河南科技大学2003级线性代数期末考试试题
线性代数期末试题及答案

线性代数院系: 班级: 姓名: 学号:第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。
错选或未选均无分。
1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同14.下列矩阵中是正定矩阵的为()A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。
河南科技大学线性代数试题总汇

河南科技大学线性代数试题总汇线性代数历年试题及参考答案河南科技大学2000 年-2004 年- 1 -1999 级线性代数试题一、判断题(共24 分)1 若A,B 均为n 阶方阵,则必有(1)AB=BA (2)|AB|=|BA| (3)|AB|=|A|+|B| (4)TT(5)22BABA(6)R(AB)=R(BA)(7)若A 2=0,则A =0 (8)若ATA=0,则A=0 2(8 分)若 A 是mn 矩阵,且m≠n,则(1)当A 的列向量组线性无关时,A 的行向量组也线性无关(2)当RAn 时,齐次线性方程组AX=0 只有零解(3)当RAn 时,非齐次线性方程组AX=b,有唯一解(4)当RAm 时,非齐次线性方程组AX=b,有无穷多解3(8 分)若A 是实对称矩阵,则(1)A 的特征值全为实数(2)A 为正定矩阵的充要条件是 A 的特征值全为正(3)若|A|>0,则 A 为正定的(4)在二次型f=X TAX 中,若经实满秩线性变换X=CY,可将f 化为标准形则全为A 的特征值221nykykf Lnk,21L二、填空题(19 分)1 (4 分)设且A+2B=C,vxCyvuBxA43,,70则x_____, y______, u_____, v_______2 (6 分)若A 为四阶方阵,且|A|=3,A *为A 的伴随矩阵,则|-2A|=__,|A -1 |=__,|A *|=__ 3 (3 分)方阵的特征值为__,__,__4024 (4 分)已知四元非线性方程组的系数矩阵A 的秩为3,- 2 -是它的三个解向量,且321,,则对应齐次方程组AX=0 的TT5,432,4,2基础解系是____,AX=b 的通解是___5 二次型所对应的矩阵是__3212321 xxxf 三、(10 分)1、计算03212 、已知A 求及1041A8四、(10 分)设,且,求B32五、(15 分)验证二次型的特征值为4,9,0,3231212321 65xxxf 求一个正交变换,将此二次型化为标准形。
线性代数期末考试试卷+答案

×××大学线性代数期末考试题、填空题(将正确答案填在题中横线上。
每小题 2分,共10分)1 -3 1P X IX 2 X 3 =02 .若齐次线性方程组 J x 1+χx 2+x 3=0只有零解,则 扎应满足X 1亠 X 2亠 X 3= 05. n 阶方阵 A 满足 A 2-3A-E = 0 ,贝U A J = _____________________ 。
、判断正误(正确的在括号内填“√”,错误的在括号内填“X” 。
每小题2分,共10分)1. 若行列式D 中每个元素都大于零,则D 0。
()2. 零向量一定可以表示成任意一组向量的线性组合。
()3. 向量组a 1, a 2,…,a m中,如果a 1与a m对应的分量成比例,则向量组 a 1, a 2,…,a s线性相关。
■为可逆矩阵A 的特征值,贝U A J 的特征值为’。
()若三、单项选择题(每小题仅有一个正确答案,将正确答案题号填入括号内。
每小题1.设A 为n 阶矩阵,且A = 2 ,则I AA T =( )。
①2n②2n'③2n1④42. n 维向量组:∙1,:-2, , :■ S ( 3 < S < n )线性无关的充要条件是()。
-0 11 0 0 0 0 04. A =0 0 0 10 1 0①:'1, :'2 ,':'S 中任意两个向量都线性无关②>1,-::S 中存在一个向量不能用其余向量线性表示③:'1, -'2 ,-■ S中任一个向量都不能用其余向量线性表示1.若0 5 -12x =0,则= —23•已知矩阵A ,B ,C = (C ij )s n ,满足AC =CB ,则A 与B 分别是 _____________ 阶矩阵。
a124 .矩阵 A= a21a 22的行向量组线性31a32丿2分,共10分)11,贝U A A =A 。
线性代数期末考试题库及答案

2、n2, 当 n 为偶数时为偶排列,当 n 为奇数时为奇排列. 4、29.
1、12.
2、 x2 y2 .
4
∑ 3、 x = 0 或 − ai . i =1
4、 λ = ±1, 2 .
三、证明题
证明提示: 由于 f(x)是关于 x 的二次多项式,在[0,1]中可导,又可计算出 f (0) = f (1) = 0 ,
3、解方程 D4( x) =
a1 a1
a1 + x
a2 a2 a2 + x a2
a3 a3 + x
a3 a3
a4 + x a4 = 0 . a4 a4
4、已知下列齐次线性方程组有非零解,求参数λ的值。
(5
− λ)x1 −6 x1
−4 x2 +(7 − λ )x2
−7 x3 +11x3
=0 =0
6 x1
(B)若 AX=0有非零解,则 AX=b有无穷多解;
(C)若 AX=b有无穷多个解,则 AX=0仅有零解;
(D)若 AX=b有无穷多个解,则 AX=0有非零解。
(7)非齐次线性方程组 AX=b中未知量个数为 n,方程个数为 m,系数矩阵 A的秩为 r,则
()
(A)r=m时,方程组 AX=b有解; (B)r=n时,方程组 AX=b有唯一解;
《线性代数》补充练习二
一、选择题:
(1)设 n阶方阵 A的秩 r<n,则在 A的 n个行向量中( )
(A)必有 r个行向量线性无关; (B)任意 r个行向量均可构成极大无关组;
(C)任意 r个行向量均线性无关;(D)任一个行向量均可由其他 r个行向量线性表示
(2)若向量组α,β,γ线性无关;α,β,δ线性相关,则( )
线性代数期末试题及答案

第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。
错选或未选均无分。
1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同14.下列矩阵中是正定矩阵的为()A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。
线性代数期末考试考核试卷

4.以下哪个向量组构成一个基?
A. (1, 0, 0), (0, 1, 0), (0, 0, 0)
B. (1, 2, 3), (4, 5, 6), (7, 8, 9)
C. (1, 2, 3), (2, 4, 6), (1, 1, 1)
D. (1, 1, 0), (0, 1, 1), (1, 0, 1)
...
20.(根据实际题目内容填写答案)
二、多选题
1. BCD
2. ABCD
3. ABC
4. AB
5. ABC
...
20.(根据实际题目内容填写答案)
三、填题
1. 1
2.线性无关
3.主
...
10.(根据实际题目内容填写答案)
四、判断题
1. √
2. √
3. √
...
10. ×
五、主观题(参考)
1.向量组线性无关,可以通过计算行列式不为零来证明。一个可以由给定向量组线性表示的向量可以是它们的线性组合,例如\(a\vec{v}_1 + b\vec{v}_2 + c\vec{v}_3\),其中\(a, b, c\)是适当的系数。
D. (1, 1), (1, -1)
(答题括号:________)
5.在求解线性方程组时,以下哪些情况下可以使用高斯消元法?
A.系数矩阵是方阵
B.系数矩阵是非奇异的
C.方程组中方程的个数等于未知数的个数
D.方程组可能有无穷多解
(答题括号:________)
(以下题目类似,省略以节约空间)
6. ...
A.若A为m×n矩阵,则A的转置为n×m矩阵
B.若A为m×n矩阵,则A的转置为m×n矩阵
线代期末试题及答案

T AB =______________.2.若三元非齐次线性方程组的系数矩阵的秩为2,123,,βββ是它的 三个解向量,且12(2,6,3),T ββ+=-23(6,8,5),T ββ+=-则该线性方 程组的通解是__________.3. 设123625t A t t ⎛⎫⎪=- ⎪ ⎪-⎝⎭的行向量线性相关,则实数t 满足的条件是 _________.4.令ii A 是三阶矩阵A 的元素ii a 的代数余子式(i =1,2,3),若A 的特征值为3,4,5,则112233A A A ++=__________.5.若101020105A c c ⎛⎫ ⎪=+ ⎪ ⎪-⎝⎭是正定矩阵,则c 的取值范围为 ___________.二. 选择题(每小题3分,共15分)1. 设A 、B 均为n 阶正交矩阵,则____________. (1)A+B 为正交矩阵 (2)A-B 为正交矩阵(3) B AB 为正交矩阵(4)k AB 为正交矩阵(k >0为实数)2.设A 为m 阶可逆矩阵,B 为n 阶可逆矩阵,则可逆分块矩阵O A D B O ⎛⎫= ⎪⎝⎭的逆矩阵是____________.(1)11A O O B --⎛⎫⎪⎝⎭ (2)11O B A O --⎛⎫⎪⎝⎭ (3) 11B O OA --⎛⎫⎪⎝⎭ (4)11O A BO --⎛⎫ ⎪⎝⎭3. 设α与β是线性无关的单位向量,则α与β的内积必 ____________.(1) >0 (2)<0 (3)>1 (4)<14.设A 为n 阶可逆矩阵,1*,,T A A A -分别是A 的转置矩阵,逆矩阵和伴随矩阵,若ξ是A 的特征向量,则下列命题中的不正确的是________.(1)ξ是T A 的特征向量 (2)2ξ是1A -的特征向量 (3)3ξ是*A 的特征向量(4) 4ξ是kA 的特征向量(k 为常数)5.设222623222,000222000A B ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则____ ____. (1)A 与B 是相似的且是合同的 (2)A 与B 是相似的但不是合同的 (3)A 与B 不是相似的但是合同的 (4)A 与B 不是相似的也不是合同的三.(15分)试求五元齐次线性方程组123451234512345330,30,0x x x x x x x x x x x x x x x ++++=⎧⎪-++-+=⎨⎪+++-=⎩的解空间V(作为5R 的子空间)的一组规范(标准)正交基。
线性代数 期末测试题及其答案

线性代数期末考试题之杨若古兰创作一、填空题(将准确答案填在题中横线上.每小题5分,共25分)1.2足.3是阶矩阵.45二、选择题(每小题5分,共25分)6当t 取何值时,该二次型为正定?( )7.已知矩阵,求的值( )8.设A 为n 阶可逆矩阵,则下述说法不准确的是( )A的行向量组线性相干9.过点(0,2,4行的直线方程为()10其特征值为()三、解答题(每小题10分,共50分)11.矩足关系式12.问取何值时,以下向量组线性相干?解和有没有量多解?当方程组有没有量多解时求其通解.14.求此向量组的秩和一个极大有关组,并将其余向量用该极大有关组线性暗示. 15.证实其中线性代数期末考试题答案一、填空题1. 5.解析:采取对角线法则,考查常识点:行列式的计算.难度系数:解析:要使该现行方程组只要零解,考查常识点:线性方程组的求解难度系数:解析;,,,阶矩阵.考查常识点:n 阶矩阵的性质难度系数: 4. 24解析:由题可知3考查常识点:矩阵的运算 难度系数: 解析:考查常识点:求解矩阵的逆矩阵 难度系数:二、选择题 6. A解析:由题可知,该二次型矩阵为,而此时,该二次型正定.考查常识点:二次型正定的判断难度系数7. C解析:由矩阵特征值性质有1-3+3=1+x+5,可解得x=-5. 考查常识点:n 阶矩阵特征值的性质 难度系数:8. D解析:由题可知,A 为n 阶可逆矩阵,则A 的行向量组线性有关.考查常识点:n 阶可逆矩阵的性质 难度系数:9. A.解析:由题可知,两平面法向量分别为,则所求直线的方向向量为考查常识点:求空间平面交线平行的直线方程 难度系数:10. C.考查常识点:求解矩阵的特征值三、解答题11.解:考查常识点:矩阵方程的运算求解难度系数:12.解:.考查常识点:向量组的线性相干性难度系数:13.解:③当时,有没有量多组解,通解为考查常识点:线性方程组的求解14.解:由题可知,且线性关系为考查常识点:向量组的秩与最大有关组难度系数:15.证实:由题可知,考查常识点:n 阶方阵的性质难度系数:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5) 设
是一组 维向量 , 则下列正确的是 ( ).
(a) 若
不线性相关 , 就一定线性无关 ;
(b) 如果存在 个不全为零的数
使
,则
线性无关 ;
(c) 若向量组
线性相关 , 则 可由
线性表示 ;
(d) 向量组 线性表示 .
线性无关的充要条件是 不能由其余
6) 矩阵 ( ) 时可能改变其秩 .
(a) 转置 ;
是正定还是负定 : .
二 . 单项选择题(每小题 2 分 , 共 16 分) .
1) 设 是
阶方阵 , 则必有 ( ).
(a)
; (b)
;
(c)
;
(d)
.
2) 设 是 阶方阵 , 则
的必要条件是 ( ).
(a) 两行 ( 列) 元素对应成比例 ; (b) 必有一行为其余行的线性组合 ;
(c)
中有一行元素全为零 ;
七 .(15 分) 求一个正交变换
, 将二次型
形 ( 要求:写出正交变换和标准形 ).
八 .(6 分) 设 为 阶可逆矩阵 , 是 的一个特征值 , 证明
化为标准 的伴随矩
阵 的特征值之一是
.
三 .(8 分) 计算
四 .(12 分) 设
,
,
,
求矩阵 使满足
.
五 .(12 分) 设矩阵
, 求矩阵 的列向量组的一个最大无关组 , 并把不属最大无关组的列向量用最大 无关组线性表示 . 六 .(15 分). 取何值时 , 非齐次方程组
(1) 有唯一解 ; (2) 无解 ; (3) 有无穷多个解 , 并求解 .
(b)
(c) 乘以奇异矩阵 ; (d)
初等变换 ; 乘以非奇异矩阵 .
7) 设 为可逆矩阵 ,
, 则下述结论不正确的是 ( ).
个向量
(a)
; (b)
;
(c)
; (d)
.
8) 若方阵 与 相似 , 则有 ( ).
(a)
;
(b)
;
(c) 对于相同的特征值 , 矩阵 与 有相同的特征向量 ;
(d)
与 均与同一个对角矩阵相似 .
河南科技大学 2003 级线性代数期末考试试题
一.填空题(每空 2 分, 共 16 分) 1) 设 为 矩阵 , 为 矩阵 , 且
2) 设 为 3 阶方阵且
,则
.
3) 已知
,则
.
.
,
则
.
4) 设 解, 则
是方程
的解 , 若 .
也是
的
5) 三阶矩阵 的三个特征值为 1,2,3, 则
,
的特征值为 .
6) 二次型
(d) 任一行为其余行的线性组合 .
3) 设 是 阶方阵 ,
且
, 则( ).
(a)
或
; (b)
;
(c)
;
(d)
.
4) 设 为 阶可逆矩阵 , 则( ).
(a) 若
,则
;
(b) 对矩阵
施行若干次初等变换 , 当 变为 时, 相应地 变为
;(c)总可以源自过初等变换化为单位矩阵 ;(d) 以上都不对 .