人教B版选修2-3高中数学2.2《二项分布》word教案
选修2-3教案2.2.3独立重复试验与二项分布(1)

2.2.3独立重复试验与二项分布(第一课时)教学目标:理解n 次独立重复试验的模型及二项分布教学重点:理解n 次独立重复试验的模型及二项分布教学过程一、复习引入:1. 已知事件B 发生条件下事件A 发生的概率称为事件A 关于事件B 的条件概率,记作(|)P A B .2. 对任意事件A 和B ,若()0P B ≠,则“在事件B 发生的条件下A 的条件概率”,记作P(A | B),定义为(|)P AB P A B P B ()=()3. 事件B 发生与否对事件A 发生的概率没有影响,即(|)()P A B P A =.称A 与B 独立二、讲解新课: 1 独立重复试验的定义: 指在同样条件下进行的,各次之间相互独立的一种试验2.独立重复试验的概率公式:一般地,如果在1次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率k n k k n n P P C k P --=)1()(.它是[](1)n P P -+展开式的第1k +项 例1.某气象站天气预报的准确率为80%,计算(结果保留两个有效数字):(1)5次预报中恰有4次准确的概率;(2)5次预报中至少有4次准确的概率解:(1)记“预报1次,结果准确”为事件A .预报5次相当于5次独立重复试验,根据n 次独立重复试验中某事件恰好发生k 次的概率计算公式,5次预报中恰有4次准确的概率4454455(4)0.8(10.8)0.80.41P C -=⨯⨯-=≈答:5次预报中恰有4次准确的概率约为0.41.(2)5次预报中至少有4次准确的概率,就是5次预报中恰有4次准确的概率与5次预报都准确的概率的和,即4454555555555(4)(5)(4)0.8(10.8)0.8(10.8)P P P P C C --=+==⨯⨯-+⨯⨯-450.80.80.4100.328=+≈+≈答:5次预报中至少有4次准确的概率约为0.74. 例2.某车间的5台机床在1小时内需要工人照管的概率都是14,求1小时内5台机床中至少2台需要工人照管的概率是多少?(结果保留两个有效数字)解:记事件A =“1小时内,1台机器需要人照管”,1小时内5台机器需要照管相当于5次独立重复试验 1小时内5台机床中没有1台需要工人照管的概率55513(0)(1)()44P =-=,1小时内5台机床中恰有1台需要工人照管的概率145511(1)(1)44P C =⨯⨯-, 所以1小时内5台机床中至少2台需要工人照管的概率为[]551(0)(1)P P P =-+≈答:1小时内5台机床中至少2台需要工人照管的概率约为0.37.点评:“至多”,“至少”问题往往考虑逆向思维法例3.某人对一目标进行射击,每次命中率都是0.25,若使至少命中1次的概率不小于0.75,至少应射击几次?解:设要使至少命中1次的概率不小于0.75,应射击n 次记事件A =“射击一次,击中目标”,则()0.25P A =.∵射击n 次相当于n 次独立重复试验,∴事件A 至少发生1次的概率为1(0)10.75nn P P =-=-. 由题意,令10.750.75n -≥,∴31()44n ≤,∴1lg4 4.82lg 4n ≥≈, ∴n 至少取5. 答:要使至少命中1次的概率不小于0.75,至少应射击5次课堂小节:本节课学习了n 次独立重复试验的模型及二项分布。
人教版高中数学选修2-3 第二章 二项分布及其应用 同步教案

学生姓名性别年级学科数学授课教师上课时间年月日第()次课共()次课课时:2课时教学课题人教版选修2-3 第二章二项分布及其应用同步教案教学目标知识目标:理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。
能力目标:能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算。
情感态度价值观:承前启后,感悟数学与生活的和谐之美,体现数学的文化功能与人文价值。
教学重点与难点理解n次独立重复试验的模型及二项分布,能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算。
教学过程知识梳理离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是错误!未找到引用源。
,(k=0,1,2,…,n,错误!未找到引用源。
).于是得到随机变量ξ的概率分布如下:ξ0 1 …k …nP错误!未找到引用源。
错误!未找到引用源。
…错误!未找到引用源。
…错误!未找到引用源。
由于错误!未找到引用源。
恰好是二项展开式错误!未找到引用源。
中的各项的值,所以称这样的随机变量ξ服从二项分布(binomial distribution ),记作ξ~B(n,p),其中n,p为参数,并记错误!未找到引用源。
=b(k;n,p).例题精讲【例1】某射手每次射击击中目标的概率是0.8,求这名射手在 10 次射击中,(1)恰有 8 次击中目标的概率;(2)至少有 8 次击中目标的概率.(结果保留两个有效数字.)【方法技巧】设ξ为击中目标的次数,则ξ~B (10, 0.8 ) . 如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是knkknnqpCkP-==)(ξ错误!未找到引用源。
,(k=0,1,2,…,n,错误!未找到引用源。
).【例2】某厂生产电子元件,其产品的次品率为5%.现从一批产品中任意地连续取出2件,写出其中次品数ξ的概率分布.【方法技巧】由题意,随机变量ξ~B(2,5%).如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是knkknnqpCkP-==)(ξ错误!未找到引用源。
重庆高中数学选修2-3第二章第二节《二项分布及其应用》全套教案

二项分布及其应用2.2.1 条件概率【教学目标】1.初步理解条件概率的概念与表示,理解条件概率的一般计算公式,会正确使用公式分析和解决一些条件概率的具体问题.2.归纳出古典概型背景下条件概率的计算公式;经历非古典概型背景下条件概率问题的探究,初步理解条件概率的一般计算公式,会正确使用公式分析和解决一些条件概率的具体问题.3.通过合作交流和问题探究,感受概率问题的生活化特点【教学重点难点】重点:条件概率的概念、计算公式的推导及条件概率的计算.难点: 条件概率的判断与计算【学前准备】:多媒体,预习例题例1.箱子里有红、黄、蓝三个小球,现由甲、乙2名同学依次无放回地摸球,问乙同学摸到红球的概率是多少?所有可能发生的结果记为Ω={红蓝、红黄、黄蓝、黄红、蓝红、蓝黄},共有6个基本事件,记事件B 为“乙同学摸到红球”,则包含的基本事件有两个:黄红、蓝红,因为基本事件数是有限个,而且每个基本事件发生的可能性都是相同的,所以可以判断是古典概型,由古典概型的概率计算公式可得知3162)()()(==Ω=n B n B P . 1.条件概率的概念一般地,设A 、B 为两个事件,且P(A )>0,称)|(A B P 为事件A 发生的条件下,事件B 发生的条件概率.)|(A B P 读作A 发生的条件下B 发生的概率.思考:)|(A B P 与)(AB P 有什么联系和区别?你能借助Venn 图说明吗?我们把事件A 记做集合A ,把事件B记做集合B ,A 与B 公共的部分记做AB ,所有基本事件的总体记做Ω.因为已经知道事件A 发生,所以只需在A 发生的范围内考虑问题,即现在的样本空间缩小为A ,在事件A 发生的条件下事件B 发生,等价于事件A 和事件B 同时发生,即AB 发生. 2.条件概率的计算公式所以在前面摸球的例子中,没有摸到红球,那么乙摸到红球的概率是变大还是变小了?又是多少?记事件到红球”减为蓝红、蓝黄即摸到红球”包含的基本事件依然是只有黄红、蓝红两个,在事件生的条件下事件相当于事件同时发生,即所以事件出现的可能性也是一样的,所以依然满足古典概型,因此由古典概型概率计算公式可知,在甲没有摸到红球的条件下乙摸得红球的概率P 确实比之前乙摸到红球的概率变大了算,我们可以看出在发生的条件下事件生的概率和率是不相等的,理由是样本空间不一样,总的基本事件数是不同的某种动物出生之后活到2.2.2事件的相互独立性【教学目标】1、知识与技能理解两个事件相互独立的概念;2、过程与方法能进行一些与事件独立有关的概率的计算。
2.2.3独立重复试验与二项分布课件人教新课标B版

ξ
0
1
2
3
P 0.001 0.027 0.243 0.729
数学 选修2-3
第二章 随机变量及其散布
自主学习 新知突破
合作探究 课堂互动
二项散布的应用
甲、乙两人各射击一次击中目标的概率分别是23和 34,假设两人每次射击是否击中目标,相互之间没有影响.
第二章 随机变量及其散布
自主学习 新知突破
合作探究 课堂互动
采用有放回的取球,每次取得红球的概率都
相等,均为35,取得红球次数 X 可能取的值为 0,1,2,3,4.
由以上分析,知随机变量 X 服从二项分布,
4分
P(X=k)=Ck435k·1-354-k(k=0,1,2,3,4).
6分
数学 选修2-3
自主学习 新知突破
合作探究 课堂互动
[问题2] 3次中恰有1次针尖向上,有几种情况?
[提示 2] 共有 3 种情况:A1 A2 A3 ,A1 A2 A3 ,A1 A2 A3. [问题3] 它们的概率分别是多少? [提示3] 概率都是0.61×(1-0.6)2.
数学 选修2-3
第二章 随机变量及其散布
第二章 随机变量及其散布
自主学习 新知突破
合作探究 课堂互动
(2)3 局比赛相当于进行 3 次独立重复试验,因为顺序一定, 所以在前 3 局比赛中,直至第 3 局甲才胜 1 局的概率为:
P=1-123-1121=18. (3)4 局比赛相当于进行 4 次独立重复试验,但甲在第 4 局 比赛一定取胜,而前 3 局为 2 胜 1 负,故甲打完 4 局取胜的概 率为: P=C23122×1-121×12=136.
数学 选修2-3
第二章 随机变量及其散布
2019-2020学年高中数学人教B版选修2-3教学案:2.2.3 独立重复试验与二项分布 Word版含解析

2.2.3 独立重复试验与二项分布[对应学生用书P31]要研究抛掷硬币的规律,需做大量的掷硬币试验.试想每次试验的前提是什么?提示:条件相同.1.在相同条件下重复地做n次试验,各次实验的结果相互独立,则称它们为n次独立重复试验.2.一般地,如果在一次试验中事件A发生的概率是p,那么在n次独立重复试验中,事件A恰好发生k次的概率为P n(k)=C k n p k(1-p)n-k(k=0,1,2,…,n).在体育课上,某同学做投篮训练,他连续投篮3次,每次投篮的命中率都是0.8.用A i(i=1,2,3)表示第i次投篮命中这件事,用B1表示仅投中1次这件事.问题1:试用A i表示B1.提示:B1=(A1∩A2∩A3)∪(A1∩A2∩A3)∪(A1∩A2∩A3).问题2:试求P(B1).提示:因为P(A1)=P(A2)=P(A3)=0.8,且A1∩A2∩A3,A1∩A2∩A3,A1∩A2∩A3两两互斥,故P(B1)=P(A1∩A2∩A3)+P(A1∩A2∩A3)+P(A1∩A2∩A3)=0.8×0.22+0.8×0.22+0.8×0.22=3×0.8×0.22.问题3:用B k表示投中k次这件事,试求P(B2)和P(B3).提示:P(B2)=3×0.2×0.82,P(B3)=0.83.问题4:由以上结果你能得出什么结论?提示:P(B k)=C k30.8k0.23-k,k=0,1,2,3.若将事件A发生的次数记为X,事件A不发生的概率为q=1-p,那么在n次独立重复试验中,事件A恰好发生k次的概率是P(X=k)=C k n p k q n-k,其中k=0,1,2,…,n.于是得到X的分布列由于表中的第二行恰好是二项式展开式(q+p)n=C0n p0q n+C1n p1q n-1+…+C k n p k q n-k+…+C n p n q0各对应项的值,所以称这样的离散型随机变量X服从参数为n,p的二项分布,记作X~B(n,p).1.独立重复试验满足的条件:(1)每次试验是在相同的条件下进行的;(2)各次试验的结果互不影响,即每次试验是相互独立的;(3)每次试验都只有两种结果,即事件要么发生,要么不发生.2.二项分布中各个参数的意义:n表示试验的总次数;k表示在n次独立重复试验中成功的次数;p表示试验成功的概率;1-p表示试验不成功的概率.3.二项分布的特点:(1)对立性:即一次试验中只有两种结果——“成功”和“不成功”,而且有且仅有一个发生;(2)重复性:试验在相同条件下独立重复地进行n次,保证每一次试验中“成功”的概率和“不成功”的概率都保持不变.[对应学生用书P32][例1] 2位)(1)5次预报中恰有2次准确的概率;(2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第3次预报准确的概率.[思路点拨]由于5次预报是相互独立的,且结果只有两种(或准确,或不准确),符合独立重复试验模型.[精解详析](1)记“预报1次准确”为事件A,则P(A)=0.8.5次预报相当于5次独立重复试验,2次准确的概率为P=C250.82×0.23=0.051 2≈0.05.因此5次预报中恰有2次准确的概率为0.05.(2)“5次预报中至少有2次准确”的对立事件为“5次预报全部不准确或只有1次准确”,其概率为P=C05(0.2)5+C15×0.8×0.24=0.006 72≈0.01.所求概率为1-P=1-0.01=0.99.(3)由题意知第1,2,4,5次预报中恰有1次准确.所以概率P=C140.8×0.23×0.8=0.020 48≈0.02.即恰有2次准确,且其中第3次预报准确的概率约为0.02.[一点通]1.运用独立重复试验的概率公式求概率时,首先判断问题中涉及的试验是否为n次独立重复试验,判断时注意各次试验之间是相互独立的,并且每次试验的结果只有两种(即要么发生,要么不发生),在任何一次试验中某一事件发生的概率都相等,然后用相关公式求概率.2.解此类题常用到互斥事件概率加法公式,相互独立事件概率乘法公式及对立事件的概率公式.1.打靶时,甲每打10发可中靶8次,则他打100发子弹有4发中靶的概率为( ) A .C 41000.84×0.296 B .0.84 C .0.84×0.296D .0.24×0.296解析:设X 为中靶的次数,则X ~B (100,0.8), ∴P (X =4)=C 41000.84×0.296. 答案:A2.在4次独立重复试验中,事件A 至少发生1次的概率为6581,则事件A 在1次试验中出现的概率为( )A.13B.25C.56D.34解析:由题意知,C 04p 0(1-p )4=1-6581,p =13.答案:A3.甲、乙两人各进行3次射击,甲每次击中目标的概率为12,乙每次击中目标的概率为23,求:(1)甲恰好击中目标2次的概率; (2)乙至少击中目标2次的概率; (3)乙恰好比甲多击中目标2次的概率.解:(1)甲恰好击中目标2次的概率为C 23⎝ ⎛⎭⎪⎫123=38.(2)乙至少击中目标2次的概率为C 23⎝ ⎛⎭⎪⎫232·⎝ ⎛⎭⎪⎫13+C 3⎝ ⎛⎭⎪⎫233=2027. (3)设乙恰好比甲多击中目标2次为事件A ,乙恰好击中目标2次且甲恰好击中目标0次为事件B 1,乙恰好击中目标3次且甲恰好击中目标1次为事件B 2,则A =B 1∪B 2,B 1,B 2为互斥事件.P (A )=P (B 1)+P (B 2)=C 23⎝ ⎛⎭⎪⎫232×13×C 03⎝ ⎛⎭⎪⎫123+C 3⎝ ⎛⎭⎪⎫233×C 13⎝ ⎛⎭⎪⎫123=118+19=16.[2](12分)已知某种从太空飞船中带回来的植物种子每粒成功发芽的概率都为13,某植物研究所分两个小组分别独立开展该种子的发芽试验,每次试验种一粒种子,如果某次没有发芽,则称该次试验是失败的.(1)第一小组做了3次试验,记该小组试验成功的次数为X ,求X 的概率分布列; (2)第二小组进行试验,到成功了4次为止,求在第4次成功之前共有3次失败的概率.[思路点拨] (1)X 服从二项分布;(2)共7次试验,前6次试验有3次失败.[精解详析] (1)由题意,随机变量X 可能取值为0,1,2,3,则X ~B ⎝ ⎛⎭⎪⎫3,13.(2分)即P (X =0)=C 03⎝ ⎛⎭⎪⎫130⎝ ⎛⎭⎪⎫1-133=827,(4分)P (X =1)=C 13⎝ ⎛⎭⎪⎫131⎝ ⎛⎭⎪⎫1-132=49,(5分) P (X =2)=C 23⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫1-131=29,(6分)P (X =3)=C 3⎝ ⎛⎭⎪⎫133=127.(7分)所以X 的概率分布列为(8分)(2)第二小组第7次试验成功,前面6次试验中有3次失败,3次成功,每次试验又是相互独立的,因此所求概率为P =C 36⎝ ⎛⎭⎪⎫133⎝ ⎛⎭⎪⎫1-133×13=1602 187.(12分)[一点通]解决此类问题的步骤:(1)判断随机变量X 服从二项分布; (2)建立二项分布模型;(3)确定X 的取值并求出相应的概率; (4)写出分布列.4.已知X ~B ⎝ ⎛⎭⎪⎫6,13,则P (X =2)等于( ) A.316 B.4243 C.13243D.80243解析:P (X =2)=C 26⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫234=80243.答案:D5.某射手每次射击击中目标的概率是0.8,现连续射击4次,求击中目标次数X 的分布列. 解:击中目标的次数X 服从二项分布X ~B (4,0.8), ∴P (X =k )=C k 4(0.8)k (0.2)4-k (k =0,1,2,3,4),即X 的分布列为6.4名考生选做这两题的可能性均为12.(1)求其中甲、乙2名考生选做同一道题的概率;(2)设这4名考生中选做第15题的学生数为X ,求X 的分布列.解:(1)设事件A 表示“甲选做第14题”,事件B 表示“乙选做第14题”,则甲、乙2名学生选做同一道题的事件为“(A ∩B )∪(A ∩B )”,且事件A ,B 相互独立.∴P ((A ∩B )∪(A ∩B )) =P (A )P (B )+P (A )P (B ) =12×12+⎝ ⎛⎭⎪⎫1-12×⎝⎛⎭⎪⎫1-12=12.(2)随机变量X 的可能取值为0,1,2,3,4,且X ~B ⎝ ⎛⎭⎪⎫4,12.∴P (X =k )=C k 4⎝ ⎛⎭⎪⎫12k ⎝ ⎛⎭⎪⎫1-124-k=C k 4⎝ ⎛⎭⎪⎫124(k =0,1,2,3,4). 所以变量X 的分布列为1.独立重复试验概率求解的关注点:(1)运用独立重复试验的概率公式求概率时,要判断问题中涉及的试验是否为n 次独立重复试验,判断时可依据n 次独立重复试验的特征.(2)解此类题常用到互斥事件概率加法公式、相互独立事件概率乘法公式及对立事件的概率公式. 2.二项式(q +p )n (p +q =1)的展开式中,第k +1项为T k +1=Ckn q n -k p k ,可见P (X =k )就是二项式(q +p )n 的展开式中的第k +1项,故此公式称为二项分布公式.错误!1.某地人群中高血压的患病率为p ,由该地区随机抽查n 人,则( )A .样本患病率X /n 服从B (n ,p ) B .n 人中患高血压的人数X 服从B (n ,p )C .患病人数与样本患病率均不服从B (n ,p )D .患病人数与样本患病率均服从B (n ,p ) 解析:由二项分布的定义知B 正确. 答案:B2.某学生参加一次选拔考试,有5道题,每题10分.已知他解题的正确率为35,若40分为最低分数线,则该生被选中的概率是( )A .C 45⎝ ⎛⎭⎪⎫354×25B .C 5⎝ ⎛⎭⎪⎫355C .C 45⎝ ⎛⎭⎪⎫354×25+C 5⎝ ⎛⎭⎪⎫355 D .1-C 35⎝ ⎛⎭⎪⎫353×⎝ ⎛⎭⎪⎫252 解析:该生被选中包括“该生做对4道题”和“该生做对5道题”两种情形,故所求概率为P =C 45⎝ ⎛⎭⎪⎫354×25+C 5⎝ ⎛⎭⎪⎫355. 答案:C3.甲、乙两队参加乒乓球团体比赛,甲队与乙队的实力之比为3∶2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( )A .C 23⎝ ⎛⎭⎪⎫353×25B .C 23⎝ ⎛⎭⎪⎫352×25C .C 34⎝ ⎛⎭⎪⎫353×25D .C 34⎝ ⎛⎭⎪⎫233×13解析:甲打完4局才胜,说明在前三局中甲胜两局,且在第4局中获胜,其概率为P =C 23⎝ ⎛⎭⎪⎫352×25×35=C 23⎝ ⎛⎭⎪⎫353×25. 答案:A4.位于坐标原点的一个质点P 按下列规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12,质点P 移动5次后位于点(2,3)的概率是( )A.⎝ ⎛⎭⎪⎫123 B .C 25⎝ ⎛⎭⎪⎫125 C .C 35⎝ ⎛⎭⎪⎫123 D .C 25C 35⎝ ⎛⎭⎪⎫125 解析:质点由原点移动到(2,3)需要移动5次,且必须有2次向右,3次向上,所以质点的移动方法有C 25种.而每一次向右移动的概率都是12,所以向右移动的次数X ~B ⎝ ⎛⎭⎪⎫5,12,所求的概率等于P (X =2)=C 25⎝ ⎛⎭⎪⎫125.答案:B5.下列说法正确的是________.①某同学投篮的命中率为0.6,他10次投篮中命中的次数X 是一个随机变量,且X ~B (10,0.6); ②某福彩的中奖概率为P ,某人一次买了8张,中奖张数X 是一个随机变量,且X ~B (8,P ); ③从装有5个红球、5个白球的袋中,有放回地摸球,直到摸出白球为止,则摸球次数X 是随机变量,且X ~B⎝ ⎛⎭⎪⎫n ,12. 解析:①②显然满足独立重复试验的条件,而③虽然是有放回地摸球,但随机变量X 的定义是直到摸出白球为止,也就是说前面摸出的一定是红球,最后一次是白球,不符合二项分布的定义.答案:①②6.设X ~B (2,p ),若P (X ≥1)=59,则p =________.解析:∵X ~B (2,p ),∴P (X =k )=C k 2p k (1-p )2-k ,k =0,1,2.∴P (X ≥1)=1-P (X <1)=1-P (X =0) =1-C 02p 0(1-p )2=1-(1-p )2, ∴1-(1-p )2=59.结合0≤p ≤1,解之得p =13.答案:137.在资料室存放着书籍和杂志,任一读者借书的概率为0.2,而借杂志的概率为0.8,设每人只借一本,现有5位读者依次借阅.(1)求5人中有两人借杂志的概率;(2)求5人中至多有2人借杂志的概率.(保留到0.000 1)解:记“一位读者借杂志”这为事件A ,则“此人借书”为事件A -,5位读者借几次可看作几次独立重复事件.(1)5人中有2人借杂志的概率为P =C 25(0.8)2(0.2)3=0.051 2.(2)5人中至多有2人借杂志,包括三种情况:5人都不借杂志;5人中恰有1人借杂志;5人中恰有2人借杂志.所以求概率为P =C 05(0.8)0(0.2)5+C 15(0.8)1(0.2)4+C 25(0.8)2(0.2)3≈0.057 9.8.在一次抗洪抢险中,准备用射击的办法引爆从桥上游漂流而下的一个巨大汽油灌,已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆,每次射击是相互独立的,且命中的概率都是23.(1)求油灌被引爆的概率;(2)如果引爆或子弹打光则停止射击,设射击次数为X ,求X 不小于4的概率.解:(1)油灌被引爆的对立事件为油灌没有被引爆,没有引爆的可能情况是射击5次只击中一次或一次也没有击中,故该事件的概率为C 15·23·⎝ ⎛⎭⎪⎫134+⎝ ⎛⎭⎪⎫135=11243, 所以所求的概率为 1-11243=232243. (2)当X =4表示前3次中只有一次击中,第四次击中,则 P (X =4)=C 13·23·⎝ ⎛⎭⎪⎫132·23=427.当X =5时,表示前4次射击只击中一次或一次也未击中,第5次可以击中,也可以不击中, 则P (X =5)=C 14·23·⎝ ⎛⎭⎪⎫133+⎝ ⎛⎭⎪⎫134=19,所以所求概率为P (X ≥4)=P (X =4)+P (X =5)=427+19=727.。
人教B版选修2-3高中数学1.3《二项式定理》word教案

人教B版选修2-3高中数学1.3《二项式定理》w o r d教案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN教学目标:1、能用计数原理证明二项式定理;2、掌握二项式定理及二项式展开式的通项公式教学重点:掌握二项式定理及二项式展开式的通项公式教学重点:二项式定理及通项公式的掌握及运用教学难点:二项式定理及通项公式的掌握及运用授课类型:新授课教 具:多媒体、实物投影仪教学过程一、新知学习:即展开式应有下面形式的各项:4a ,3a b , 22a b , 3ab ,4b ,展开式各项的系数:上面4个括号中,每个都不取b 的情况有1种,即04C 种,4a 的系数是04C ;恰有1个取b 的情况有14C 种,3a b 的系数是14C ,恰有2个取b的情况有24C 种,22a b 的系数是24C ,恰有3个取b 的情况有34C 种,3ab 的系数是34C ,有4都取b 的情况有44C 种,4b 的系数是44C ,∴40413222334444444()a b C a C a b C a b C a b C b +=++++. 二、讲解新课:1、二项式定理:01()()n n n r n r r n n n n n n a b C a C a b C a b C b n N -*+=+++++∈2、二项式定理的证明。
(a+b )n 是n 个(a+b )相乘,每个(a+b )在相乘时,有两种选择,选a 或b ,由分步计数原理可知展开式共有2n 项(包括同类项),其中每一项都是a k b n-k 的形式,k=0,1,…,n ;对于每一项a k b n-k ,它是由k 个(a+b )选了a , n-k 个(a+b)选了b 得到的,它出现的次数相当于从n 个(a+b )中取k 个a 的组合数,将它们合并同类项,就得二项展开式,这就是二项式定理。
3、它有1n +项,各项的系数(0,1,)r n C r n =叫二项式系数,4、r n r r n C a b -叫二项展开式的通项,用1r T +表示,即通项1r n r r r nT C a b -+=. 5、二项式定理中,设1,a b x ==,则1(1)1n r r n n n x C x C x x +=+++++三、典例分析例1.展开41(1)x +.例2.展开6(2)x x-. 例3.求12()x a +的展开式中的倒数第4项例4.求(1)6(23)a b +,(2)6(32)b a +的展开式中的第3项.例5.(1)求9()3x x+的展开式常数项; (2)求9()3x x+的展开式的中间两项 课堂小节:本节课学习了二项式定理及二项式展开式的通项公式课堂练习:。
高中数学新人教版B版精品教案《人教版B高中数学选修2-3 2.2.1 条件概率》8

条件概率教学设计课标分析《条件概率》是人教B 版普通高中课程标准实验教科书《数学》选修2-3 第二章随机变量及其分布中,二项分布及其应用的第一课时的内容,主要包括:(1)条件概率的概念;(2)条件概率的性质;(3)条件概率公式的简单应用。
《条件概率》的内容,利用“抽奖”这一典型案例,以无放回抽取奖券的方式,通过对有无“第一名同学没有中奖”条件,最后一名同学中奖的概率的比较,引出条件概率的概念,给出了条件概率的两个性质,并通过条件概率公式的简单应用加深对条件概率概念本质特征的理解掌握。
为相互独立事件和二项分布的内容教学,起“引流开山”之作用,即为定义相互独立事件和研究二项分布做好了知识铺垫。
正因本节是数学新概念引入建立,其教学便化身为本章的难点,对其进行合理的教学处理尤显重要。
本节教学重点和难点都是对条件概率的概念理解,应用公式对条件概率的计算是围绕这一中心的;在条件概率概念的引入中,应抓住“条件概率的本质是样本空间范围的缩小下的概率”这一转化关键。
教学关键是实际案例对比,甚者要辅以图示直观说明解释和反例验证等教学方式对条件概率的概念进行多角度分析研究,才能突破本节教学重点和教材分析《条件概率》第一课时是高中数学选修2-3第二章第二节的内容本节课是在必修三学习了概率的定义,概率的关系与运算,概率的基本性质,古典概型特点及其运算的基础上,学习如何计算已知某一事件发生的条件下,另一事件发生的概率,它仍属于概率的范畴。
它在教材中起着承前启后的作用,一方面,可以巩固古典概型概率的计算方法,另一方面,为研究相互独立事件打下良好的基础教学重点、难点和关键:教学重点是条件概率的定义、计算公式的推导及条件概率的计算;难点是条件概率的判断与计算;教学关键是数学建模条件概率是比较难理解的概念。
教科书利用大家比较熟悉的抽奖为实例,以无放回抽取奖券的方式,通过比较抽奖前和在已知第一名同学没有中奖的条件下,最后一名同学中奖的概率从而引入条件概率的概念,给出条件概率的两种计算方法。
人教课标版高中数学选修2-3《独立重复实验与二项分布(第1课时)》教学设计

2.2.2 独立重复试验与二项分布(第1课时)一、教学目标1.核心素养根据由特殊到一般的思维方式,归纳二项分布的概念及其概率计算公式,从而提升学生数学建模能力和逻辑推理能力.2.学习目标(本课时的目标应与后面的“问题探究”对应,每个探究解决一个目标)(1)从具体情境中理解n次独立重复试验及其特点及二项分布,并能解决一些简单的实际问题.(2)从具体情境中理解二项分布及其概率计算公式.(3)能解决一些简单与n次独立重复试验的模型及二项分布有关的实际问题3.学习重点理解掌握n次独立重复试验的模型及其基本特点,正确掌握二项分布.4.学习难点能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算.二、教学设计(一)课前设计预习任务任务1(可以多个任务,问是学生提问,编者不用考虑)阅读教材,思考:n次独立重复试验的定义是什么?二项分布的内容是什么?任务2归纳出n次独立重复试验的基本特点,默写二项分布的计算公式.预习自测1.n次独立重复试验应满足的条件:①每次试验之间是相互独立的;②每次试验只有发生与不发生两种结果之一;③每次试验发生的机会是均等的;④各次试验发生的事件是互斥的.其中正确的是()A .①②B .②③C .①②③D .①②④ 解:C .2.二项分布计算公式()=(1)kn k k n P X k C p p -=-中,,,1,n p p k -分别表示的是( )①事件不发生的概率;②事件发生的概率;③实验总次数;④事件发生的次数. A .①②③④ B .③①②④ C .③②①④ D .①②④③ 解:C . (二)课堂设计 1.知识回顾(1)不可能同时发生的事件A 与事件B 称为互斥事件,且()=()()P A B P A P B ++.(2)在事件A 发生的条件下事件B 发生的概率叫做“在A 条件下B 发生的概率”,记作(|)P B A ,且()(|)=()P AB P B A P A . (3)事件A 是否发生对事件B 发生的概率没有影响,这样的两个事件叫做相互独立事件,且()=()()P AB P A P B .(4)事件12,,n A A A ⋅⋅⋅是相互独立的,则1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅. (5)二项式定理. 2.问题探究问题探究一 独立重复试验的定义及其基本特点? ●活动一 观察探究(1)某篮球队员罚球3次,每次命中率为0.7.(2)投掷一枚相同的硬币4次,每次正面向上的概率为0.5. (3)某射击选手射击6次,每次射击击中的概率为0.9. (4)一纸箱内装有5个白球、3个黑球,有放回地抽取5个球. (5)投掷一枚图钉8次,每次时针尖向上的概率为0.4. 问题:上面这些试验有什么共同的特点? 提示:从下面几个方面探究:(1)实验的条件; (2)每次实验间的关系; (3)每次试验可能的结果; (4)每次试验的概率;通过归纳发现:(1)每个例中的每次试验在相同条件下发生的; (2)每个例中的每次试验是相互独立的;(3)每个例中的每次试验都只有两种结果:发生与不发生; (4)每个例中的每次试验发生的概率都是相同的. ●活动二 归纳总结(1)定义:一般地,在相同条件下重复做的n 次试验,各次试验的结果相互独立,就称n 次独立重复试验.(2)特点:①条件相同;②相互独立;③结果有二;④概率相等. ●活动三 学以致用例1 判断下列试验是不是独立重复试验:(说明理由) (1)依次投掷四枚质地不同的硬币,3次正面向上;(2)姚明作为中锋,他职业生涯的每次罚球命中率为0.9,他连续投篮3次,恰有2次命中; (3)一纸箱内装有5个白球,3个黑球,2个红球,从中依次抽取5个球,恰好抽出4个白球; (4)一纸箱内装有5个白球,3个黑球,2个红球,从中有放回地抽取5个球,恰好抽出4个白球. 【知识点:独立重复试验】详解:(1)不是,因为条件不相同;(2)是;(3)不是,因为每次发生的概率不等;(4)是; 问题探究二 什么是二项分布?其概率计算公式是什么? ●活动一 计算观察问题:姚明作为中锋,他职业生涯的每次罚球命中率为0.9, (1)他连续投篮3次,恰有1次命中的概率是多少; (2)他连续投篮3次,恰有2次命中的概率是多少; (3)他连续投篮3次, 3次都命中的概率是多少; 解答:(1)3次中恰有1次命中有几种情况?共有3种情况:123A A A ,123A A A ,123A A A (设(1,2,3)i A i =表示事件“第i ”次命中)每一种情况的概率都是:120.9(10.9)⨯- 则恰有1次命中的概率是:1230.9(10.9)P =⨯⨯- (2)3次中恰有2次命中有几种情况?共有3种情况:123A A A ,123A A A ,123A A A (设(1,2,3)i A i =表示事件“第i ”次命中)每一种情况的概率都是:210.9(10.9)⨯-则恰有1次命中的概率是:2130.9(10.9)P =⨯⨯-;(3)3次都命中只有1种情况,即:123A A A (设(1,2,3)i A i =表示事件“第i ”次命中) 则概率是:310.9P =⨯; 观察三个试验的共同点: (1)都是独立重复试验;(2)每次试验分别有3(1,2,3)iC i =种情况;(3)每次试验的每种情况发生的概率相同.(4)他连续投篮n 次,恰有k 次命中的概率是多少;此次试验有k n C 种情况,每种情况发生的概率都是:0.9(10.9)k n k -⨯- 则此次试验发生的概率是:0.9(10.9)k k n k n P C -=-●活动二 归纳总结归纳:一般地,在n 次独立重复试验,设事件A 发生的次数是X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为()(1)k k n k n P X k C p p -==-,其中n k ,,2,1,0⋅⋅⋅=.此时称随机变量X 服从二项分布,记作(,)X B n p ,并称p 为成功概率.理解:1)公式()(1)k k n k n P X k C p p -==-中各字母的含义,n —试验发生的总次数;k —试验中事件A 恰好发生的次数;p —事件A 发生概率;(1-p )—事件A 恰不发生的概率. 2)二项式()1-np p ⎡⎤+⎣⎦的展开式中第k +1项为1(1)kn k k k n T C p p -+=-,那么()(1)k kn k n P X k C p p -==-就是二项式()1-np p ⎡⎤+⎣⎦展开式中中第k +1项,所以公式()(1)k k n k n P X k C p p -==-(),0,1,2,...,.k n =所以公式叫做二项分布.3)当n =1时,二项分 布就是两点分布.问题探究三 初步利用n 次独立重复试验的模型及二项分布解决一些简单的问题 例2 某射手每次射击击中目标的概率是0.9,求这名射手在5次射击中,(1)恰有4次击中目标的概率;(2)至少有4次击中目标的概率.(列出算式即可) 【知识点:二项分布,互斥事件的概率;数学思想:分类讨论】详解:设X 为击中目标的次数,则(5,0.9)X B(1)在5次射击中,恰有4次击中目标的概率为:44(54)540.9(10.9)P X C -==⨯⨯-(). (2)在5次射击中,至少有4次击中目标的概率为:44(54)55(55)5544+5=0.9(10.9)+0.9(10.9)P X P X P X C C --≥===⨯⨯-⨯⨯-()()()例3 重复抛掷一枚骰子6次,求至少4次得到点数为6的概率. 【知识点:二项分布,互斥事件的概率;数学思想:分类讨论】 详解:设X 为得到点数6的次数,则1(6,)6XB重复抛掷一枚骰子6次,至少4次得到点数为6的概率为:4(64)5(65)6(66)45666644+5+6111111=1+1+1666666P X P X P X P X C C C ---≥====⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯⨯-⨯⨯-⨯⨯- ⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()()()()例4 重复抛掷一枚骰子6次,求至少1次得到点数为6的概率.【知识点:二项分布,互斥事件、对立事件的概率;数学思想:分类讨论,正难则反】 详解:设X 为得到点数6的次数,则1(6,)6XB重复抛掷一枚骰子6次,至少1次得到点数为6的概率为:1(61)2(62)3(63)1256664(64)456641+2+3+4+5+6111111=1+1+1666666111 +1+66P X P X P X P X P X P X P X C C C C C ----≥=======⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯⨯-⨯⨯-⨯⨯- ⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⨯⨯-⨯ ⎪ ⎪⎝⎭⎝⎭()()()()()()() 5(65)6(66)661111+16666C --⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯⨯- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭另解:设X 为得到点数6的次数,则1(6,)6X B记事件A 为“至少1次得到点数为6”,则事件A 为 “没有1次得到点数为6”,又由于0(60)6110=166P A P X C -⎛⎫⎛⎫==⨯⨯- ⎪ ⎪⎝⎭⎝⎭()()则0(60)06111=1166P A P A C -⎛⎫⎛⎫=--⨯⨯- ⎪ ⎪⎝⎭⎝⎭()()例5 重复抛掷一枚骰子6次,求至少2次得到点数为6的概率.【知识点:二项分布,互斥事件、对立事件的概率;数学思想:分类讨论,正难则反】详解:设X 为得到点数6的次数,则1(6,)6XB记事件A 为“至少2次得到点数为6”,则事件A 为 “没有1次得到点数为6和恰好有1次得到点数为6”,又由于0(60)1(61)16611110+1=1+16666P A P X P X C C --⎛⎫⎛⎫⎛⎫⎛⎫===⨯⨯-⨯⨯- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()()则0(60)1(61)16611111=1116666P A P A C C --⎛⎫⎛⎫⎛⎫⎛⎫=--⨯⨯--⨯⨯- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()3.课堂总结 【知识梳理】(1)一般地,在相同条件下重复做的n 次试验,各次试验的结果相互独立,就称为n 次独立重复试验.(2)一般地,在在n 次独立重复试验,设事件A 发生的次数是X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为()(1)k kn k n P X k C p p -==-,其中n k ,,2,1,0⋅⋅⋅=.此时称随机变量X 服从二项分布,记作(,)X B n p ,并称p 为成功概率.【重难点突破】(1)独立重复试验的判断①每次试验是在相同的条件下进行的;②每次试验的结果不会受其他试验的影响,即每次试验是相互独立的; ③基本事件的概率可知,且每次试验保持不变; ④每次试验只有两种结果,要么发生,要么不发生. (2)二项分布的判断①在一次试验中,事件A 发生与不发生二者必居其一. ②事件A 在每次试验中,发生的概率相同.③试验重复地进行了n 次(n ≥2),且每次试验结果互不影响. 4.随堂检测1.一个学生通过某种英语听力测试的概率是12,他连续测试n 次,要保证他至少有一次通过的概率大于0.9,那么n 的最小值为( )A .3B .4C .5D .6【知识点:二项分布,对立事件的概率;数学思想:正难则反】 解:B2.若某射手每次射击击中目标的概率是0.9,每次射击的结果相互独立,那么在他连续4次的射击中,第一次未击中目标,后三次都击中目标的概率是( )A.33140.90.1C ⨯⨯B.30.9C.130.10.9⨯D.11340.90.1C ⨯⨯【知识点:二项分布,互斥事件、对立事件的概率;数学思想:分类讨论,正难则反】 解:C3.有10门炮同时各向目标各发一枚炮弹,如果每门炮的命中率都是0.1,则目标被击中的概率约是( ) A.0.55 B.0.45 C.0.75 D.0.65【知识点:独立重复试验,对立事件的概率】 解:D4.一批产品共有100个,次品率为 3%,从中有放回抽取3个恰有1个次品的概率是( )A.123973100C C CB.1230.030.97C ⨯⨯C.1330.03C ⨯D.1230.030.97C ⨯⨯【知识点:二项分布】 解:B5.一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为 8081,则此射手射击一次的命中率是( )A.13B.23C.14D.25【知识点:二项分布,对立事件的概率;数学思想:正难则反】 解:B 4801(1)81p --= (三)课后作业 基础型 自主突破1.已知随机变量ξ~B (6,13),则P (ξ≥2)=( ) A.16143 B.471729 C.473729 D.1243【知识点:二项分布,互斥事件、对立事件的概率;数学思想:分类讨论,正难则反】 解:C0(60)1(61)1661111212=101=11+13333P P P P C C ξξξξ--⎛⎫⎛⎫⎛⎫⎛⎫≥=-≤-=-=-⨯⨯-⨯⨯- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()()()2.某一试验中事件A 发生的概率为p ,则在n 次试验中,A 发生k 次的概率为( ) A .1-p k B .(1-p )k ·p n -k C .(1-p )kD .C k n (1-p )k ·p n -k【知识点:二项分布,对立事件的概率】 解:D3.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12.质点P 移动五次后位于点(2,3)的概率是( ) A .(12)5 B .C 25(12)5C .C 35(12)3D .C 25C 35(12)5 【知识点:二项分布】解:D 5次移动中有2次向右,剩下3次向上.4.某电子管正品率为34,次品率为14,现对该批电子管进行测试,设第ξ次首次测到正品,则P (ξ=3)的值为( ) A .C 23(14)2×34B .C 23(34)2×14C .(14)2×34 D .(34)2×14【知识点:二项分布,对立事件的概率】 解:D5.某种植物的种子发芽率是0.7,4颗种子中恰有3颗发芽的概率是________. 【知识点:二项分布】解:0.4116 33(43)430.7(10.7)P X C -==⨯⨯-()6.一个病人服用某种新药后被治愈的概率为0.9,则服用这种新药的4个病人中至少3人被治愈的概率为________(用数字作答).【知识点:二项分布】解:0.9477 33(43)44(44)443=3+=4=0.9(10.9)+0.9(10.9)P X P X P X C C --≥=⨯⨯-⨯⨯-()()()能力型 师生共研7.某单位6个员工借助互联网开展工作,每天每个员工上网的概率是0.5(相互独立),则一天内至少3人同时上网的概率为________.【知识点:二项分布,互斥事件、对立事件的概率;数学思想:分类讨论,正难则反】 解:2132 666012666111X 1012=1222P P X P X P X C C C ⎛⎫⎛⎫⎛⎫≥=-=-=-=-⨯-⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)()()()8.2013年初,一考生参加北京大学的自主招生考试,需进行书面测试,测试题中有4道题,每一道题能否正确做出是相互独立的,并且每一道题被考生正确做出的概率都是34. (1)求该考生首次做错一道题时,已正确做出了两道题的概率;(2)若该考生至少做出3道题,才能通过书面测试这一关,求这名考生通过书面测试的概率. 【知识点:对立、互斥事件的概率,独立重复试验,二项分布;数学思想:分类讨论】 解:(1)记“该考生正确做出第i 道题”为事件A i (i =1,2,3,4),则P (A i )=34,由于每一道题能否被正确做出是相互独立的,所以这名考生首次做错一道题时,已正确做出两道题的概率为 P (A 1A 2A 3)=P (A 1)·P (A 2)·P (A 3)=34×34×14=964.(2)记“这名考生通过书面测试”为事件B ,则这名考生至少正确做出3道题,即正确做出3道或4道题,故P (B )=C 34×(34)3×14+C 44×(34)4=189256. 9.9粒种子分种在3个坑中,每坑3粒,每粒种子发芽的概率为0.5.若一个坑内至少有1粒子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种.假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种的费用,写出ξ的分布列. 【知识点:对立事件的概率,二项分布】解:每个坑内3粒种子都不发芽的概率为(1-0.5)3=18,所以每个坑不需要补种的概率为p =1-18=78.利用3次独立重复试验的公式求解即可.补种费用ξ的分布列为10.一批玉米种子,其发芽率是0.8.问每穴至少种几粒,才能保证每穴至少有一粒发芽的概率大于98%?(lg2=0.301 0)【知识点:独立重复试验,对立事件的概率,二项分布;数学思想:正难则反】解:记事件A =“种一粒种子,发芽”,则P (A )=0.8,P (A -)=1-0.8=0.2.设每穴至少种n 粒,才能保证每穴至少有一粒发芽的概率大于98%.因为每穴种n 粒相当于n 次独立重复试验,记事件B =“每穴至少有一粒发芽”,则P (B -)=C 0n ·0.80·0.2n =0.2n .所以P (B )=1-P (B -)=1-0.2n .由题意有1-0.2n >98%,所以0.2n <0.02,两边取对数得n lg0.2<lg0.02.即n (lg2-1)<lg2-2.所以n >lg2-2lg2-1≈2.43,且n ∈N ,所以n ≥3. 故每穴至少种3粒,才能保证每穴至少有一粒发芽的概率大于98%.探究型 多维突破11.某校组织一次冬令营活动,有8名同学参加,其中有5名男同学,3名女同学,为了活动的需要,要从这8名同学中随机抽取3名同学去执行一项特殊任务,记其中X 名男同学.(1)求X 的分布列;(2)求去执行任务的同学中有男有女的概率.【知识点:对超几何分布】解:(1)X 的可能取值为0,1,2,3,且X 服从超几何分布,因此:P (X =0)=C 33C 38=156,P (X =1)=C 15C 23C 38=1556, P (X =2)=C 25C 13C 38=1528,P (X =3)=C 35C 38=528. ∴X 的分布列为(2)由上面的分布列,可知去执行任务的同学有男有女的概率为P (X =1)+P (X =2)=1556+1528=4556.12.一名学生骑自行车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是1 3.(1)设ξ为这名学生在途中遇到的红灯次数,求ξ的分布列;(2)设η为这名学生在首次停车前经过的路口数,求η的分布列;(3)求这名学生在途中至少遇到一次红灯的概率.【知识点:对立事件的概率,二项分布;数学思想:正难则反】解:(1)将遇到每个交通岗看做一次试验,遇到红灯的概率都是13,且每次试验结果相互独立,故ξ~B(6,13).所以ξ的分布列为P(ξ=k)=Ck6·(13)k·(23)6-k(k=0,1,2,…,6).(2)η=k(k=0,1,2,…,5)表示前k个路口没有遇上红灯,但在第k+1个路口遇上红灯,其概率为P(η=k)=(23)k·13,η=6表示一路没有遇上红灯,故其概率为P(η=6)=(23)6.所以η的分布列为(3)所求概率即P(ξ≥1)=1-P(ξ=0)=1-(23)6=665729.自助餐1.一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测.方法一:在10箱中各任意抽查一枚;方法二:在5箱中各任意抽查两枚.国王用方法一、二能发现至少一枚劣币的概率分别记为p1和p2.则()A.p1=p2B.p1<p2C.p1>p2D.以上三种情况都有可能【知识点:古典概型】解:B2.口袋里放有大小相等的两个红球和一个白球,有放回地每次摸取一个球,定义数列{a n}:a n =⎩⎨⎧-1,第n 次摸取红球,1,第n 次摸取白球,如果S n 为数列{a n }的前n 项和,那么S 7=3的概率为( ) A .C 57×(13)2×(23)5 B .C 47×(23)2×(13)5 C .C 27×(23)2×(13)5 D .C 37×(13)2×(23)5 【知识点:独立重复试验,二项分布】解:C3.某厂大量生产某种小零件,经抽样检验知道其次品率是1%,现把这种零件每6件装成一盒,那么每盒中恰好含一件次品的概率是( )A .(99100)6B .0.01C.C 16100(1-1100)5D .C 26(1100)2(1-1100)4 【知识点:对立事件的概率,二项分布】解:C4.在4次独立重复试验中,事件A 出现的概率相同,若事件A 至少发生一次的概率为6581,则事件A 在1次试验中出现的概率为( )A.13B.25C.56D .都不对【知识点:对立事件的概率,二项分布;数学思想:正难则反】解:A5.抛掷三个骰子,当至少有一个5点或一个6点出现时,就说这次试验成功,则在54次试验中成功次数X ~( )A .B (54,427)B .B (52,1927)C .B (54,1927)D .B (54,1724)【知识点:二项分布】解:C6.已知随机变量ξ服从二项分布ξ~B (6,13),则P (ξ=2)=( )A.316B.4243C.16243D.80243【知识点:二项分布】解:D7.将一枚硬币连掷5次,如果出现k 次正面的概率等于出现k +1次正面的概率,那么k 的值等于( )A .0B .1C .2D .3【知识点:二项分布】解:C8.有n 位同学参加某项选拔测试,每位同学能通过测试的概率都是p (0<p <1),假设每位同学能否通过测试是相互独立的,则至少有一位同学能通过测试的概率为( )A .(1-p )nB .1-p nC .p nD .1-(1-p )n【知识点:对立事件的概率,二项分布;数学思想:正难则反】解:D9.一个袋中有5个白球,3个红球,现从袋中每次取出1个球,取出后记下球的颜色然后放回,直到红球出现10次时停止,停止时取球的次数ξ是一个随机变量,则P (ξ=12)=________.(写出表达式不必算出最后结果)【知识点:二项分布】解:C 911(38)9(58)2·3810.某篮球运动员在三分线投球的命中率是12,他投球10次,恰好投进了3球的概率为________.(用数字作答)【知识点:二项分布】解:1512811.A ,B 两位同学各有五张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时A 赢得B 一张卡片,否则B 赢得A 一张卡片,若某人已赢得所有卡片,则游戏终止.求掷硬币的次数不大于7次时游戏终止的概率.【知识点:互斥事件的概率,二项分布】解:P =(12)5×2+2×C 45(12)5(12)2=116+2×5×(12)7=964.12.如图,一圆形靶分成A ,B ,C 三部分,其面积之比为1∶1∶2.某同学向该靶投掷3枚飞镖,每次1枚.假设他每次投掷必定会中靶,且投中靶内各点是随机的.(1)求该同学在一次投掷中投中A 区域的概率;(2)设X 表示该同学在3次投掷中投中A 区域的次数,求X 的分布列;(3)若该同学投中A ,B ,C 三个区域分别可得3分,2分,1分,求他投掷3次恰好得4分的概率.【知识点:互斥事件的概率,二项分布】解:(1)设该同学在一次投掷中投中A 区域的概率为P (A ),依题意,P (A )=14.(2)依题意知,X ~B ⎝ ⎛⎭⎪⎫3,14,从而X 的分布列为:(3)设B i 表示事件“第i 次击中目标时,击中B 区域”,C i 表示事件“第i 次击中目标时,击中C区域”,i =1,2,3.依题意知P =P (B 1C 2C 3)+P (C 1B 2C 3)+P (C 1C 2B 3)=3×14×12×12=316.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、教学目标:
1、知识与技能:理解n 次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。
2、过程与方法:能进行一些与n 次独立重复试验的模型及二项分布有关的概率的计算。
3、情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。
二、教学重点:理解n 次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。
教学难点:能进行一些与n 次独立重复试验的模型及二项分布有关的概率的计算。
三、教学方法:讨论交流,探析归纳
四、教学过程
(二)、探析新课:
1 独立重复试验的定义:指在同样条件下进行的,各次之间相互独立的一种试验
2.独立重复试验的概率公式:
一般地,如果在1次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个
事件恰好发生k 次的概率k n k k n n P P C k P --=)1()(.它是[](1)n
P P -+展开式的第1k +项 3.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是
k n k k n n q p C k P -==)(ξ,
(k =0,1,2,…,n ,p q -=1). 于是得到随机变量ξ的概率分布如下:
由于k n k k n q p C -恰好是二项展开式
011100)(q p C q p C q p C q p C p q n n n k n k k n n n n n n +++++=+--
中的各项的值,所以称这样的随机变量ξ服从二项分布(binomial distribution ),
记作ξ~B (n ,p ),其中n ,p 为参数,并记k n k k n q p C -=b (k ;n , p ).
例1.某射手每次射击击中目标的概率是0 . 8.求这名射手在 10 次射击中,(1)恰有 8 次击中目标的概率; (2)至少有 8 次击中目标的概率.(结果保留两个有效数字.)
例2.某气象站天气预报的准确率为80%,计算(结果保留两个有效数字):
(1)5次预报中恰有4次准确的概率;
(2)5次预报中至少有4次准确的概率
例3.某车间的5台机床在1小时内需要工人照管的概率都是1
4
,求1小时内5台机床中至
少2台需要工人照管的概率是多少?(结果保留两个有效数字)
例4.某人对一目标进行射击,每次命中率都是0.25,若使至少命中1次的概率不小于0.75,至少应射击几次?
例5.重复抛掷一枚筛子5次得到点数为6的次数记为ξ,求P(ξ>3).
(四)、课堂练习:
1..十层电梯从低层到顶层停不少于3次的概率是多少?停几次概率最大?
2.实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛).
(1)试分别求甲打完3局、4局、5局才能取胜的概率.(2)按比赛规则甲获胜的概率.。