<0,则此时零点x0∈________(填区间).解析:∵f(2)·f(4)<0,f(2)·f(3)<0,f(3)·f(4)>0,故x0∈(2,3).答案:(2,3)5.在26枚崭新地金币中,有一枚外表与真金币完全相同地假币(质量小一点),现在只有一台天平,则应用二分法地思想,最多称________次就可以发现这枚假币.解析:将26枚金币平均分成两份,放在天平上,则假币一定在质量小地那13枚金币里面;从这13枚金币中拿出1枚,然后将剩下地12枚金币平均分成两份,放在天平上,若天平平衡,则假币一定是拿出地那一枚;若不平衡,则假币一定在质量小地那6枚金币里面;将这6枚金币平均分成两份,放在天平上,则假币一定在质量小地那3枚金币里面;从这3枚金币中任拿出2枚放在天平上,若天平平衡,则剩下地那一枚即是假币;若不平衡,则质量小地那一枚即是假币.综上可知,最多称4次就可以发现这枚假币. 答案:46.方程x 2-1x=0在(-∞,0)内是否存在实数解?并说明理由.解:令f (x )=x 2-1x,则当x ∈(-∞,0)时,x 2>0,1x <0,所以-1x>0, 所以f (x )=x 2-1x>0恒成立, 所以x 2-1x=0在(-∞,0)内无实数解. [B 级 能力提升]7.方程log 2x +x 2=2地解一定位于区间( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析:选B.设f (x )=log 2x +x 2-2,∵f (1)=0+1-2=-1<0,f(2)=1+4-2=3>0,∴f(1)f(2)<0,x2=2地解一定由根地存在性定理知,方程log2x+位于区间(1,2),故选B.8.某方程在区间D=(2,4)内有一无理根,若用二分法求此根地近似值,要使所得近似值地精确度达到0.1,则应将D分( )A.2次B.3次C.4次D.5次解析:选D.等分1次,区间长度为1.等分2次区间长度为0.5,…,等分4次,区间长度为0.125,等分5次,区间长度为0.0625<0.1.9.关于“二分法”求方程地近似解,下列说法正确地有________.①“二分法”求方程地近似解一定可将y=f(x)在[a,b]内地所有零点得到②“二分法”求方程地近似解有可能得到f(x)=0在[a,b]内地重根③“二分法”求方程地近似解y=f(x)在[a,b]内有可能没有零点④“二分法”求方程地近似解可能得到f(x)=0在[a,b]内地精确解解析:利用二分法求函数y=f(x)在[a,b]内地零点,那么在区间[a,b]内肯定有零点存在,而对于重根无法求解出来,且所得地近似解可能是[a,b]内地精确解.答案:④10.如果在一个风雨交加地夜里查找线路,从某水库闸房(设为A)到防洪指挥部(设为B)地电话线路发生了故障.这是一条10 km长地线路,如何迅速查出故障所在?如果沿着线路一小段一小段查找,困难很多.每查一个点要爬一次电线杆子,10 km长,大约有200多根电线杆子呢?想一想,维修线路地工人师傅怎样工作最合理?要把故障可能发生地范围缩小到50 m~100 m左右,即一两根电线杆附近,最多要查多少次?解:(1)如图所示,他首先从中点C检查,用随身带地话机向两端测试时,假设发现AC段正常,断定故障在BC段,再到BC段中点D查,这次若发现BD段正常,可见故障在CD段,再到CD段中点E来查.依次类推……(2)每查一次,可以把待查地线路长度缩减一半,因此只要7次就够了.11.求方程2x3+3x-3=0地一个近似解(精确度为0.1).解:设f(x)=2x3+3x-3,经试算,f(0)=-3<0,f(1)=2>0,所以函数在(0,1)内存在零点,即方程2x3+3x-3=0在(0,1)内有实数根.取(0,1)地中点0.5,经计算f(0.5)<0,又f(1)>0,所以方程2x3+3x-3=0在(0.5,1)内有实数根.如此继续下去,得到方程地一个实数根所在地区间,如下表:因为|0.6875-0.75|=0.0625<0.1,所以方程23+3x-3=0地一个精确度为0.1地近似解可取为0.75.。

高中数学第三章概率3.2.1古典概型课件新人教a必修3 (1

高中数学第三章概率3.2.1古典概型课件新人教a必修3 (1
在连续抛掷两次试验中,P(“恰好一次正面朝上”)=P(“第一次正
面朝上,第二次反面朝上”)+P(“第一次反面朝上,第二次正面朝上”)
=14
+
1 4
=
12,即
P(“恰好一次正面朝上”)
=“恰好一次正面基朝本上事”所件包的含总基数本事件的个数.
2.在抛掷骰子的试验中,如何求出现各个点的概率?出现偶数点
3.上述试验的共同特点是什么? 提示(1)试验中所有可能出现的基本事件只有有限个;(2)每个基 本事件出现的可能性相等. 4.填空:古典概型的特点 (1)试验中所有可能出现的基本事件只有有限个. (2)每个基本事件出现的可能性相等. 我们将具有这两个特点的概率模型称为古典概率模型,简称古典 概型.
3.2 古典概型
3.2.1 古典概型
课标阐释
思维脉络
1.了解基本事件的定义,能写出一 次试验所出现的基本事件.
2.理解古典概型的特征和计算公
式,会判断古典概型. 3.会求古典概型中事件的概率.
一、基本事件 【问题思考】 1.连续抛掷一枚质地均匀的硬币两次,有哪几种可能的结果?连续 抛掷三次呢? 提示(正,正),(正,反),(反,正),(反,反),共4种;(正,正,正),(正,正, 反),(正,反,正),(反,正,正),(正,反,反),(反,正,反),(反,反,正),(反,反,反), 共8种. 2.上述试验中的每一个结果都是随机事件,我们把这类事件称为 基本事件.在一次试验中,任何两个基本事件是什么关系? 提示因为任何两种结果都不可能同时发生,所以它们是互斥关系.
三、古典概型概率公式
【问题思考】
1.在抛掷一枚质地均匀的硬币的试验中,怎样求正面朝上及反面
朝上的概率?连续抛掷两次,恰好一次正面朝上的概率又如何求?

人教A版高中数学必修3《第三章 概率 3.1 随机事件的概率 3.1.2 概率的意义》_1

人教A版高中数学必修3《第三章 概率 3.1 随机事件的概率 3.1.2 概率的意义》_1

概率的意义一、教材内容分析本节为人教版必修3第三章3.1随机事件的概率中的第二小节3.1.2概率的意义,通过本节的学习,学生能正确理解概率。

本节在内容和结构上起着承上启下的作用,乘上:通过了解概率的意义,明白概率与第二章统计的联系;启下:通过了解概率的重要性,引出后两节概率的计算。

二、教学目标1.知概念识与技能:正确理解概率的意义;了解概率在实际问题中的应用,增强学习兴趣;进一步理解概率统计中随机性与规律性的关系。

2.过程与方法:通过对生活中实际问题的提出,学生掌握用概率的知识解释分析问题,着重培养学生观察、比较、概括、归纳等思维能力,并进一步培养将实际问题转化为数学问题的数学建模思想。

3.情感态度与价值观:鼓励学生积极思考,激发学生对知识的探究精神和严肃认真的科学态度,激发学生的学习兴趣。

三、学情分析学生已经学习了3.1随机事件的概率再加上初中对概率的了解,所以学生的认知起点较高,理解本节内容不难。

作为新授课,学生对于概率在实际问题中的应用具有较高的学习兴趣,但是用概率的知识解释问题的能力仍需进一步提高。

教师在本节讲授需要注意理论联系实际,同时注意培养学生的科学素养。

四、教学重难点重点:概率的正确理解及在实际中的应用难点:实际问题中体现随机性与规律性之间的联系,如何用概率解释这些具体问题。

五、教学策略1.教学方法:讲授法,讨论法,引导探究法2.教学手段:多媒体教学工具六、教学过程学生——完成探究并且回答原因不公平,各班被选到概率不相等,其中7班被选中概率最大..2决策中的概率思想问题:如果连续10次掷一枚骰子,结果都是出现1点,你认为这枚骰子的质地均匀吗?为生产过程中发生小概率事件,我们有理由认为生产过程中出现了问题,应该立即停下生产进行检查。

3.天气预报的概率解释思考:某地气象局预报说,明天本地降水概率为70%。

你认为下面两个解释中哪一个能代表气象局的观点?教师、学生——归纳总结. 归纳提升:七、板书设计八、教学反思本节是培养学生对数学产生兴趣的关键一节,教师要紧抓理解概率的意义和培养学生的学习兴趣这两个任务进行教学,通过生日在同一天的探讨,“生日悖论”的提出和在实际问题中的应用,提高学生学习数学的兴趣,通过孟德尔的豌豆试验培养学生科学探究的意识,树立学生严谨的科学观. 该节课十分有创意,在教材内容的基础上作了适当的必要的扩展,激发学生兴趣,教学目的明确,方法得当,引导自主探究、合作交流完成任务,整个课堂效率非常高。

新版高中数学人教A版必修3习题:第三章概率 3.1.2(1)

新版高中数学人教A版必修3习题:第三章概率 3.1.2(1)

3.1.2概率的意义课时过关·能力提升一、基础巩固1.概率是指()A.事件发生的可能性大小B.事件发生的频率C.事件发生的次数D.无任何意义2.若某篮球运动员的投篮命中率为98%,则估计该运动员投篮1 000次命中的次数为()A.20B.98C.980D.9981000次命中的次数约为1000×98%=980.3.天气预报中预报某地明天降雨的概率为90%,则()A.降雨的可能性是90%B.90%太大,一定降雨C.该地有90%的区域降雨D.降雨概率为90%没有什么意义90%说明明天降雨的可能性是90%.4.已知某学校有教职工400名,从中选举40名教职工组成教职工代表大会,每名教职工当选的概率是110,则下列说法正确的是()A.10名教职工中,必有1人当选B.每名教职工当选的可能性是1 10C.数学教研组共有50人,该组当选教工代表的人数一定是5D.以上说法都不正确5.从一批准备出厂的电视机中随机抽取10台进行质量检查,其中有1台是次品.若用C表示抽到次品这一事件,则下列说法正确的是()A.事件C发生的概率为1 10B.事件C发生的频率为1 10C.事件C发生的概率接近1 10D.每抽10台电视机,必有1台次品6.某医院治疗一种疾病的治愈率为15,若前4位病人都未治愈,则第5位病人的治愈率为()A.1B.4 5C.15D.015,表明每位病人被治愈的可能性均为15,并不是5人中必有1人治愈.故选C.7.在乒乓球、足球等比赛中,裁判员经常用掷硬币或抽签法决定谁先发球,这种方法.(填“公平”或“不公平”),这两种方法都是公平的.因为采用掷硬币得正面、反面的概率相等;采用抽签法,抽到某一签的概率相等.8.某市运动会前夕,质检部门对这次运动会所用的某种产品进行抽检,得知其合格率为99%.若该运动会所需该产品共20 000件,则其中的不合格产品约有件.1-99%=1%,则不合格产品约有20000×1%=200(件).9.某射击教练评价一名运动员时说:“你射中的概率是90%.”则下面两个解释中能代表教练的观点的为.①该射击运动员射击了100次,恰有90次击中目标②该射击运动员射击一次,中靶的机会是90%90%说明中靶的可能性是90%,所以①不正确,②正确.10.为了估计水库中鱼的尾数,使用以下的方法:先从水库中捕出2 000尾鱼,给每尾鱼做上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中的其他鱼充分混合,再从水库中捕出500尾,查看其中有记号的鱼,有40尾.试根据上述数据,估计水库中鱼的尾数.n(n∈N*),每尾鱼被捕到的可能性相等,给2000尾鱼做上记号后,从水库中任捕一尾鱼,带记号的概率为2000n.又从水库中捕500尾鱼,有40尾带记号,于是带记号的频率为40500.则有2000n≈40500,解得n≈25000.所以估计水库中有25000尾鱼.二、能力提升1.在给病人动手术之前,外科医生会告知病人或家属一些情况,其中有一项是说这种手术的成功率大约是99%.下列解释正确的是()A.100个手术有99个手术成功,有1个手术失败B.这个手术一定成功C.99%的医生能做这个手术,另外1%的医生不能做这个手术D.这个手术成功的可能性是99%99%,说明手术成功的可能性是99%.2.根据山东省教育研究机构的统计资料,今在校学生近视率约为37.4%.某眼镜商要到一中学给学生配眼镜,若已知该校学生总数为600人,则该眼镜商应带眼镜的数目为()A.374副B.224.4副C.不少于225副D.不多于225副,该校近视生人数约为37.4%×600=224.4,结合实际情况,眼镜商应带眼镜数不少于225副.3.某套数学试题中,有12道选择题,每道选择题有4个选项,其中只有1个选项是正确的,则随机选择其中一个选项正确的概率是14.某家长说:“要是都不会做,每题都随机选择其中一个选项,则一定有3道题答对.”这句话() A.正确 B.错误C.不一定D.无法解释,答对的概率是14说明了对的可能性大小是14.做12道选择题,即进行了12次试验,每个结果都是随机的,那么答对3道题的可能性较大,但是并不一定答对3道题.也可能都选错,或有1,2,4,…,甚至12个题都选择正确.4.玲玲和倩倩下象棋,为了确定谁先走第一步,玲玲对倩倩说:“拿一个飞镖射向如图所示的靶中,若射中区域所标的数字大于3,则我先走第一步,否则你先走第一步”.你认为这个游戏规则公平吗?.(填“公平”或“不公平”),所标的数字大于3的区域有5个,而小于或等于3的区域只有3个,所以玲玲先走的概率是58,倩倩先走的概率是38.所以不公平.★5.某地区牛患某种病的概率为0.25,且每头牛患病与否是互不影响的,今研制一种新的预防药,任选12头牛做试验,结果这12头牛服用这种药后均未患病,则此药.(填“有效”或“无效”)头牛都在服药后未患病,由极大似然法,可得此药有效.6.试解释下列情况的概率的意义:(1)某商场为促进销售,实行有奖销售活动,凡购买其商品的顾客中奖率是0.20;(2)一生产厂家称:我们厂生产的产品合格率是0.98.解::(1)“中奖率是0.20”是指购买其商品的顾客中奖的可能性是20%.(2)“产品的合格率是0.98”是指该厂生产的产品合格的可能性是98%.★7.某种彩票的抽奖是从写在36个球上的36个号码中随机摇出7个.有人统计了过去中特等奖的号码,声称某一号码在历次特等奖中出现的次数最多,它是一个幸运号码,人们应该买这一号码;也有人说,若一个号码在历次特等奖中出现的次数最少,由于每个号码出现的机会相等,则应该买这一号码.你认为他们的说法对吗?36个号码的36个球大小、质量是一致的,严格地说,为了保证公平,每次用的36个球, ,除非能保证用过一次后,球没有磨损、变形.因此,当把这36个球看成每次抽奖中只用了一次时,不难看出,以前抽奖的结果对今后抽奖的结果没有任何影响,他们的说法都是错误的.。

高中数学第3章函数的概念与性质3.1函数的概念及其表示3.1.2第1课时函数的表示法学案含解析第一册

高中数学第3章函数的概念与性质3.1函数的概念及其表示3.1.2第1课时函数的表示法学案含解析第一册

3。

1。

2 函数的表示法第1课时函数的表示法学习目标核心素养1。

掌握函数的三种表示法:解析法、图象法、列表法.(重点) 2.会根据不同的需要选择恰当的方法表示函数.(难点)1.通过函数表示的图象法培养直观想象素养.2.通过函数解析式的求法培养运算素养。

(1)已建成的京沪高速铁路总长约1 318千米,设计速度目标值380千米/时,若京沪高速铁路时速按300千米/时计算,火车行驶x小时后,路程为y千米,则y是x的函数,可以用y=300x来表示,其中y=300x叫做该函数的解析式.(2)如图是我国人口出生率变化曲线:(3)下表是大气中氰化物浓度与污染源距离的关系表污染源距离50100200300500氰化物浓度0.6780。

3980.1210.050。

01问题:根据初中所学知识,请判断问题(1)、(2)、(3)分别是用什么法表示函数的?提示:解析法、图象法和列表法.函数的表示法思考:任何一个函数都可以用解析法、列表法、图表法三种形式表示吗?提示:不一定.并不是所有的函数都可以用解析式表示,不仅如此,图象法也不适用于所有函数,如D(x)=错误!列表法虽在理论上适用于所有函数,但对于自变量有无数个取值的情况,列表法只能表示函数的一个概况或片段.1.思考辨析(正确的画“√”,错误的画“×”)(1)任何一个函数都可以用解析法表示.()(2)函数的图象一定是定义区间上一条连续不断的曲线.()[答案](1)×(2)×2.已知函数f(x)由下表给出,则f(3)等于()x1≤x<222<x≤4f(x)123A。

1B.2C.3D.不存在C[∵当2〈x≤4时,f(x)=3,∴f(3)=3。

]3.已知函数y=f(x)的图象如图所示,则其定义域是______.[-2,3][由图象可知f(x)的定义域为[-2,3].]4.若f(x)=x2+bx+c,且f(1)=0,f(3)=0,则f(-1)=________。

高中数学人教A版选择性必修第一册3.1.2椭圆的简单几何性质(第2课时)课时分层练习题含答案解析

高中数学人教A版选择性必修第一册3.1.2椭圆的简单几何性质(第2课时)课时分层练习题含答案解析

3.1.2椭圆的简单几何性质(第2课时)基础练习一、单选题1. 2020年北京时间11月24日我国嫦娥五号探月飞行器成功发射.嫦娥五号是我国探月工程“绕、落、回”三步走的收官之战,经历发射入轨、地月转移、近月制动、环月飞行、着陆下降、月面工作、月面上升、交会对接与样品转移、环月等待、月地转移、再入回收等11个关键阶段.在经过交会对接与样品转移阶段后,若嫦娥五号返回器在近月点(离月面最近的点)约为200公里,远月点(离月面最远的点)约为8600公里,以月球中心为一个焦点的椭圆形轨道上等待时间窗口和指令进行下一步动作,月球半径约为1740公里,则此椭圆轨道的离心率约为( )A .0.32B .0.48C .0.68D .0.82球体,球心为椭圆的一个焦点).2月15日17时,天问一号探测器成功实施捕获轨道远火点(椭圆轨迹上距离火星表面最远的一点)平面机动,同时将近火点高度调整至约265km .若此时远火点距离约为11945km ,火星半径约为3395km ,则调整后天问一号的运行轨迹(环火轨道曲线)的焦距约为( ) A .11680km B .5840kmC .19000kmD .9500km【答案】A【分析】由题意可知3660a c -=,15340a c +=,即可解出211680c =.全面展开,我国载人航天工程“三步走”战略成功迈出第三步.到今天,天和核心舱在轨已经九个多月.在这段时间里,空间站关键技术验证阶段完成了5次发射、4次航天员太空出舱、1次载人返回、1次太空授课等任务.一般来说,航天器绕地球运行的轨道近似看作为椭圆,其中地球的球心是这个椭圆的一个焦点,我们把椭圆轨道上距地心最近(远)的一点称作近(远)地点,近(远)地点与地球表面的距离称为近(远)地点高度.已知天和核心舱在一个椭圆轨道上飞行,它的近地点高度大约351km,远地点高度大约385km,地球半径约6400km,则该轨道的离心率为()A.176768B.17368C.385736D.678513536在酒泉卫星发射中心点火发射.此后,神舟十二号载人飞船与火箭成功分离,进入预定轨道,并快速完成与“天和”核心舱的对接,聂海胜、刘伯明、汤洪波3名宇航员成为核心舱首批“入住人员”,并在轨驻留3个月,开展舱外维修维护,设备更换,科学应用载荷等一系列操作.已知神舟十二号飞船的运行轨道是以地心为焦点的椭圆,设地球半径为R,其近地点与地面的距离大约是132R,远地点与地面的距离大约是116R,则该运行轨道(椭圆)的离心率大约是()A .167B .13C .135D .195.人造地球卫星的运行轨道是以地心为一个焦点的椭圆,设地球半径为R ,卫星近地点、远地点离地面的距离分别是12,r r ,则卫星轨道的离心率为___________.6.从椭圆的一个焦点1F 发出的光线射到椭圆上的点P ,反射后光线经过椭圆的另一个焦点2F ,事实上,点()00,P x y 处的切线00221xx yy a b +=垂直于12F PF ∠的角平分线,已知椭圆22:143x y C +=的两个焦点是1F ,2F ,点P 是椭圆上除长轴端点外的任意一点,12F PF ∠的角平分线PT 交椭圆C 的长轴于点(),0T t ,则t 的取值范围是__________.7.已知地球运行的轨道是长半轴长81.5010a =⨯km ,焦距与长轴长的比为0.02的椭圆,太阳在这个椭圆的一个焦点上.求地球到太阳的最远距离和最近距离.(注:把地球、太阳看成质点) 点上,求地球到太阳的最远距离. 【详解】椭圆的长半轴长约为椭圆焦距与长轴长的比约为160.求地球的轨道中心与太阳间的距离以及近日点和远日点到太阳的距离(地球与太阳的半径忽略不计,精确到80.00110km ⨯).10.飞船的轨道是以地球的中心2为一个焦点的椭圆,选取坐标系如图所示,椭圆中心在坐标原点,近地点A 距地面200千米,远地点B 距地面350千米,已知地球半径6371R =千米.(1)求飞船飞行的椭圆轨道方程;(2)飞船在椭圆轨道运行14圈,历时21小时23分.若椭圆周长的一个近似公式为()24L b a b π=+-(a ,b 分别为椭圆的长半轴与短半轴的长),请问:飞船平均飞行速度每秒多少千米?(结果精确到0.01千米/秒,π取3.146645.58)200 km,远地点(离地面最远的点)高度约350 km的椭圆轨道(将地球看作一个球,其半径约为6371 km),求椭圆轨道的标准方程.(注:地心(地球的中心)位于椭圆轨道的一个焦点,且近地点、远地点与地心共线)12.在大西北的荒漠上,A,B两地相距2km,正准备在荒漠上围成一片以AB为一条对角线的平行四边形区域,建立农艺园.按照规划,围墙总长度为8km.(1)农艺园的最大面积能达到多少?(2)该荒漠上有一条直线型水沟刚好过点A,且与AB成45 角,现要对整条水沟进行加固改造,但考虑到今后农艺园内的水沟要重新设计改造,因此该水沟被农艺园围住的部分暂不加固,那么暂不加固的部分有多长?max)ABC S所以农艺园的最大面积为某种鱼群(将鱼群视为点P )洄游的路线是以A ,B 为焦点的椭圆C .现有渔船发现该鱼群在与点A ,点B 距离之和为8 n mile 处.在点A ,B ,P 所在的平面内,以A ,B 所在的直线为x 轴,线段AB 的垂直平分线为y 轴建立平面直角坐标系. (1)求椭圆C 的方程;(2)某日,研究人员在A ,B 两点同时用声呐探测仪发出信号探测该鱼群(探测过程中,信号传播速度相同且鱼群移动的路程忽略不计),A ,B 两点收到鱼群的反射信号所用的时间之比为5:3,试确定此时鱼群P 的位置(即点P 的坐标).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1.2概率的意义
课时过关·能力提升
一、基础巩固
1.概率是指()
A.事件发生的可能性大小
B.事件发生的频率
C.事件发生的次数
D.无任何意义
2.若某篮球运动员的投篮命中率为98%,则估计该运动员投篮1 000次命中的次数为()
A.20
B.98
C.980
D.998
1000次命中的次数约为1000×98%=980.
3.天气预报中预报某地明天降雨的概率为90%,则()
A.降雨的可能性是90%
B.90%太大,一定降雨
C.该地有90%的区域降雨
D.降雨概率为90%没有什么意义
90%说明明天降雨的可能性是90%.
4.已知某学校有教职工400名,从中选举40名教职工组成教职工代表大会,每名教职工当选的概率
是1
10,则下列说法正确的是()
A.10名教职工中,必有1人当选
B.每名教职工当选的可能性是1 10
C.数学教研组共有50人,该组当选教工代表的人数一定是5
D.以上说法都不正确
5.从一批准备出厂的电视机中随机抽取10台进行质量检查,其中有1台是次品.若用C表示抽到次品这一事件,则下列说法正确的是()
A.事件C发生的概率为1 10
B.事件C发生的频率为1 10
C.事件C发生的概率接近1 10
D.每抽10台电视机,必有1台次品
6.某医院治疗一种疾病的治愈率为1
5,若前4位病人都未治愈,则第5位病人的治愈率为()
A.1
B.4 5
C.1
5D.0
1
5,表明每位病人被治愈的可能性均为
1
5,并不是5人中必有1人治愈.故选C.
7.在乒乓球、足球等比赛中,裁判员经常用掷硬币或抽签法决定谁先发球,这种方法.(填“公平”或“不公平”)
,这两种方法都是公平的.因为采用掷硬币得正面、反面的概率相等;采用抽签法,抽到某一签的概率相等.
8.某市运动会前夕,质检部门对这次运动会所用的某种产品进行抽检,得知其合格率为99%.若该运动会所需该产品共20 000件,则其中的不合格产品约有件.
1-99%=1%,
则不合格产品约有20000×1%=200(件).
9.某射击教练评价一名运动员时说:“你射中的概率是90%.”则下面两个解释中能代表教练的观点的为.
①该射击运动员射击了100次,恰有90次击中目标
②该射击运动员射击一次,中靶的机会是90%
90%说明中靶的可能性是90%,所以①不正确,②正确.
10.为了估计水库中鱼的尾数,使用以下的方法:先从水库中捕出2 000尾鱼,给每尾鱼做上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中的其他鱼充分混合,再从水库中捕出500尾,查看其中有记号的鱼,有40尾.试根据上述数据,估计水库中鱼的尾数.
n(n∈N*),每尾鱼被捕到的可能性相等,给2000尾鱼做上记号后,从水库中任捕一尾鱼,带记号的概率为
2000
n.又从水库中捕500尾鱼,有40尾带记号,于是带记号的频率

40
500.则有
2000
n≈
40
500,解得n≈25000.所以估计水库中有25000尾鱼.
二、能力提升
1.在给病人动手术之前,外科医生会告知病人或家属一些情况,其中有一项是说这种手术的成功率大约是99%.下列解释正确的是()
A.100个手术有99个手术成功,有1个手术失败
B.这个手术一定成功
C.99%的医生能做这个手术,另外1%的医生不能做这个手术
D.这个手术成功的可能性是99%
99%,说明手术成功的可能性是99%.
2.根据山东省教育研究机构的统计资料,今在校学生近视率约为37.4%.某眼镜商要到一中学给学生配眼镜,若已知该校学生总数为600人,则该眼镜商应带眼镜的数目为()
A.374副
B.224.4副
C.不少于225副
D.不多于225副
,该校近视生人数约为37.4%×600=224.4,结合实际情况,眼镜商应带眼镜数不少于225副.
3.某套数学试题中,有12道选择题,每道选择题有4个选项,其中只有1个选项是正确的,则随机选择其中一个选项正确的概率
是1
4.某家长说:“要是都不会做,每题都随机选择其中一个选项,则一定有3道题答对.”这句话()
A.正确
B.错误
C.不一定
D.无法解释
,答对的概率是1
4说明了对的可能性大小是
1
4.做12道选择题,
即进行了12次试验,每个结果都是随机的,那么答对3道题的可能性较大,但是并不一定答对3道题.也可能都选错,或有1,2,4,…,甚至12个题都选择正确.
4.玲玲和倩倩下象棋,为了确定谁先走第一步,玲玲对倩倩说:“拿一个飞镖射向如图所示的靶中,若射中区域所标的数字大于3,则我先走第一步,否则你先走第一步”.你认为这个游戏规则公平
吗?.(填“公平”或“不公平”)
,所标的数字大于3的区域有5个,而小于或等于3的区域只有3个,所以玲玲先走的
概率是5
8,倩倩先走的概率是
3
8.所以不公平.
★5.某地区牛患某种病的概率为0.25,且每头牛患病与否是互不影响的,今研制一种新的预防药,任选
12头牛做试验,结果这12头牛服用这种药后均未患病,则此药.(填“有效”或“无效”)
头牛都在服药后未患病,由极大似然法,可得此药有效.
6.试解释下列情况的概率的意义:
(1)某商场为促进销售,实行有奖销售活动,凡购买其商品的顾客中奖率是0.20;
(2)一生产厂家称:我们厂生产的产品合格率是0.98.
解::(1)“中奖率是0.20”是指购买其商品的顾客中奖的可能性是20%.
(2)“产品的合格率是0.98”是指该厂生产的产品合格的可能性是98%.
★7.某种彩票的抽奖是从写在36个球上的36个号码中随机摇出7个.有人统计了过去中特等奖的号
码,声称某一号码在历次特等奖中出现的次数最多,它是一个幸运号码,人们应该买这一号码;也有人说,若一个号码在历次特等奖中出现的次数最少,由于每个号码出现的机会相等,则应该买这一号码.你认为他们的说法对吗?
36个号码的36个球大小、质量是一致的,严格地说,为了保证公平,每次用的36个球,应该只允许用一次,除非能保证用过一次后,球没有磨损、变形.因此,当把这36个球看成每次抽奖中只用了一次时,不难看出,以前抽奖的结果对今后抽奖的结果没有任何影响,他们的说法都是错误的.。

相关文档
最新文档