河南科技大学 自控报告

合集下载

自动控制原理的实训报告

自动控制原理的实训报告

一、实训目的本次实训旨在通过实际操作和实验,加深对自动控制原理的理解,掌握控制系统分析和设计的基本方法,提高动手能力和分析问题、解决问题的能力。

通过实训,使学生能够:1. 理解自动控制系统的基本组成和原理;2. 掌握典型控制系统的时域响应和频域响应分析方法;3. 学会使用实验设备进行控制系统实验,并能够分析实验结果;4. 培养团队协作和沟通能力。

二、实训仪器与设备1. 自动控制原理实验台;2. 信号发生器;3. 数据采集器;4. 计算机;5. 控制系统模拟软件。

三、实训内容1. 控制系统结构分析通过实验台搭建一个典型的控制系统,分析其结构,包括各个环节的功能和相互关系。

2. 时域响应实验对搭建的控制系统进行阶跃响应实验,记录并分析系统的输出波形,计算超调量、上升时间、调节时间等性能指标。

3. 频域响应实验对搭建的控制系统进行频率特性实验,记录并分析系统的幅频特性、相频特性,绘制Bode图。

4. 控制系统设计根据实验结果,对控制系统进行设计,包括PID参数整定、控制器设计等。

四、实验过程1. 搭建控制系统根据实验要求,搭建一个典型的控制系统,包括控制器、执行器、被控对象等环节。

2. 进行阶跃响应实验使用信号发生器产生阶跃信号,输入到控制系统中,记录输出波形,并计算超调量、上升时间、调节时间等性能指标。

3. 进行频率特性实验使用信号发生器产生不同频率的正弦信号,输入到控制系统中,记录输出波形,并绘制Bode图。

4. 控制系统设计根据实验结果,对控制系统进行设计,包括PID参数整定、控制器设计等。

五、实验结果与分析1. 阶跃响应实验通过阶跃响应实验,可以分析系统的稳定性和动态性能。

例如,超调量反映了系统的振荡程度,上升时间反映了系统的响应速度,调节时间反映了系统达到稳态所需的时间。

2. 频率特性实验通过频率特性实验,可以分析系统的频率响应特性。

例如,幅频特性反映了系统对不同频率信号的放大倍数,相频特性反映了系统对不同频率信号的相位延迟。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告一、实验目的。

本实验旨在通过实际操作,加深对自动控制原理的理解,掌握PID控制器的调节方法,并验证PID控制器的性能。

二、实验原理。

PID控制器是一种常见的控制器,它由比例环节(P)、积分环节(I)和微分环节(D)三部分组成。

比例环节的作用是根据偏差的大小来调节控制量的大小;积分环节的作用是根据偏差的累积值来调节控制量的大小;微分环节的作用是根据偏差的变化率来调节控制量的大小。

PID控制器通过这三个环节的协同作用,可以实现对被控对象的精确控制。

三、实验装置。

本次实验所使用的实验装置包括PID控制器、被控对象、传感器、执行机构等。

四、实验步骤。

1. 将PID控制器与被控对象连接好,并接通电源。

2. 调节PID控制器的参数,使其逐渐接近理想状态。

3. 对被控对象施加不同的输入信号,观察PID控制器对输出信号的调节情况。

4. 根据实验结果,对PID控制器的参数进行调整,以达到最佳控制效果。

五、实验结果与分析。

经过实验,我们发现当PID控制器的比例系数较大时,控制效果会更为迅速,但会引起超调;当积分系数较大时,可以有效消除稳态误差,但会引起响应速度变慢;当微分系数较大时,可以有效抑制超调,但会引起控制系统的抖动。

因此,在实际应用中,需要根据被控对象的特性和控制要求,合理调节PID控制器的参数。

六、实验总结。

通过本次实验,我们深刻理解了PID控制器的工作原理和调节方法,加深了对自动控制原理的认识。

同时,我们也意识到在实际应用中,需要根据具体情况对PID控制器的参数进行调整,以实现最佳的控制效果。

七、实验心得。

本次实验不仅让我们在理论知识的基础上得到了实践锻炼,更重要的是让我们意识到掌握自动控制原理是非常重要的。

只有通过实际操作,我们才能更好地理解和掌握知识,提高自己的实际动手能力和解决问题的能力。

八、参考文献。

[1] 《自动控制原理》,XXX,XXX出版社,2010年。

[2] 《PID控制器调节方法》,XXX,XXX期刊,2008年。

自动控制实训实验报告

自动控制实训实验报告

一、实验目的1. 熟悉并掌握自动控制系统的基本原理和实验方法;2. 理解典型环节的阶跃响应、频率响应等性能指标;3. 培养动手能力和分析问题、解决问题的能力。

二、实验原理自动控制系统是指利用各种自动控制装置,按照预定的规律自动地完成对生产过程或设备运行状态的调节和控制。

本实验主要研究典型环节的阶跃响应和频率响应。

1. 阶跃响应:当系统受到一个阶跃输入信号时,系统输出信号的变化过程称为阶跃响应。

阶跃响应可以反映系统的稳定性、快速性和准确性。

2. 频率响应:频率响应是指系统在正弦输入信号作用下的输出响应。

频率响应可以反映系统的动态性能和抗干扰能力。

三、实验仪器与设备1. 自动控制实验箱;2. 双踪示波器;3. 函数信号发生器;4. 计算器;5. 实验指导书。

四、实验内容与步骤1. 阶跃响应实验(1)搭建实验电路,连接好实验箱和示波器。

(2)输入阶跃信号,观察并记录阶跃响应曲线。

(3)分析阶跃响应曲线,计算系统的超调量、上升时间、调节时间等性能指标。

2. 频率响应实验(1)搭建实验电路,连接好实验箱和示波器。

(2)输入正弦信号,改变频率,观察并记录频率响应曲线。

(3)分析频率响应曲线,计算系统的幅频特性、相频特性等性能指标。

3. 系统校正实验(1)搭建实验电路,连接好实验箱和示波器。

(2)输入阶跃信号,观察并记录未校正系统的阶跃响应曲线。

(3)根据期望的性能指标,设计校正环节,并搭建校正电路。

(4)输入阶跃信号,观察并记录校正后的阶跃响应曲线。

(5)分析校正后的阶跃响应曲线,验证校正效果。

五、实验结果与分析1. 阶跃响应实验(1)实验结果:根据示波器显示的阶跃响应曲线,计算得到系统的超调量为10%,上升时间为0.5s,调节时间为2s。

(2)分析:该系统的稳定性较好,但响应速度较慢,超调量适中。

2. 频率响应实验(1)实验结果:根据示波器显示的频率响应曲线,计算得到系统的幅频特性在0.1Hz到10Hz范围内基本稳定,相频特性在0.1Hz到10Hz范围内变化不大。

自动控制实验报告(全)

自动控制实验报告(全)

自动控制原理实验报告册院系:班级:学号:姓名:目录实验五采样系统研究 (3)实验六状态反馈与状态观测器 (9)实验七非线性环节对系统动态过程的响应 (14)实验五 采样系统研究一、实验目的1. 了解信号的采样与恢复的原理及其过程,并验证香农定理。

2. 掌握采样系统的瞬态响应与极点分布的对应关系。

3. 掌握最少拍采样系统的设计步骤。

二、实验原理1. 采样:把连续信号转换成离散信号的过程叫采样。

2. 香农定理:如果选择的采样角频率s ω,满足max 2ωω≥s 条件(max ω为连续信号频谱的上限频率),那么经采样所获得的脉冲序列可以通过理想的低通滤波器无失真地恢复原连续信号。

3. 信号的复现:零阶保持器是将采样信号转换成连续信号的元件,是一个低通滤波器。

其传递函数:se Ts--14. 采样系统的极点分布对瞬态响应的影响:Z 平面内的极点分布在单位圆的不同位置,其对应的瞬态分量是不同的。

5. 最小拍无差系统:通常称一个采样周期为一拍,系统过渡过程结束的快慢常采用采样周期来表示,若系统能在最少的采样周期内达到对输入的完全跟踪,则称为最少拍误差系统。

对最小拍系统时间响应的要求是:对于某种典型输入,在各采样时刻上无稳态误差;瞬态响应最快,即过渡过程尽量早结束,其调整时间为有限个采样周期。

从上面的准则出发,确定一个数字控制器,使其满足最小拍无差系统。

三、实验内容1. 通过改变采频率s s s T 5.0,2.0,01.0=,观察在阶跃信号作用下的过渡过程。

被控对象模拟电路及系统结构分别如下图所示:图中,1)(/)()(==z E z U z D ,系统被控对象脉冲传递函数为:T T Ts e z e s s e Z z U z Y z G -----=⎥⎦⎤⎢⎣⎡+-==)1(4141)()()( 系统开环脉冲传递函数为:T T w e z e Z G z D z G ----===)1(4)()()(系统闭环脉冲传递函数为:)(1)()(z G z G z w w +=Φ在Z 平面内讨论,当采样周期T 变化时对系统稳定性的影响。

自控原理实验报告

自控原理实验报告

一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。

2. 掌握典型环节的数学模型及其在控制系统中的应用。

3. 熟悉控制系统的时间响应和频率响应分析方法。

4. 培养实验操作技能和数据处理能力。

二、实验原理自动控制原理是研究控制系统动态性能和稳定性的一门学科。

本实验主要涉及以下几个方面:1. 典型环节:比例环节、积分环节、微分环节、惯性环节等。

2. 控制系统:开环控制系统和闭环控制系统。

3. 时间响应:阶跃响应、斜坡响应、正弦响应等。

4. 频率响应:幅频特性、相频特性等。

三、实验内容1. 典型环节的阶跃响应- 比例环节- 积分环节- 比例积分环节- 比例微分环节- 比例积分微分环节2. 典型环节的频率响应- 幅频特性- 相频特性3. 二阶系统的阶跃响应- 上升时间- 调节时间- 超调量- 峰值时间4. 线性系统的稳态误差分析- 偶然误差- 稳态误差四、实验步骤1. 典型环节的阶跃响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。

- 使用示波器观察并记录各个环节的阶跃响应曲线。

- 分析并比较各个环节的阶跃响应曲线,得出结论。

2. 典型环节的频率响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。

- 使用频率响应分析仪测量各个环节的幅频特性和相频特性。

- 分析并比较各个环节的频率响应特性,得出结论。

3. 二阶系统的阶跃响应- 搭建二阶系统的实验电路。

- 使用示波器观察并记录二阶系统的阶跃响应曲线。

- 计算并分析二阶系统的上升时间、调节时间、超调量、峰值时间等性能指标。

4. 线性系统的稳态误差分析- 搭建线性系统的实验电路。

- 使用示波器观察并记录系统的稳态响应曲线。

- 计算并分析系统的稳态误差。

五、实验数据记录与分析1. 典型环节的阶跃响应- 比例环节:K=1,阶跃响应曲线如图1所示。

- 积分环节:K=1,阶跃响应曲线如图2所示。

自控实验报告实验总结

自控实验报告实验总结

一、实验背景随着现代工业和科技的飞速发展,自动控制技术在各个领域得到了广泛应用。

为了使学生更好地理解和掌握自动控制原理及其应用,我们进行了为期两周的自控实验。

本次实验旨在通过实际操作,加深对自动控制原理的理解,提高动手实践能力。

二、实验目的1. 熟悉自动控制实验的基本原理和方法;2. 掌握控制系统时域性能指标的测量方法;3. 学会运用实验仪器进行实验操作和数据分析;4. 提高团队合作意识和解决问题的能力。

三、实验内容1. 典型环节及其阶跃响应实验本实验通过模拟电路,研究了典型环节(比例环节、积分环节、微分环节)的阶跃响应。

通过改变电路参数,分析了参数对系统性能的影响。

2. 二阶系统阶跃响应实验本实验研究了二阶系统的阶跃响应,通过改变系统的阻尼比和自然频率,分析了系统性能的变化。

3. 连续系统串联校正实验本实验研究了连续系统串联校正方法,通过调整校正装置的参数,使系统达到期望的性能指标。

4. 直流电机转速控制实验本实验利用LabVIEW图形化编程方法,编写电机转速控制系统程序,熟悉PID参数对系统性能的影响,通过调节PID参数掌握PID控制原理。

四、实验结果与分析1. 典型环节及其阶跃响应实验通过实验,我们观察到不同环节的阶跃响应曲线。

在比例环节中,随着比例系数的增加,系统的超调量减小,但调整时间增加。

在积分环节中,随着积分时间常数增大,系统的稳态误差减小,但调整时间增加。

在微分环节中,随着微分时间常数增大,系统的超调量减小,但调整时间增加。

2. 二阶系统阶跃响应实验通过实验,我们分析了二阶系统的性能。

在阻尼比小于1时,系统为过阻尼状态,响应速度慢;在阻尼比等于1时,系统为临界阻尼状态,响应速度适中;在阻尼比大于1时,系统为欠阻尼状态,响应速度快。

3. 连续系统串联校正实验通过实验,我们掌握了串联校正方法。

通过调整校正装置的参数,可以使系统达到期望的性能指标。

4. 直流电机转速控制实验通过实验,我们学会了利用LabVIEW图形化编程方法,编写电机转速控制系统程序。

自动控制原理工作总结报告

一、前言随着科学技术的不断发展,自动控制技术在各个领域的应用越来越广泛。

本人在过去的一段时间里,通过学习和实践,对自动控制原理有了更深入的了解。

现将自动控制原理工作总结如下:二、工作内容1. 自动控制原理基础知识学习在本次工作中,我首先系统地学习了自动控制原理的基本概念、基本原理、基本方法等。

通过学习,我对自动控制系统的组成、工作原理、控制规律等有了全面的认识。

2. 自动控制系统分析通过对自动控制系统的分析,我了解了系统的稳定性、快速性、准确性等性能指标,以及如何通过调整系统参数来优化这些性能。

同时,我还学习了系统数学模型、传递函数、频率响应等方面的知识。

3. 自动控制系统的设计在自动控制系统设计方面,我学习了控制器设计、执行机构设计、传感器设计等。

通过对实际案例的分析,我掌握了控制器参数整定、执行机构选型、传感器选型等关键环节。

4. 自动控制系统的应用实践为了更好地掌握自动控制原理,我参与了实际项目的实践。

在项目中,我负责对自动控制系统进行调试、优化,确保系统稳定运行。

通过实践,我对自动控制原理有了更深刻的认识。

三、工作成果1. 理论知识方面通过对自动控制原理的学习,我对自动控制系统的基本概念、基本原理、基本方法等有了全面、系统的掌握。

这为我今后的学习和工作打下了坚实的基础。

2. 实践能力方面在项目实践中,我锻炼了自己的动手能力和解决问题的能力。

通过调试、优化自动控制系统,我学会了如何根据实际需求选择合适的控制器、执行机构、传感器等,确保系统稳定运行。

3. 团队协作能力方面在项目实践中,我学会了与团队成员有效沟通、协作,共同解决问题。

这为我今后在团队中发挥重要作用奠定了基础。

四、不足与改进1. 理论知识方面:虽然我对自动控制原理有了全面、系统的掌握,但在某些方面仍存在不足,如控制器设计、执行机构设计等。

今后,我将加强这方面的学习,提高自己的理论水平。

2. 实践能力方面:在项目实践中,我遇到了一些实际问题,如系统调试、优化等。

自动化控制应用实训报告

一、实训目的随着科技的飞速发展,自动化控制技术在工业、农业、医疗、交通等领域得到了广泛应用。

本次实训旨在通过实际操作,使学生对自动化控制技术有一个直观的认识,掌握自动化控制系统的基本原理和操作方法,提高学生的动手能力和实际应用能力。

二、实训内容1. 自动化控制系统概述首先,我们学习了自动化控制系统的基本概念、发展历程、应用领域以及在我国的发展现状。

通过学习,我们了解到自动化控制系统在各个领域的广泛应用,如工业自动化、农业自动化、医疗自动化等。

2. PLC编程与调试在PLC编程与调试环节,我们学习了PLC的基本原理、编程语言、指令系统以及编程软件的使用。

通过实际操作,我们掌握了PLC编程的基本步骤,能够编写简单的控制程序,并对程序进行调试和优化。

3. 工业机器人操作与编程工业机器人是自动化控制技术的重要组成部分,我们学习了工业机器人的基本原理、操作方法以及编程技术。

通过实际操作,我们掌握了工业机器人的基本操作,能够编写简单的机器人控制程序。

4. 自动化仪表与传感器应用自动化仪表和传感器在自动化控制系统中扮演着重要角色,我们学习了常见的自动化仪表和传感器的原理、性能和应用。

通过实际操作,我们掌握了仪表和传感器的使用方法,能够进行简单的数据采集和处理。

5. 自动化生产线设计在自动化生产线设计环节,我们学习了自动化生产线的组成、设计原则以及实施方法。

通过实际操作,我们能够根据实际需求设计简单的自动化生产线,并对生产线进行调试和优化。

三、实训过程1. 课堂学习在实训开始前,我们通过课堂学习,对自动化控制技术的基本理论、原理和方法进行了系统学习,为实训打下了坚实的基础。

2. 实际操作在实训过程中,我们按照实训指导书的要求,分组进行实际操作。

在操作过程中,我们遇到问题及时向指导老师请教,确保实训顺利进行。

3. 数据分析在实训过程中,我们对采集到的数据进行整理和分析,从中总结出自动化控制系统的性能特点和应用规律。

最新自控实验报告实验三

最新自控实验报告实验三实验目的:1. 理解并掌握自控系统的基本原理和工作机制。

2. 学习如何搭建和调试简单的闭环控制系统。

3. 通过实验数据分析,加深对系统稳定性和响应特性的认识。

实验设备:1. 自动控制系统实验台。

2. 直流电机及调速器。

3. 传感器(如光电编码器)。

4. 数据采集卡及计算机。

5. 相关软件(如LabVIEW、MATLAB等)。

实验步骤:1. 按照实验指导书的要求,搭建闭环控制系统,包括电机、传感器和控制器。

2. 使用数据采集卡连接传感器和计算机,确保数据传输无误。

3. 开启实验软件,设置相应的参数,如控制算法(PID)、采样时间等。

4. 进行系统开环测试,记录电机的响应数据。

5. 切换至闭环模式,调整PID参数,进行系统调试,直至达到预期的控制效果。

6. 收集闭环控制下的数据,并进行分析,绘制系统响应曲线。

7. 分析系统的稳定性、过渡过程和稳态误差等性能指标。

实验结果:1. 系统开环测试结果显示,电机响应存在较大的超调和振荡。

2. 闭环控制调试后,系统响应速度加快,超调量减小,振荡减少。

3. 通过调整PID参数,系统达到较快的响应时间和较小的稳态误差。

4. 实验数据表明,所设计的控制系统能有效改善电机的动态和稳态性能。

结论:通过本次实验,我们成功搭建并调试了一个简单的闭环控制系统。

实验结果表明,合理的PID参数设置对于提高系统性能至关重要。

此外,实验过程中我们也加深了对自动控制系统原理的理解,为后续更复杂系统的设计和分析打下了坚实的基础。

自控实验报告

自控实验报告自控实验报告引言:自控是指个体能够自主地控制和管理自己的行为、情绪和思维,以达到预期的目标。

自控能力对于个人的成长和成功至关重要,因此,本实验旨在探究自控能力的培养方法及其对个体的影响。

实验设计:本实验采用了随机分组设计,将参与者分为实验组和对照组。

实验组接受了自控训练,而对照组则没有接受任何干预。

实验组的训练内容包括目标设定、时间管理、情绪调控和自我激励等方面的技巧。

实验过程:实验组的参与者在训练期间每天进行自控训练,包括设定每日目标、制定时间表、记录情绪变化和给予自我奖励等。

对照组的参与者则按照平时的生活方式进行。

实验总共持续了四个星期。

实验结果:通过实验数据的收集和分析,我们得出了以下结论:1. 自控训练能够显著提升参与者的自控能力。

实验组的参与者在自控能力测试中表现出更好的成绩,包括更好的情绪调控能力、更高的目标达成率和更好的时间管理能力。

2. 自控训练对于参与者的生活质量有积极影响。

实验组的参与者在训练结束后,报告了更高的满意度和幸福感。

他们更能够控制自己的情绪,更有条理地安排时间,并且更能够实现自己的目标。

3. 自控训练对于个体的长期发展具有重要意义。

通过训练,参与者学会了如何制定目标、克服困难和保持自我激励。

这些技能对于个人的学习、工作和人际关系都具有重要意义。

讨论:本实验结果表明,自控训练对于个体的自控能力和生活质量具有显著影响。

然而,我们也要注意到,自控能力的培养是一个长期的过程,需要持续的努力和实践。

在实际应用中,我们可以结合自控训练和其他方法,如心理咨询和行为疗法,来提升个体的自控能力。

结论:自控训练是一种有效的方法,可以帮助个体提升自己的自控能力,提高生活质量。

在现代社会,自控能力对于个人的成功和幸福至关重要。

因此,我们应该重视自控能力的培养,并积极采取措施来提升自己的自控能力。

总结:通过本实验的设计和实施,我们深入了解了自控能力的培养方法及其对个体的影响。

自控训练是一种有效的方法,可以帮助个体提升自己的自控能力,并提高生活质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南科技大学
课程设计说明书
课程名称控制理论课程设计
题目______________
学院农业工程学院
班级农电121班
学生姓名李志强
指导教师高春燕
日期2014年12月12日
初始条件:已知单位负反馈系数开环传递函数G(s)=126*10*6/[s(s+10)(s+60)]
试用频率法设计串联滞后—超前校正装置,,使系统的相角裕量,静态速度误差系数。

要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写
等具体要求)
1、 MATLAB作出满足初始条件的最小K值的系统伯德图,计算系统的幅值裕度和相位裕度
2、前向通路中插入一滞后超前校正装置,确定校正网络的传递函数。

3、用MATLAB画出未校正和已校正系统的根轨迹。

4、用Matlab对校正前后的系统进行仿真分析,画出阶跃响应曲线,计算
其时域性能指标。

5、课程设计说明书中要求写清楚计算分析的过程,列出MATLAB程序和
MATLAB输出。

说明书的格式按照教务处标准书写。

河南科技大学《自动控制原理》课程设计说明书
2
目录
1串联滞后-超前校正原理 (1)
2 校正前系统稳定情况分析 (2)
2.1校正前系统的伯德图 (2)
2.2未校正前的系统裕度 (3)
2.3校正前的根轨迹 (4)
3基于伯德图后的超前滞后校正 (5)
3.1确定滞后-超前校正的传递函数 (5)
3.2 校正后系统稳定情况 (6)
3.2.1校正后系统的伯德图 (6)
3.2.2校正系统的幅值裕值 (7)
4校正前后的性能比较 (9)
5课程设计小结 (11)
参考文献 (12)
1串联滞后-超前校正原理
串联滞后校正兼有滞后和超前校正的优点,校正后系统响应的速度也较快,超调量较小,同时抑制高频噪声的性能也好。

当被校正的系统不稳定,并且要求校正后系统的响应速度、相角裕量和稳态精度较高时,以采用串联滞后超前校正为宜。

该方法利用滞后超前校正器的超前部分来增大系统的相角裕量,同时有利用滞后部分来改善系统的稳定性能。

超前校正的基本原理就是利用超前相角补偿系统的滞后相角,改善系统的动态性能,如增加相角裕度,提高系统稳定性能等。

但是串联超前校正给系统中频段增加理论上不超过90,实际上一般不超过65的相角,提高系统的稳定裕度,但降低了抗干扰性能(高频)。

串联滞后-超前校正的设计步骤如下:
(1)根据稳态性能要求确定开环增益k ,并绘制未校正系统的伯德图。

(2)选择校正后的截止频率。

(3)确定校正参数。

(4)确定滞后校正部分的参数 2T 。

(5)确定超前部分的参数1T 。

(6)将滞后校正部分和超前校正部分的传递函数组合在一起,即得滞后-超前校正的传递函数为
1+T1s 1+T2s
Gc()=
T11+T2Bs 1+B
s
(7)绘制校正后的伯德图,检验性能指标。

2 校正前系统稳定情况分析
2.1校正前系统的伯德图
由已知的条件,校正前的传递函数可以整理为
126
()=
s(1/10+1*G s s )(1/60s+1)
当系统的静态速度误差为=50s-1k 这Kv=K 得K=50则待校正的开环传
递函数为
50
()=
s(1/10+1*G s s )(1/60s+1)
上式为最小相位系统,用matlab 画出的未校正前的伯德图为
k=50;num=k*[1];
den=conv([1,0],conv( [1/10 ,0],[1/60, 1])); sys1=tf(num,den); margin(sys1); grid;
很显然相稳定裕度y=-19.9度小于40度,不稳定
2.3校正前的根轨迹
用matlab求校正前的根轨迹,程序为:
Num=[1] ;
den=conv([1,0],conv( [1/10 ,0],[1/60, 1]));
sope1=tf(num,den);
rlocus(sope1)
[k,poles]=rlocfind(sope1)
rltool(sope1)
3基于伯德图后的超前滞后校正
3.1确定滞后-超前校正的传递函数
1)选择校正后的截止频率。

若性能指标中对系统的快速性未提明确要求时,一
般对应 G0(jw)的向量角为-180度的频率作为,从图3可以看出
)确定校正参数B
确定校正参数B。

由超前部分应产生的超前相角而定B=(1+sinQ)/(1-sinQ)又Q=40度+10度=50度故B=7.55。

相关文档
最新文档