数列极限的运算性质

合集下载

数列极限的概念与性质

数列极限的概念与性质

数列极限的概念与性质数列是数学中一种非常重要的数学对象,它在许多领域都有广泛的应用。

而数列的极限是数列理论中的一个基本概念,通过对数列的极限的研究,可以揭示数列的性质和规律,进一步拓展数学的应用领域。

一、数列极限的概念数列极限是数学中一个非常重要的概念,它描述了数列随着项数增加而趋近的某个确定值。

对于一个数列{an},当n趋近于无穷大时,如果存在一个实数A,使得对于任意给定的正实数ε,总存在自然数N,使得当n>N时,有|an - A|< ε成立,那么数A就是数列{an}的极限,记作lim(n→∞) an = A。

二、数列极限的性质1. 唯一性:数列的极限如果存在,则唯一。

这意味着一个数列不可能有两个不同的极限。

2. 有界性:如果一个数列存在极限,则它是有界的,即数列中的所有项都在某个范围内。

3. 保号性:如果数列{an}的极限为A,则当n足够大时,数列的每一项与A的关系与A的正负号相同。

4. 极限的四则运算:如果两个数列{an}和{bn}的极限都存在,则它们的和、差、乘积、商的极限也存在,并且有相应的运算规律。

5. 夹逼定理:如果数列{an}、{bn}和{cn}满足an≤bn≤cn,且li m(n→∞) an = lim(n→∞) cn = A,那么lim(n→∞) bn = A。

6. 收敛数列的有界性:如果数列{an}的极限存在,则数列{an}是有界的。

7. 子列的极限:如果数列{an}的极限为A,则它的任意一个子列的极限也为A。

三、数列极限的应用1. 无穷级数:通过对数列极限的研究,可以求解各种无穷级数的和,如等比级数、调和级数等。

2. 函数极限:函数极限可以看作是数列极限的推广,通过对数列的极限性质的研究,可以进一步推导函数的极限性质。

3. 微积分:微积分中的导数和积分都与数列的极限密切相关,数列极限的概念和性质对于理解微积分理论非常重要。

4. 计算机科学:数列极限的思想也可以应用到计算机科学中,通过数值计算的方法来逼近数列的极限,解决计算问题。

数列极限的性质

数列极限的性质

如果 lim xn = a , ∃n0 , n > n0时有xn ≥ 0, 那么a ≥ 0.
4.保不等式性 (保序性 ) 保不等式性 保序 保序性 保不等式 命题4 命题 如果 lim xn = a , lim yn = b均存在,
n →∞ n →∞
且有a > b, 那么∃N , ∀n > N ,有xn > yn . 有
仿照上面命题 的推论 可得命题 的推论2. 仿照上面命题3的推论 可得命题 的推论 命题 的推论1可得命题4的推论
5. 极限的四则运算法则 定理 1 设limxn = a,limxn = b,
n→ ∞ n→ ∞
(1) lim xn ± yn ) = a ± b; ( 则 (2) lim( xn ⋅ yn ) = a⋅ b;
n→ ∞ n→ ∞
xn a (3) lim = , 其 b ≠ 0. 中 n→ y ∞ b n xn a 对 (3) lim = ( b ≠ 0) 的 明 以 于 证 予 n→ y ∞ b n
视 明 到 极 的 号 . 重 ,证 用 了 限 保 性
a0 nm + a1nm −1 + L + am 例1 求 lim n →∞ b n n + b n n −1 + L + b 0 1 n
n→∞
例3 求 lim ( n→ ∞
1 n +1
2
n +2 n +n 1 解 倘若我们由 lim = 0 ( k = 1, 2,L , n ) , n →∞ n2 + k 根据极限的四则运算法则得 1 1 1 + +L+ lim( ) n →∞ n2 + 1 n2 + 2 n2 + n 1 1 1 = lim + lim + L + lim =0 2 2 2 n →∞ n →∞ n + 1 n→∞ n + 2 n +n 那就错了.

数列极限的定义与性质

数列极限的定义与性质

数列极限的定义与性质数列是由一系列按特定规律排列的数字组成的序列。

在数学中,了解数列的极限是非常重要的。

通过研究数列的极限,我们可以揭示数列的性质,并且可以应用到不同的领域中。

本文将探讨数列极限的定义与性质,帮助读者更好地理解和应用数列。

一、极限的定义数列的极限是指当数列中的项趋近于某个值时,数列的值也趋近于该值。

数列极限可以用以下方式进行定义:设有数列 {a_n},其中 n 表示数列中的项的索引(在数列中的位置)。

若对于任意给定的正实数ε,都存在正整数 N,使得当 n > N 时,有|a_n - A| < ε 成立,则称数列 {a_n} 的极限为 A,记作lim(n→∞) a_n = A。

其中,|a_n - A| 表示 a_n 与 A 之间的差的绝对值。

ε (epsilon) 是一个任意小的正实数,N 是一个正整数。

二、极限的性质数列极限具有以下性质:1. 极限的唯一性:设数列 {a_n} 的极限为 A,则数列的极限是唯一的,即不存在另外的极限值。

2. 极限的有界性:若数列 {a_n} 的极限为 A,则对于任意给定的正实数ε,存在正整数 N,使得当 n > N 时,有|a_n| < |A|+ε 成立。

换句话说,当 n 足够大时,数列的值都在 A 的某个邻域内。

3. 极限的保号性:若数列 {a_n} 的极限为 A,且 A > 0 (或 A < 0),则存在正整数 N,使得当 n > N 时,有 a_n > 0 (或 a_n < 0) 成立。

也就是说,当 n 足够大时,数列的值与其极限符号一致。

4. 极限的四则运算:设数列 {a_n} 和 {b_n} 的极限分别为 A 和 B,则有以下四则运算定理:- 两个数列的和的极限等于两个数列的极限的和,即lim(n→∞) (a_n + b_n) = A + B。

- 两个数列的差的极限等于两个数列的极限的差,即lim(n→∞) (a_n - b_n) = A - B。

1.2.2-1.2.4 数列极限的性质和运算法则

1.2.2-1.2.4 数列极限的性质和运算法则

xn

a

lim
n
yn
b

且 a b ,则 N N ,当 n N xn yn 。
2
数列极限的性质和运算法则
性质 1(唯一性)若{ xn } 收敛,则其极限唯一。
证明:用反证法。
假设
lim
n
xn

a

lim
n
xn
b ,( a b),取

ba 2
0,
∴收敛数列的极限是唯一的。
3
数列极限的性质和运算法则
性质 2(有界性) 若{ xn } 收敛,则{ xn } 必有界,
即 M 0, n N , 有 xn M 。
注证明:②①:收性设敛质ln数im2列的x必n等有价a界命,;题反是之:若有界xn数无列界未,必则收敛xn。发散。
lim
n
n3

lim
n
n(n

1)(2n 6n3

1)
1 3
11
数列极限的性质和运算法则
(2) lim[ 1 2 L n 1 2 L (n 1)] n
解: lim[ 1 2 L n 1 2 L (n 1)] n
lim[ n (n 1) n (n 1) ] lim 1 [ n2 n n2 n]
n yn lim yn b
n
说明:可以推广到有限多个数列的和差或乘积。
7
数列极限的性质和运算法则
思考:
① 若:{ xn } 收敛,{ yn } 发散, 它们的和、差、积、商 数列的敛散性如何?
② 若:{ xn } , { yn } 都发散呢?

数列的极限性质与计算方法

数列的极限性质与计算方法

数列的极限性质与计算方法数列在数学中起着重要的作用,它们与极限的关系密切相关。

本文将介绍数列的极限性质以及常用的计算方法。

通过了解数列的极限性质,我们可以更好地理解和处理数学问题。

一、数列的极限性质数列的极限是指数列随着项数的增加趋向于某个确定的值。

数列的极限性质包括数列的有界性、单调性和收敛性。

1. 数列的有界性对于数列{an},如果存在常数M,使得对所有的n,有|an| ≤ M,那么数列{an}是有界的。

数列的有界性是指数列中的所有项都不会无限增加或减小,而是有一个上界和下界。

2. 数列的单调性对于数列{an},如果对于所有的n,都有an ≤ an+1 或an ≥ an+1,那么数列{an}是单调的。

数列的单调性是指数列中的项是否按照一定的规律递增或递减。

3. 数列的收敛性对于数列{an},如果存在常数L,使得当n趋向于无穷大时,an趋向于L,那么数列{an}收敛于L。

数列的收敛性是指数列是否有一个确定的极限值。

二、数列的计算方法在计算数列的极限时,我们常用的方法包括通项公式、夹挤准则以及数列的运算法则。

1. 通项公式有些数列可以通过通项公式来表示,通项公式可以帮助我们计算数列的任意一项。

例如,斐波那契数列可以通过通项公式an = (φ^n - (1-φ)^n)/√5来计算。

2. 夹挤准则夹挤准则是一种常用的计算数列极限的方法。

如果存在数列{bn}和数列{cn},满足对于所有的n,有bn ≤ an ≤ cn,并且{bn}和{cn}的极限都为L,那么数列{an}的极限也是L。

3. 数列的运算法则数列的运算法则包括数列的加法、减法、乘法和除法的性质。

例如,如果数列{an}和{bn}都收敛于L,那么它们的和数列{an + bn}也收敛于2L。

总结:数列的极限性质和计算方法是数学中的重要知识点。

通过了解数列的有界性、单调性和收敛性,我们可以判断数列的特性。

在计算数列的极限时,可以运用通项公式、夹挤准则和数列的运算法则等方法。

数列的极限与数列的收敛性的判定总结

数列的极限与数列的收敛性的判定总结
PART ONE
数列的极限
PART TWO
定义及性质
定义:数列的极限是指当数列的项数趋于无穷大时,数列的项趋于某一固定值。
性质:极限具有唯一性、有界性、局部保序性等性质。
极限的运算性质
极限的四则运算性质:lim(a+b)=lim a + lim b,lim(a-b)=lim a - lim b,lim(a×b)=lim a × lim b,lim(a/b)=lim a / lim b(当lim b≠0)
性质:收敛数列具有唯一确定的极限值;收敛数列的项的绝对值随着项数的增加而趋于无穷小
单调有界定理
定义:如果数列在某个区间内单调递增(或递减),并且存在一个正数M,使得对于该区间内的任意x,都有|a_n|≤M(或-M≤a_n≤M),则称该数列在该区间内有界。
定理:如果数列单调递增(或递减)且有界,则该数列收敛。
定义:如果一个数列从某一项开始,其后续各项都无限接近于某个确定的数,则称该数为该数列的极限。
添加标题
性质:收敛数列的极限是唯一的,即不存在两个不同的数都作为该数列的极限。
添加标题
证明:假设存在两个不同的数 A 和 B 都作为数列 {an} 的极限。由于数列是收敛的,根据定义,对于任意小的正数 ε,存在一个正整数 N,使得当 n > N 时,|an - A| < ε 和 |an - B| < ε 同时成立。这意味着 |A - B| = |(an - A) - (an - B)| < ε,这与 A 和 B 是两个不同的数相矛盾。因此,收敛数列的极限是唯一的。
不收敛:数列不趋近于任何值,没有极限
关系:无穷大数列和无界数列都不收敛,但无界数列不一定是无穷大
无穷小量与无穷大量在数列中的应用

数列极限名词解释

数列极限名词解释

数列极限名词解释数列极限是数学中重要的概念之一,它在分析、微积分以及实际问题的建模与求解中扮演着关键角色。

本文将对数列极限进行解释,并介绍其基本概念和性质。

一、数列的定义数列是一系列按照特定规律排列的数字的集合。

通常用{an}或{a1, a2,a3,...}表示,其中每个数an称为数列的项,n表示项的位置或索引。

二、数列的极限定义对于数列{an},当n逐渐增大时,如果数列的项趋向于某个确定的值L,即对于任意给定的正数ε,存在正整数N,当n>N时,满足|an-L|<ε,那么我们说数列的极限存在,记为lim(n→∞)an= L。

这里,L称为数列的极限,n→∞表示当n趋向于无穷大时。

三、极限的直观理解数列的极限可以被理解为当n趋近于无穷大时,数列的项逐渐接近于某个值。

直观上,我们可以将数列的项画在数轴上,随着n增大,数列的项逐渐靠近极限值L。

例如,考虑数列{1/n},当n取不断增大的正整数时,数列的项会逐渐接近0,因此该数列的极限为0。

四、数列极限的性质1.数列的极限是唯一的:如果数列{an}的极限存在,那么它的极限是唯一的,即极限值L唯一确定。

2.有界性:如果数列{an}的极限存在,那么数列必定是有界的,即存在正数M,使得对于任意的n,|an|≤M。

3.极限运算法则:设{an}和{bn}是两个数列,并且它们的极限都存在,则有以下运算法则:a)lim(n→∞)(an±bn)=lim(n→∞)an±lim(n→∞)bnb)lim(n→∞)(k*an)=k*lim(n→∞)an,其中k是常数c)lim(n→∞)(an*bn)=lim(n→∞)an*lim(n→∞)bnd)lim(n→∞)(an/bn)=lim(n→∞)an/lim(n→∞)bn,其中bn≠0五、常见数列极限1.常数数列:对于数列{an},如果an=c,其中c为常数,则该数列的极限为lim(n→∞)an=c。

高中数学数列极限的性质与计算方法详解

高中数学数列极限的性质与计算方法详解

高中数学数列极限的性质与计算方法详解数列是高中数学中的重要概念,而数列的极限更是数学分析的基础。

在高中数学中,数列极限的性质和计算方法是一个重要的考点。

本文将详细解析数列极限的性质和计算方法,并通过具体题目进行举例,帮助高中学生和他们的父母更好地理解和掌握这一知识点。

一、数列极限的性质1. 有界性:如果数列{an}存在有界的上界和下界,那么该数列必定收敛。

例如,考虑数列{an} = (-1)^n,该数列的值在-1和1之间,因此数列{an}是有界的,且极限为0。

2. 单调性:如果数列{an}单调递增且有上界,或者单调递减且有下界,那么该数列必定收敛。

例如,考虑数列{an} = 1/n,该数列单调递减且有下界0,因此数列{an}是收敛的,且极限为0。

3. 夹逼定理:如果数列{an}满足an≤bn≤cn,并且lim an = lim cn = L,那么数列{bn}也收敛,并且极限为L。

例如,考虑数列{an} = 1/n,{bn} = (1 + 1/n)^n,{cn}= (1 + 1/n)^(n+1),显然有an≤bn≤cn,并且lim an = lim cn = 0,因此数列{bn}也收敛,且极限为0。

二、数列极限的计算方法1. 基本四则运算法则:如果数列{an}和{bn}的极限分别为A和B,那么数列{an + bn}的极限为A + B,数列{an - bn}的极限为A - B,数列{an * bn}的极限为A * B,数列{an / bn}的极限为A / B(其中B ≠ 0)。

2. 极限的乘法法则:如果数列{an}的极限为A,数列{bn}的极限为B,那么数列{an * bn}的极限为A * B。

例如,考虑数列{an} = 1/n,{bn} = n,显然lim an = 0,lim bn = ∞,但是lim (an * bn) = 1。

3. 极限的倒数法则:如果数列{an}的极限为A(A ≠ 0),那么数列{1/an}的极限为1/A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

极限的运算
教学目标
1.熟练运用极限的四则运算法则,求数列的极限.
2.理解和掌握三个常用极限及其使用条件.培养学生运用化归转化和分类讨论的思想解决数列极限问题的能力.
3.正确认识极限思想和方法是从有限中认识无限,从近似中认识精确,从量变中认识质变的一种辩证唯物主义的思想.
教学重点与难点
使用极限四则运算法则及3个常用极限时的条件.
教学过程
(一)运用极限的四则运算法则求数列的极限
师:高中数学中的求极限问题,主要是通过极限的四则运算法则,把所求极限转化成三个
常用极限:n n 1lim ∞→=0,∞→n lim C=C ,∞
→n lim q n =0(|q|<1)来解决。

例1:求下列极限:
1
4537lim )1(323-++-∞→n n n n n
师:(1)中的式子如何转化才能求出极限.
生:可以分子、分母同除以n 3,就能够求出极限.
师:(2)中含有幂型数,应该怎样转化?
师:分子、分母同时除以3n-1结果如何?
生:结果应该一样.
师:分子、分母同时除以2n或2n-1,能否求出极限?
(二)先求和再求极限
例2 求下列极限:
由学生自己先做,教师巡视.
判断正误.
生:因为极限的四则运算法则只适用于有限个数列加、减、乘、除的情况.此题当n →∞,和式成了无限项的和,不能使用运算法则,所以解法1是错的.
师:解法2先用等差数列的求和公式,求出分子的和,满足了极限四则运算法则的条件,从而求出了极限.第(2)题应该怎样做?
生:用等比数列的求和公式先求出分母的和.
=12.
师:例2告诉我们不能把处理有限项和问题的思路及方法随意地搬到无限项和的问题中去,要特别注意极限四则运算法则的适用条件.
例3求下列极限:
师:本例也应该先求出数列的解析式,然后再求极限,请同学观察所给数列的特点,想出对策.
生:(1)题是连乘积的形式,可以进行约分变形.
生:(2)题是分数和的形式,可以用“裂项法”变形.
例4设首项为1,公比为q(q>0)的等比数列的前n项和为S n,
师:等比数列的前n项和S n怎样表示?
师:看来此题要分情况讨论了.
师:综合两位同学的讨论结果,解法如下:
师:本例重点体现了分类讨论思想的运用能够使复杂问题条理化.同
(三)公比绝对值小于1的无穷等比数列前n项和的极限
师:利用无穷等比数列所有各项和的概念以及求极限的知识,我们已经得到了公比的绝对值小于1的无穷等比数列各项和的公式:
例5计算:
题目不难,可由学生自己做.
师:(1)中的数列有什么特点?
师:(2)中求所有奇数项的和实质是求什么?
(1)所给数列是等比数列;
(2)公比的绝对值小于1;
(四)利用极限的概念求数的取值范围
师:(1)中a在一个等式中,如何求出它的值.
生:只要得到一个含有a的方程就可以求出来了.
师:同学能够想到用方程的思想解决问题非常好,怎样得到这个方程?生:先求极限.
师:(2)中要求m的取值范围,如何利用所给的等式?
|q|<1,正好能得到一个含有m的不等式,解不等式就能求出m的范围.
解得0<m<4.
师:请同学归纳一下本课中求极限有哪些类型?
生:主要有三种类型:
(1)利用极限运算法则和三个常用极限,求数列的极限;
(2)先求数列的前n项和,再求数列的极限;
(3)求公比绝对值小于1的无穷等比数列的极限.
师:求数列极限应注意的问题是什么?
生甲:要注意公式使用的条件.
生乙:要注意有限项和与无限项和的区别与联系.
上述问答,教师应根据学生回答的情况,及时进行引导和必要的补充.(五)布置作业
1.填空题:
2.选择题:
则x的取值范围是[ ].
的值是[ ].
A.2 B.-2 C.1 D.-1
作业答案或提示
(7)a.
2.选择题:
(2)由于所给两个极限存在,所以a n与b n的极限必存在,得方程
以上习题教师可以根据学生的状况,酌情选用.
课堂教学设计说明
1.掌握常用方法,深化学生思维.
数学中对解题的要求,首先是学生能够按部就班地进行逻辑推理,寻找最常见的解题思路,当问题解决以后,教师要引导学生立即反思,为什么要这么做?对常用方法只停留在会用是不够的,应该对常用方法所体现的思维方式进行深入探讨,内化为自身的认知结构,然后把这种思维方式加以运用.例1的设计就是以此为目的的.
2.展示典型错误,培养严谨思维.
第二课时数列极限的运算性质
教学目标:1、掌握数列极限的运算性质;会利用这些性质计算数列的极限
2、掌握重要的极限计算公式:lim(1+1/n)n=e
教学过程:
一、数列极限的运算性质
如果lima n=A,limb n=B,那么
(1)lim(a n+b n)= lima n+ limb n =A+B(2)lim(a n-b n)= lima n- limb n =A-B
(3)lim(a n•b n)= lima n• limb n =A•B(4)lim(a n/b n)= lima n/ limb n =A/B(B≠0,b n≠0)注意:运用这些性质时,每个数列必须要有极限,在数列商的极限中,作为分母的数列的项及其极限都不为零。

数列的和的极限的运算性质可推广为:如果有限个数列都有极限,那么这有限个数列对应各项的和所组成的数列也有极限,且极限值等于这有限个数列的极限的和。

类似地,对数列的积的极限的运算性质也可作这样的推广。

注意:上述性质只能推广为有限个数列的和与积的运算,不能推广为无限个数列的和与积。

二、求数列极限
1、lim(5+1/n)=5
2、lim(n2-4)/n2=lim(1-4/n2)=1
3、lim(2+3/n)2=4
4、lim[(2-1/n)(3+2/n)+(1-3/n)(4-5/n)]=10
5、lim(3n2-2n-5)/(2n2+n-1)=lim(3-2/n-5/n2)/(2+1/n-1/n2)=3/2
分析:由于lim(3n2-2n-5)及lim(2n2+n-1)都不存在,因此不能直接应用商的极限运算性质进行计算。

为了能应用极限的运算性质,可利用分式的性质先进行变形。

在变形时分子、分母同时除以分子、分母中含n的最高次数项。

4、一个重要的数列极限
我们曾经学过自然对数的底e≈2.718,它是一个无理数,它是数列(1+1/n)n的极限。

lim(1+1/n)n =e (证明将在高等数学中研究)
求下列数列的极限
lim(1+1/n) 2n+1 =lim(1+1/n)n•(1+1/n)n•(1+1/n)=e•e•1=e2
lim(1+3/n)n =lim[(1+1/(n/3))n/3] 3=e3
分析:在底数的两项中,一项为1,另一项为3/n,其中分子不是1,与关于e的重要极限的形式不相符合,为此需要作变形。

其变形的目标是将分子中的3变为1,而不改变分式的值。

为此可在3/n的分子、分母中同时除以3,但这样又出现了新的矛盾,即分母中的n/3与指数上的n以及取极限时n→∞不相一致,为此再将指数上的n改成n/3•3,又因为n→∞与n/3→∞是等价的。

lim(1+1/(n+1))n=lim(1+1/(n+1))(n+1)-1=lim(1+1/(n+1))n+1/lim(1+1/(n+1))=e
练习:计算下列数列的极限
lim(3-1/2n)=3 lim(1/n2+1/n-2)(3/n-5/2)=5 lim(-3n2-1)/(4n2+1)=-3/4
lim(n+3)(n-4)/(n+1)(2n-3)=1/2 lim(1+3/2n)2=1 lim(1+1/3n)2(2-1/(n+1) 3=1•8=8
lim(1+1/n)3n+2=lim[(1+1/n)n]3•(1+1/n)2=e3lim(1+4/n)n=e4 lim(1+1/(n+2))n+1=e
lim[(n+5)/(n+4)]n=lim(1+1/(n+4)) n=e lim(1+2/(n+1)) n=e2
lim[(n+5)/(n+2)] n=lim[(1+3/(n+2))(n+2)/3] 3/(1+3/(n+2)) 2=e3。

相关文档
最新文档