用三种方式表示二次函数

合集下载

二次函数的图像及其三种表达式

二次函数的图像及其三种表达式

二次函数的图像及其三种表达式学生: 时间:学习目标1、熟悉常见的二次函数的图像;2、理解二次函数的三种表达式知识点分析1、.二次函数的三种表达式一般式:y=ax^2+bx+c (a ,b ,c 为常数,a ≠0)顶点式:y=a(x-h)^2+k [抛物线的顶点P (h ,k )]交点式:y=a(x-x1)(x-x2) [仅限于与x 轴有交点A (x1,0)和 B (x2,0)的抛物线]2、一般地,自变量x 和因变量y 之间存在如下关系:y=ax^2+bx+c (a ,b ,c 为常数,a ≠0,且a 决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI 还可以决定开口大小,IaI 越大开口就越小,IaI 越小开口就越大.)则称y 为x 的二次函数。

二次函数表达式的右边通常为二次三项式。

例题精讲例题1已知函数y=x 2+bx +1的图象经过点(3,2).(1)求这个函数的表达式;(2)画出它的图象,并指出图象的顶点坐标;(3)当x >0时,求使y ≥2的x 的取值范围.例题2、一次函数y=2x +3,与二次函数y=ax 2+bx +c 的图象交于A (m ,5)和B (3,n )两点,且当x=3时,抛物线取得最值为9.(1)求二次函数的表达式;(2)在同一坐标系中画出两个函数的图象;(3)从图象上观察,x 为何值时,一次函数与二次函数的值都随x 的增大而增大.(4)当x 为何值时,一次函数值大于二次函数值? 随堂练习1.已知函数y=ax 2+bx +c (a ≠0)的图象,如图①所示,则下列关系式中成立的是( ) A .0<-a b 2<1 B .0<-a b 2<2 C .1<-a b 2<2 D .-a b 2=1图① 图② 2.函数y =21x 2+2x +1写成y =a (x -h)2+k 的形式是 A.y =21(x -1)2+2 B.y =21(x -1)2+21 C.y =21(x -1)2-3 D.y =21(x +2)2-13.抛物线y =-2x 2-x +1的顶点在第_____象限A.一B.二C.三D.四4.不论m 取任何实数,抛物线y =a (x +m )2+m (a ≠0)的顶点都A.在y =x 直线上B.在直线y =-x 上C.在x 轴上D.在y 轴上5.任给一些不同的实数n ,得到不同的抛物线y =2x 2+n ,如当n =0,±2时,关于这些抛物线有以下结论:①开口方向都相同;②对称轴都相同;③形状都相同;④都有最低点,其中判断正确的个数是A.1个B.2个C.3个D.4个6.二次函数y =x 2+p x +q 中,若p+q=0,则它的图象必经过下列四点中A.(-1,1)B.(1,-1)C.(-1,-1)D.(1,1)图37.下列说法错误的是A.二次函数y =-2x 2中,当x =0时,y 有最大值是0B.二次函数y =4x 2中,当x >0时,y 随x 的增大而增大C.在三条抛物线y =2x 2,y =-0.5x 2,y =-x 2中,y =2x 2的图象开口最大,y =-x 2的图象开口最小D.不论a 是正数还是负数,抛物线y =ax 2(a ≠0)的顶点一定是坐标原点8.已知二次函数y =x 2+(2k +1)x +k 2-1的最小值是0,则k 的值是 A.43 B.-43 C.45 D.-45 9.小颖在二次函数y =2x 2+4x +5的图象上,依横坐标找到三点(-1,y 1),(21,y 2), (-321,y 3),则你认为y 1,y 2,y 3的大小关系应为A.y 1>y 2>y 3B.y 2>y 3>y 1C.y 3>y 1>y 2D.y 3>y 2>y 110.抛物线y =21(x +3)2的顶点坐标是______. 11.将抛物线y =3x 2向上平移3个单位后,所得抛物线的顶点坐标是______.12.函数y =34x -2-3x 2有最_____值为_____. 13.已知抛物线y =ax 2+bx +c 的图象顶点为(-2,3),且过(-1,5),则抛物线的表达式为______.14.二次函数y =mx 2+2x +m -4m 2的图象过原点,则此抛物线的顶点坐标是______.15.抛物线y=ax 2+bx +c (c ≠0)如图②所示,回答:(1)这个二次函数的表达式是 ;(2)当x= 时,y=3;16.抛物线y=ax 2+bx +c (c ≠0)如图②所示,回答:(1)这个二次函数的表达式是 ;(2)当x= 时,y=3;(3)根据图象回答:当x 时,y >0.17.已知抛物线y=-x 2+(6-2k )x +2k -1与y 轴的交点位于(0,5)上方,则k 的取值范围是.18.一根长为100m 的铁丝围成一个矩形的框子,要想使铁丝框的面积最大,边长分别为.19.若两个数的差为3,若其中较大的数为x ,则它们的积y 与x 的函数表达式为 ,它有最 值,即当x= 时,y= .20.边长为12cm 的正方形铁片,中间剪去一个边长为x 的小正方形铁片,剩下的四方框铁片的面积y (cm 2)与x (cm )之间的函数表达式为 .21.等边三角形的边长2x 与面积y 之间的函数表达式为 .22.抛物线y=x 2+kx -2k 通过一个定点,这个定点的坐标为 .23.已知抛物线y=x 2+x +b 2经过点(a ,-41)和(-a ,y 1),则y 1的值是 .24.如图,图①是棱长为a 的小正方体,②、③是由这样的小正方体摆放而成,按照这样的方法继续摆放,由上而下分别叫第一层、第二层……第n 层,第n 层的小正方体的个数记为S ,解答下列问题:(1)按照要求填表:n 1 2 3 4 …s 1 3 6 …(2)写出当n=10时,S= .(3)根据上表中的数据,把S 作为纵坐标,n 作为横坐标,在平面直角坐标系中描出相应的点.(4)请你猜一猜上述各点会在某一函数图象上吗?如果在某一函数的图象上,求出该函数的表达式.25.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程.图中二次函数图象(部分)刻画了该公司年初以来累积利润S (万元)与销售时间t (月)之间的关系(即前t 个月的利润总和S 与t 之间的关系).根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润S (万元)与时间t (月)之间的函数表达式;(2)求截止到几月末公司累积利润可达到30万元;(3)求第8个月公司所获利润是多少万元?。

二次函数的表达式常见的三种形式

二次函数的表达式常见的三种形式

二次函数的表达式常见的三种形式:
1、一般式:)0,,(2≠++=a c b a c bx ax y 为常数,且,
当已知抛物线上任意三点坐标时,通常设其函数表达式为一般式,然后列出关于c b a ,,的三元一次方程组求解;
2、顶点式:)0,,(2≠++=a k h a k h x a y 为常数,且)(,当已知抛物线的顶点坐标和抛
物线上另一点的坐标时,通常先设函数的表达式为顶点式,然后将另一点的坐标带入,解关于a 的一元一次方程;
3、交点式(拓展):)0,,)()((2121≠--=a x x a x x x x a y 为常数,且,其中21,x x 是抛物线与x 轴两交点的横坐标.当已知抛物线与x 轴的交点及抛物线上另一点坐标时,通常先设其函数表达式为))((21x x x x a y --=,然后将另一点的坐标带入求出待定系数a .。

二次函数的三种表示方式(解析版)

二次函数的三种表示方式(解析版)

二次函数的三种表示方式高中必备知识点1:一般式形如下面的二次函数的形式称为一般式:y =ax 2+bx +c (a ≠0);典型考题【典型例题】已知抛物线y =ax 2+bx +c 的对称轴为x =﹣1,且过点(﹣3,0),(0,﹣3). (1)求抛物线的表达式.(2)已知点(m ,k )和点(n ,k )在此抛物线上,其中m ≠n ,请判断关于t 的方程t 2+mt +n =0是否有实数根,并说明理由.【答案】(1)y =x 2+2x ﹣3;(2)方程有两个不相等的实数根. 【解析】(1)抛物线y =ax 2+bx +c 的对称轴为x =﹣1,且过点(﹣3,0),(0,3) 9a ﹣3b +c =0930312a b c c b a⎧⎪-+=⎪=-⎨⎪⎪-=-⎩ 解得a =1,b =2,c =﹣3 ∴抛物线y =x 2+2x ﹣3;(2)∵点(m ,k ),(n ,k )在此抛物线上, ∴(m ,k ),(n ,k )是关于直线x =﹣1的对称点, ∴+2m n=﹣1 即m =﹣n ﹣2 b 2﹣4ac =m 2﹣4n =(﹣n ﹣2)2﹣4n =n 2+4>0∴此方程有两个不相等的实数根.【变式训练】抛物线的图象如下,求这条抛物线的解析式。

(结果化成一般式)【答案】【解析】由图象可知抛物线的顶点坐标为(1,4),设此二次函数的解析式为y=a(x-1)2+4把点(3,0)代入解析式,得:4a+4,即a=-1所以此函数的解析式为y=-(x-1)2+4故答案是y=-x2+2x+3.【能力提升】如图,在平面直角坐标系中,抛物线先向右平移2个单位,再向下平移2个单位,得到抛物线. (1)求抛物线的解析式(化为一般式);(2)直接写出抛物线的对称轴与两段抛物线弧围成的阴影部分的面积.【答案】(1) ;(2)4.【解析】 (1)抛物线的顶点坐标为,把点先向右平移2个单位,再向下平移2个单位后得到的点的坐标为,抛物线的解析式为;(2)顶点坐标为,且抛物线的对称轴与两段抛物线弧围成的阴影部分的面积,抛物线的对称轴与两段抛物线弧围成的阴影部分的面积.高中必备知识点2:顶点式形如下面的二次函数的形式称为顶点式:y =a (x -h )2+k (a ≠0),其中顶点坐标是(h ,k ).典型考题【典型例题】已知二次函数21322y x x =-++. ⑴用配方法将此二次函数化为顶点式; ⑵求出它的顶点坐标和对称轴方程.【答案】(1)()21122y x =--+;(2)(1,2),直线1x = 【解析】 (1)21322y x x =-++()21232y x x =--- ()2121132y x x =--+--()212142y x x ⎡⎤=--+-⎣⎦ ()21142y x ⎡⎤=---⎣⎦()21122y x =--+(2)∵()21122y x =--+∴顶点坐标为(1,2),对称轴方程为直线1x =.【变式训练】已知二次函数的图象的顶点是(﹣1,2),且经过(1,﹣6),求这个二次函数的解析式. 【答案】二次函数的解析式为y=﹣2(x+1)2+2. 【解析】∵二次函数的图象的顶点是(﹣1,2),∴设抛物线顶点式解析式y=a (x+1)2+2,将(1,﹣6)代入得,a (1+1)2+2=﹣6, 解得a=﹣2,所以,这个二次函数的解析式为y=﹣2(x+1)2+2.【能力提升】二次函数的图象经过点(03)A -,,(23)B -,,(10)C -,. (1)求此二次函数的关系式; (2)求此二次函数图象的顶点坐标;(3)填空:把二次函数的图象沿坐标轴方向最少..平移 个单位,使得该图象的顶点在原点.【答案】(1)322--=x x y ;(2)(1,-4);(3)5【解析】(1)设c bx ax y ++=2,把点(03)A -,,(23)B -,,(10)C -,代入得 ⎪⎩⎪⎨⎧=---=++-=03343b a c b a c ,解得⎪⎩⎪⎨⎧-=-==321c b a∴322--=x x y ;(2)∵4)1(3222--=--=x x x y∴函数的顶点坐标为(1,-4); (3)∵|1-0|+|-4-0|=5∴二次函数的图象沿坐标轴方向最少平移5个单位,使得该图象的顶点在原点.高中必备知识点3:交点式形如下面的二次函数的形式称为交点式:y =a (x -x 1) (x -x 2) (a ≠0),其中x 1,x 2是二次函数图象与x 轴交点的横坐标.典型考题【典型例题】已知在平面直角坐标系中,二次函数 y =x 2+2x +2k ﹣2 的图象与 x 轴有两个交点. (1)求 k 的取值范围;(2)当 k 取正整数时,请你写出二次函数 y =x 2+2x +2k ﹣2 的表达式,并求出此二次函数图象与 x 轴的两个交点坐标.【答案】(1)k <;(2)(﹣2,0)和(0,0).【解析】(1)∵图象与x轴有两个交点,∴方程有两个不相等的实数根,∴解得(2)∵k 为正整数,∴k=1.∴令y=0,得解得∴交点为(﹣2,0)和(0,0).【变式训练】已知二次函数的图象经过点(3,-8),对称轴是直线x=-2,此时抛物线与x轴的两交点间距离为6.(1)求抛物线与x轴两交点坐标;(2)求抛物线的解析式.【答案】(1)(-5,0),(1,0);(2)y=-x2-2x+.【解析】(1) ∵因为抛物线对称轴为直线x=-2,且图象与x轴的两个交点的距离为6,∴点A、B到直线x=-2的距离为3,∴A为(-5,0),B为(1,0);(2)设y=a(x+5)(x-1).∵点(3,-8)在抛物线上,∴-8=a(3+5)(3-1),a=-,∴y=-x2-2x+.【能力提升】已知二次函数y=x2﹣4x+3.(1)求该二次函数与x轴的交点坐标和顶点;(2)在所给坐标系中画出该二次函数的大致图象,并写出当y<0时,x的取值范围.【答案】(1)二次函数与x轴的交点坐标为(1,0)(3,0),抛物线的顶点坐标为(2,﹣1);(2)图见详解;当y<0时,1<x<3.【解析】(1)当y=0时,x2﹣4x+3=0,解得x1=1,x2=3,所以该二次函数与x轴的交点坐标为(1,0)(3,0);因为y=x2﹣4x+3=x2﹣4x+4﹣1=(x﹣2)2﹣1,所以抛物线的顶点坐标为(2,﹣1);(2)函数图象如图:由图象可知,当y<0时,1<x<3.专题验收测试题1.将抛物线y=﹣2(x+1)2﹣2向左平移2个单位,向下平移3个单位后的新抛物线解析式为()A.y=﹣2(x﹣1)2+1 B.y=﹣2(x+3)2﹣5C.y=﹣2(x﹣1)2﹣5 D.y=﹣2(x+3)2+1【答案】B【解析】解:将抛物线y=﹣2(x+1)2﹣2向左平移2个单位,向下平移3个单位后的新抛物线解析式为:y=﹣2(x+3)2﹣5.故选:B.2.二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标是()A.(1,3)B.(﹣1,3)C.(1,﹣3)D.(﹣1,﹣3)【答案】A【解析】解:二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标为(1,3).故选:A.3.若二次函数y=(k+1)x2﹣2x+k的最高点在x轴上,则k的值为()A.1 B.2 C.﹣1 D.﹣2【答案】D【解析】∵二次函数y=(k+1)x2﹣2x+k的最高点在x轴上,∴△=b2﹣4ac=0,即8﹣4k(k+1)=0,解得:k1=1,k2=﹣2,当k=1时,k+1>0,此时图象有最低点,不合题意舍去,则k的值为:﹣2.故选:D.4.已知二次函数为常数,且),()A.若,则的增大而增大;B.若,则的增大而减小;C.若,则的增大而增大;D.若,则的增大而减小;【答案】C【解析】解:∵y=ax2+(a+2)x-1对称轴直线为,x=-=-.由a<0得,->0.∴->-1.又∵a<0∴抛物线开口向下.故当x<-时,y随x增大而增大.又∵x<-1时,则一定有x<-.∴若a<0,则x<-1,y随x的增大而增大.故选:C.5.二次函数y=3(x﹣1)2+2,下列说法正确的是()A.图象的开口向下B.图象的顶点坐标是(1,2)C.当x>1时,y随x的增大而减小D.图象与y轴的交点坐标为(0,2)【答案】B【解析】解:A、因为a=3>0,所以开口向上,错误;B、顶点坐标是(1,2),正确;C、当x>1时,y随x增大而增大,错误;D、图象与y轴的交点坐标为(0,5),错误;故选:B.6.将抛物线y=x2﹣x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为()A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+4【答案】A【解析】,当向左平移2个单位长度,再向上平移3个单位长度,得.故选A.7.把抛物线y=ax2+bx+c图象先向左平移2个单位长度,再向下平移3个单位长度,所得的图象的解析式是y=x2+5x+6,则a﹣b+c的值为()A.2 B.3 C.5 D.12【答案】B【解析】y=x2+5x+6=(x+)2﹣.则其顶点坐标是(﹣,﹣),将其右左平移2个单位长度,再向上平移3个单位长度后得到(﹣).故原抛物线的解析式是:y=(x+)2+=x2+x+3.所以a=b=1,c=3.所以a﹣b+c=1﹣1+3=3.故选B.8.已知二次函数y=﹣(x﹣k+2)(x+k)+m,其中k,m为常数.下列说法正确的是()A.若k≠1,m≠0,则二次函数y的最大值小于0B.若k<1,m>0,则二次函数y的最大值大于0C.若k=1,m≠0,则二次函数y的最大值小于0D.若k>1,m<0,则二次函数y的最大值大于0【答案】B【解析】∵y=﹣(x﹣k+2)(x+k)+m=﹣(x+1)2+(k﹣1)2+m,∴当x=﹣1时,函数最大值为y=(k﹣1)2+m,则当k<1,m>0时,则二次函数y的最大值大于0.故选:B.9.关于抛物线,下列说法错误..的是().A.开口向上B.与轴只有一个交点C.对称轴是直线D.当时,的增大而增大【答案】B【解析】解:A、,抛物线开口向上,所以A选项的说法正确;B、当时,即,此方程没有实数解,所以抛物线与x轴没有交点,所以B选项的说法错误;C、抛物线的对称轴为直线,所以C选项的说法正确;D、抛物线开口向上,抛物线的对称轴为直线,则当时,y随x的增大而增大,所以D选项的说法正确.故选:B.10.将抛物线y=﹣3x2+1向左平移2个单位长度,再向下平移3个单位长度,所得到的抛物线为()A.y=﹣3(x﹣2)2+4 B.y=﹣3(x﹣2)2﹣2C.y=﹣3(x+2)2+4 D.y=﹣3(x+2)2﹣2【答案】D【解析】将抛物线y=﹣3x2+1向左平移2个单位长度所得直线解析式为:y=﹣3(x+2)2+1;再向下平移3个单位为:y=﹣3(x+2)2+1﹣3,即y=﹣3(x+2)2﹣2.故选D.11.已知抛物线经过点,则该抛物线的解析式为__________.【答案】【解析】解:将A、O两点坐标代入解析式得:,解得:,∴该抛物线的解析式为:y=.12.二次函数y=(a-1)x2-x+a2-1 的图象经过原点,则a的值为______.【答案】-1【解析】解:∵二次函数y=(a-1)x2-x+a2-1 的图象经过原点,∴a2-1=0,∴a=±1,∵a-1≠0,∴a≠1,∴a的值为-1.故答案为:-1.13.将二次函数y=x2的图象先向上平移1个单位,然后向右平移2个单位,得到新的二次函数的顶点式为______.【答案】y=(x-2)2+1【解析】解:将抛物线y=x2的图象先向上平移1个单位,然后向右平移2个单位后,得到的抛物线的表达式为y=(x-2)2+1,故答案为:y=(x-2)2+1.14.将抛物线y=2x2平移,使顶点移动到点P(﹣3,1)的位置,那么平移后所得新抛物线的表达式是_____.【答案】y=2(x+3)2+1【解析】抛物线y=2x2平移,使顶点移到点P(﹣3,1)的位置,所得新抛物线的表达式为y=2(x+3)2+1.故答案为:y=2(x+3)2+115.在平面直角坐标系xOy 中,函数y = x2的图象经过点M (x1 , y1 ) ,N (x2 , y2 ) 两点,若- 4< x1<-2,0< x2<2 ,则y1 ____ y2 . (用“ <”,“=”或“>”号连接)【答案】>【解析】解:抛物线y=x2的对称轴为y轴,而M(x1,y1)到y轴的距离比N(x2,y2)点到y轴的距离要远,所以y1>y2.故答案为:>.16.小颖从如图所示的二次函数的图象中,观察得出了下列信息:;;;;.你认为其中正确信息的个数有______.【答案】【解析】解:抛物线的对称轴位于y轴左侧,则a、b同号,即,抛物线与y轴交于正半轴,则,所以,故错误;如图所示,当时,,所以,故正确;对称轴,,则如图所示,当时,,,,故正确;如图所示,当时,,故错误;综上所述,正确的结论是:.故答案是:.17.已知二次函数y=﹣x2+bx﹣c的图象与x轴的交点坐标为(m﹣2,0)和(2m+1,0).(1)若x<0时,y随x的增大而增大,求m的取值范围;(2)若y =1时,自变量x 有唯一的值,求二次函数的解析式. 【答案】(1)31=m (2)y =﹣x 2﹣4x ﹣3和y =﹣x 2﹣16x ﹣63. 【解析】解:(1)由题意可知,二次函数图象的对称轴为x =2213122m m m -++-=,∵a =﹣1<0,∴二次函数的图象开口向下, ∵x <0时,y 随x 的增大而增大,∴312m -≥0, 解得m ≥13,(2)由题意可知,二次函数的解析式为y =﹣(x ﹣312m -)2+1, ∵二次函数的图象经过点(m ﹣2,0), ∴0=﹣(m ﹣2﹣312m -)2+1, 解得m =﹣1和m =﹣5,∴二次函数的解析式为y =﹣x 2﹣4x ﹣3和y =﹣x 2﹣16x ﹣63. 18.设二次函数y 1=ax 2+bx +a ﹣5(a ,b 为常数,a ≠0),且2a +b =3. (1)若该二次函数的图象过点(﹣1,4),求该二次函数的表达式;(2)y 1的图象始终经过一个定点,若一次函数y 2=kx +b (k 为常数,k ≠0)的图象也经过这个定点,探究实数k ,a 满足的关系式;(3)已知点P (x 0,m )和Q (1,n )都在函数y 1的图象上,若x 0<1,且m >n ,求x 0的取值范围(用含a 的代数式表示).【答案】(1)y =3x 2﹣3x ﹣2;(2)k =2a ﹣5;(3)x 0<.【解析】解:(1)∵函数y 1=ax 2+bx +a ﹣5的图象经过点(﹣1,4),且2a +b =3 ∴,∴,∴函数y 1的表达式为y =3x 2﹣3x ﹣2; (2)∵2a +b =3∴二次函数y1=ax2+bx+a﹣5=ax2+(3﹣2a)x+a﹣5,整理得,y1=[ax2+(3﹣2a)x+a﹣3]﹣2=(ax﹣a+3)(x﹣1)﹣2∴当x=1时,y1=﹣2,∴y1恒过点(1,﹣2)∴代入y2=kx+b得∴﹣2=k+3﹣2a得k=2a﹣5∴实数k,a满足的关系式:k=2a﹣5(3)∵y1=ax2+(3﹣2a)x+a﹣5∴对称轴为x=﹣,∵x0<1,且m>n∴当a>0时,对称轴x=﹣,解得,当a<0时,对称轴x=﹣,解得(不符合题意,故x0不存在)故x0的取值范围为:19.已知二次函数y=x2+bx+c的图象经过点A和点B(1)求该二次函数的解析式;(2)写出该抛物线的对称轴及顶点坐标.【答案】(1) y=x2﹣4x﹣6;(2)对称轴为x=2;顶点坐标是(2,﹣10).【解析】(1)根据题意,得,解得,∴所求的二次函数的解析式为y=x2﹣4x﹣6.(2)又∵y=x2﹣4x﹣6=(x﹣2)2﹣10,∴函数图象的对称轴为x=2;顶点坐标是(2,﹣10).20.如图,对称轴为直线x=-1的抛物线y=x2+bx+c与x轴相交于A、B两点,其中A点的坐标为(-3,0),C为抛物线与y轴的交点.(1)求抛物线的解析式;(2)若点P在抛物线上,且S△POC=2S△BOC,求点P的坐标.【答案】(1)y=x2+2x﹣3;(2)点P的坐标为(2,5)或(﹣2,﹣3)【解析】(1)∵抛物线的对称轴为x=﹣1,A点的坐标为(﹣3,0),∴点B的坐标为(1,0).将点A和点B的坐标代入抛物线的解析式得:解得:b=2,c=﹣3,∴抛物线的解析式为y=x2+2x﹣3.(2)∵将x=0代y=x2+2x﹣3入,得y=﹣3,∴点C的坐标为(0,﹣3).∴OC=3.∵点B的坐标为(1,0),∴OB=1.设点P的坐标为(a,a2+2a﹣3),则点P到OC的距离为|a|.∵S△POC=2S△BOC,∴12OC•|a|=12OC•OB,即12×3×|a|=2×12×3×1,解得a=±2.当a=2时,点P的坐标为(2,5);当a=﹣2时,点P的坐标为(﹣2,﹣3).∴点P的坐标为(2,5)或(﹣2,﹣3).21.已知抛物线y=ax2﹣3ax﹣4a(a≠0).(1)直接写出该抛物线的对称轴.(2)试说明无论a为何值,该抛物线一定经过两个定点,并求出这两个定点的坐标.【答案】(1);(2)抛物线一定经过点.【解析】解:(1)该抛物线的对称轴为x=-;(2)可化为,当,即时,,抛物线一定经过点.22.如图,已知点A(-1,0),B(3,0),C(0,)在抛物线y=ax2+bx+c 上.(1)求抛物线解析式;(2)在第一象限的抛物线上求一点P,使△PBC的面积为.【答案】(1);(2)点P的坐标为(1,2)或(2,).【解析】(1)设抛物线的解析式为y=a(x+1)(x-3),将C(0,)代入,得-3a=,解得∴抛物线的解析式为(2)过点P作PD⊥x轴于D.设点,∴S四边形ACOB=S梯形PDOC+S△PBD =(=∴S△PBC=S四边形PCOB- S△BOC=整理得,解得x=1或x=2.∴点P的坐标为(1,2)或(2,)。

二次函数的表达式常见的三种形式

二次函数的表达式常见的三种形式

二次函数的表达式常见的三种
形式(总1页)
-CAL-FENGHAI.-(YICAI)-Company One1
-CAL-本页仅作为文档封面,使用请直接删除
2 二次函数的表达式常见的三种形式:
1、一般式:)0,,(2≠++=a c b a c bx ax y 为常数,且,当已知抛物线上任意三点坐标时,通常设其函数表达式为一般式,然后列出关于c b a ,,的三元一次方程组求解;
2、顶点式:)0,,(2≠++=a k h a k h x a y 为常数,且)
(,当已知抛物线的顶点坐标和抛物线上另一点的坐标时,通常先设函数的表达式为顶点式,然后将另一点的坐标带入,解关于a 的一元一次方程;
3、交点式(拓展):)0,,)()((2121≠--=a x x a x x x x a y 为常数,且,其中21,x x 是抛物线与x 轴两交点的横坐标.当已知抛物线与x 轴的交点及抛物线上另一点坐标时,通常先设其函数表达式为))((21x x x x a y --=,然后将另一点的坐标带入求出待定系数a .。

用待定系数法求二次函数表达式的三种形式

用待定系数法求二次函数表达式的三种形式
出该函数表达式。
例题1 已知抛物线过点(1,0)(3,-2)(5,0), 求该抛物线所对应函数的表达式。
例题2 抛物线对称轴为直线x=-1,最高点的纵坐标为4, 且与x 轴两交点之间的距离是6,求次二次函x1 数的解 析式。
巩固练习
• 1.已知抛物线与x轴的两交点为(-1,0)和(3, 0),且过点(2,-3).求抛物线的解析式.
待定系数法求二次函数表达式常见 的三种形式 :
一般式 • 1.
:y=ax²+bx+c (a,b,c为常数,且a≠0)
• 2.顶点式:y=a(x+h)²+k
(a 0)顶点坐标( h, k)
• 3.交点式: y a(x x1)(x x2 )
一、一般式 y ax2 bx c(a )
已知二次函数 y ax2 bx c 图象过某三
14.已知二次函数y=x²+2(n+3)x+16的顶点在坐标 轴上,求该二次函数表达式。
15.已知抛物线y=ax²+bx+c的顶点坐标为P(2,-1), 图象与x轴交于A,B两点。若△PAB的x1 面积为6, 求该抛物线所对应函数的解析式。
•谢谢
14
பைடு நூலகம்
• 3.二次函数y=ax²+bx+c,x=6时,y=0;x=4时, y有最大值为8,求此函数的解析式。
• 4.若二次函数y=ax²+bx+c(a≠0)的最大值是 2,图象经过点(-2,4)且顶点在直线y=-2x上, 试求ab+c的值
三、交点式 y a(x x1)(x x2 )
已知二次函数图象与x轴两交点坐标分别为 (x1,0),(x2,0) 通常选用交点式,再根据其他即可解出a值,从而求

二次函数的三种形式

二次函数的三种形式

二次函数的三形式种
bx c
2
其中a是二次项系数,ax 是二次项
2
b是一次项系数,bx是一次项 c是常数项 b b 4ac b 对称轴为x=- , 顶点坐标为( , ) 2a 2a 4a
2
a、b、c与二次 函数图象的关 系
a决定了抛物线的开口方向 a>0开口向上 a<0开口向下 b与a共同决定了抛物线的对称轴( )
(左同右异)
c是抛物线与y轴交点的纵坐标
x=-
b , 2a
顶点式:
y=a(x-h) k
2
其中对称轴为x=h,定点坐标为(h,k)
双根式:
y=a(x-x1 )(x-x2 )其中(x1,0), (x2 ,0)是二次函数图象 与x轴的两个交点坐标
三种形式的相互转化
一般式
配方法 化简
顶点式
双根式
三种形式的优 缺点
一般式:优点:a、b、c一目了然,y轴交点坐标 缺点:不容易看出顶点坐标及对称轴 顶点式:优点:很容易看出顶点坐标及对称轴 缺点:不容易看出a、b、c的符号和大小 双根式:优点:很容易看到图象与坐标轴的交点 缺点:当图象不与坐标轴相交时,此形式不 能用
三种形式的应用
1、不知道特殊点的坐标时,常用一般式来表示 2、知道顶点坐标时,常用顶点式来表示 3、如果知道图象与坐标轴交点时,常用双根 式来表示 上述三种形式要灵活应用才能更好的理解 二次函 数的 表达式,进一步灵活应用

二次函数的三种表达形式

二次函数的三种表达形式

•二次函数的三种表白形式:①普遍式:y=ax2+bx+c(a≠0,a、b、c为常数),顶面坐标为[,]把三个面代进函数剖析式得出一个三元一次圆程组,便能解出a、b、c的值.之阳早格格创做②顶面式:y=a(x-h)2+k(a≠0,a、h、k为常数),顶面坐标为对于称轴为直线x=h,顶面的位子特性战图像的启心目标与函数y=ax2的图像相共,当x=h时,y最值=k.偶尔题目会指出让您用配要发把普遍式化成顶面式.例:已知二次函数y的顶面(1,2)战另一任性面(3,10),供y 的剖析式.解:设y=a(x-1)2+2,把(3,10)代进上式,解得y=2(x-1)2+2. 注意:与面正在仄里直角坐标系中的仄移分歧,二次函数仄移后的顶面式中,h>0时,h越大,图像的对于称轴离y 轴越近,且正在x轴正目标上,没有克没有及果h前是背号便简朴天认为是背左仄移.简直可分为底下几种情况:当h>0时,y=a(x-h)2的图象可由扔物线y=ax2背左仄止移动h个单位得到;当h<0时,y=a(x-h)2的图象可由扔物线y=ax2背左仄止移动|h|个单位得到;当h>0,k>0时,将扔物线y=ax2背左仄止移动h个单位,再进与移动k个单位,便不妨得到y=a(x-h)2+k的图象;当h>0,k<0时,将扔物线y=ax2背左仄止移动h个单位,再背下移动|k|个单位可得到y=a(x-h)2+k的图象;当h<0,k>0时,将扔物线y=ax2背左仄止移动|h|个单位,再进与移动k个单位可得到y=a(x-h)2+k的图象;当h<0,k<0时,将扔物线y=ax2背左仄止移动|h|个单位,再背下移动|k|个单位可得到y=a(x-h)2+k的图象.③接面式:y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有接面时的扔物线,即b2-4ac≥0] .已知扔物线与x轴即y=0有接面A(x1,0)战 B(x2,0),咱们可设y=a(x-x1)(x-x2),而后把第三面代进x、y中即可供出a.由普遍式形成接面式的步调:二次函数∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),∴y=ax2+bx+c=a(x2+b/ax+c/a)=a[x2-(x1+x2)x+x1?x2]=a(x-x1)(x-x2).要害观念:a,b,c为常数,a≠0,且a决断函数的启心目标.a>0时,启心目标进与;a<0时,启心目标背下.a的千万于值不妨决断启心大小.a的千万于值越大启心便越小,a的千万于值越小启心便越大.能机动使用那三种办法供二次函数的剖析式;能流利天使用二次函数正在几许范围中的应用;能流利天使用二次函数办理本质问题.•二次函数阐明式的供法:便普遍式y=ax2+bx+c(其中a,b,c为常数,且a≠0)而止,其中含有三个待定的系数a ,b ,c.供二次函数的普遍式时,必须要有三个独力的定量条件,去修坐闭于a ,b ,c 的圆程,联坐供解,再把供出的a ,b ,c 的值反代回本函数剖析式,即可得到所供的二次函数剖析式.1.巧与接面式法:知识归纳:二次函数接面式:y=a(x-x1)(x-x2) (a≠0)x1,x2分别是扔物线与x轴二个接面的横坐标.已知扔物线与x轴二个接面的横坐标供二次函数剖析式时,用接面式比较烦琐.①典型例题一:报告扔物线与x轴的二个接面的横坐标,战第三个面,可供出函数的接面式.例:已知扔物线与x轴接面的横坐标为-2战1 ,且通过面(2,8),供二次函数的剖析式.面拨:解设函数的剖析式为y=a(x+2)(x-1),∵过面(2,8),∴8=a(2+2)(2-1).解得a=2,∴扔物线的剖析式为:y=2(x+2)(x-1),即y=2x2+2x-4.②典型例题二:报告扔物线与x轴的二个接面之间的距离战对于称轴,可利用扔物线的对于称性供解.例:已知二次函数的顶面坐标为(3,-2),而且图象与x 轴二接面间的距离为4,供二次函数的剖析式.面拨:正在已知扔物线与x轴二接面的距离战顶面坐目标情况下,问题比较简单办理.由顶面坐标为(3,-2)的条件,易知其对于称轴为x=3,再利用扔物线的对于称性,可知图象与x轴二接面的坐标分别为(1,0)战(5,0).此时,可使用二次函数的接面式,得出函数剖析式.2.巧用顶面式:顶面式y=a(x-h)2+k(a≠0),其中(h,k)是扔物线的顶面.当已知扔物线顶面坐标或者对于称轴,或者不妨先供出扔物线顶面时,设顶面式解题格外简净,果为其中惟有一个已知数a.正在此类问题中,常战对于称轴,最大值或者最小值分离起去命题.正在应用题中,波及到桥拱、隧讲、弹讲直线、投篮等问题时,普遍用顶面式便当.①典型例题一:报告顶面坐标战另一个面的坐标,间接不妨解出函数顶面式.例:已知扔物线的顶面坐标为(-1,-2),且通过面(1,10),供此二次函数的剖析式.面拨:解∵顶面坐标为(-1,-2),故设二次函数剖析式为y=a(x+1)2-2 (a≠0).把面(1,10)代进上式,得10=a·(1+1)2-2.∴a=3.∴二次函数的剖析式为y=3(x+1)2-2,即y=3x2+6x+1.②典型例题二:如果a>0,那么当时,y有最小值且y最小=;如果a<0,那么,当时,y有最大值,且y最大=. 报告最大值或者最小值,本质上也是报告了顶面坐标,共样也不妨供出顶面式.例:已知二次函数当x=4时有最小值-3,且它的图象与x 轴二接面间的距离为6,供那个二次函数的剖析式.面拨:析解∵二次函数当x=4时有最小值-3,∴顶面坐标为(4,-3),对于称轴为直线x=4,扔物线启心进与.由于图象与x轴二接面间的距离为6,根据图象的对于称性便不妨得到图象与x轴二接面的坐标是(1,0)战(7,0). ∴扔物线的顶面为(4,-3)且过面(1,0).故可设函数剖析式为y=a(x-4)2-3.将(1,0)代进得0=a(1-4)2-3, 解得a=13.∴y=13(x-4)2-3,即y=13x2-83x+73.③典型例题三:报告对于称轴,相称于报告了顶面的横坐标,概括其余条件,也可解出.比圆:(1)已知二次函数的图象通过面A(3,-2)战B(1,0),且对于称轴是直线x=3.供那个二次函数的剖析式. (2)已知闭于x的二次函数图象的对于称轴是直线x=1,图象接y轴于面(0,2),且过面(-1,0),供那个二次函数的剖析式.(3)已知扔物线的对于称轴为直线x=2,且通过面(1,4)战面(5,0),供此扔物线的剖析式.(4)二次函数的图象的对于称轴x=-4,且过本面,它的顶面到x轴的距离为4,供此函数的剖析式.④典型例题四:利用函数的顶面式,解图像的仄移等问题非常便当.例:把扔物线y=ax2+bx+c的图像背左仄移3 个单位, 再背下仄移2 个单位, 所得图像的剖析式是y=x2-3x+5, 则函数的剖析式为_______.面拨:解先将y=x2-3x+5化为y=(x-32)2+5-94, 即y=(x-32)2+114. ∵它是由扔物线的图像背左仄移3 个单位, 再背下仄移2 个单位得到的,∴本扔物线的剖析式是y=(x-32+3)2+114+2=(x+32)2+194=x2+3x+7.。

二次函数三种表达形式

二次函数三种表达形式

函数三种表达形式与a,b,c,∆符号【知识要点】一.图形a ,b ,c ,∆的符号的确定,它们之间的关系:1. 0>a ⇔ 开口向上 0<a ⇔ 开口向下2. 02=-a b ⇔ 对称轴为y 轴 02<-ab ⇔ 对称轴在y 轴左侧 02>-ab⇔ 对称轴在y 轴右侧(左同右异) 3. 0=c ⇔ 经过原点 0>c ⇔ 与y 轴正半轴相交 3.0<c ⇔ 与y 轴负半轴相交 4. 0=∆ ⇔ 与x 轴只有一个交点(顶点在x 轴上) 0>∆ ⇔ 与x 轴有两个交点0<∆ ⇔ 与x 轴无交点二.二次函数解析式的三种形式:(1)一般式:2y ax bx c =++(a,b,c 为常数,a ≠0);已知抛物线上任意三点或三组x,y 的对应值时,通常设函数解析式为 一般式2y ax bx c =++,然后列三元一次方程组求解a,b,c 。

(2)顶点式:k h x a y +-=2)( (a,h,k 为常数,a ≠0)已知抛物线顶点坐标 或对称轴,函数最值等及第三点时,设二次函数k h x a y +-=2)(,求解。

(3)两根式(或截距式):12()()y a x x x x =--(a, 12,x x 为常数,a ≠0)其中12,x x 是抛物线与x 轴交点的横坐标。

【例题讲解】例1.1 已知二次函数)0(2≠++=a c bx ax y 的图象是 (1)a 0,b 0,c 0(填“>”或“<”) (2)点(bc ac ,)在直角坐标系中的第 象限. (3)二次函数,满足ac b 42- 0.(4)一次函数c ax y +=的图象不经过第 象限.2. 二次函数c bxax y ++=2的图象,如图(1)所示,则系数b ax y +=的图象只可能是图( )x例2.二次函数的图象如下图所示,则在下列不等式中,成立的个数是( ) ①abc<0 ②a+b+c<0 ③a+c>b ④a<2c b- A .1 B .2 C .3 D .4例3.(1)若0,0,0<><c b a ,则抛物线c bx ax y ++=2的大致图象为( )(2).二次函数c bx ax y ++=2()0≠a 的图象,如图,下列结论①0<c ②0>b ③024>++c b a ④()22b c a <+其中正确的有( )A 、1个B 、2个C 、3个D 、4个例4.不论x 为何实数,二次函数22y ax x c =-+的值恒为负的条件( ) A .0,1a ac >> B .0,1a ac >< C .0,1a ac << D .0,1a ac <>例5 .如图,抛物线2812y mx mx n =++与x 轴交于A 、B 两点(点A 在点B 的左边),在第二象限内抛物线上的一点C ,使△OCA ∽△OBC ,且:3:1AC BC =,若直线AC 交y 轴于P 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)当x取何值时,长方
形的面积最大?它的最大
面积是多少?你是怎样得
到的?
请你描述一下y随x的变化
o
5
x
而变化的情况。
做一做:
两个数相差2,设其中较大一个数为x ,那么它们的积y 是
如何随x的变化而变化的?你能分别用函数表达式、表格和图
象表示这种变化吗?
1、用函数表达式表示:y=
x2 2x

2、用表格表示:
3.列表法能表达出某些自变量对应的具体的函数值关系。 对于对应关系不容易找出规律的,用列表法较容易表达清 楚。 4.图象法能形象地反映出函数的变化趋势。它比解析法和 列表法更直观和形象。
5.在解决问题时,要根据具体情况的需要选择某种表示方 法,表达实际的对应关系。
作业:P58习题2.6第1、2题;P74第5题。
练习:2、设第n个图形的△个数的总数为m,则用含n的函数 式表示m:
图示
层数
△个数求和关系式
1
1 =12
2
4=1+3=22
3
9=1+3+5=32
4
16=1+3+5+7=42
… … …
n
m=1+3+5+…+(2n-1) =n2
小结:
1.本节学习了函数的三种表示方式:
解析法;列表法; 图象法。
2.解析法能定量地反映两个变量之间的对应关系的规律;
式、表格和图象表示出来吗?
(1)用函数表达式表示:
y = x2 10x (0 x 10) 。
(2)用表格表示:
x 123456789
10-x 9 8 7 6 5 4 3 2 1
y
9 16 21 24 25 24 21 16 9
y
(3)用图象表示:
议一议:
(1)在上述问题中,自
变量x的取值范围是什么?
教学目标: 1、经历用三种方式表示变量间二次函数关系的过程,体会
三种方式间的联系与各自不同的特点。 2、能够分析和表示变量间的二次函数关系。并解决用二次
函数所表示的问题。 3、能够根据二次函数的不同表示方式,从不同的侧面对函
数性质进行研究。
教学重点和难点: 重点:能用三种方式表示变量间的二次函数的关系,并能
x … -2 -1 0
1 2 3 4…
y … 8 3 0 -1 0 3 8 …
3、用图象表示:
y
4、根据以上三种表示方式回答下列问题:
(1)自变量x 的取值范围是什么?
(2)图象的对称轴和顶点坐标分别是什么?
(3)如何描述y随x的变化而变化的情况?
(4)你是分别通过哪种表示方式回答
上面三个问题的?
o
x
议一议: 二次函数的三种表示方式各有什么不同的特点?
它们之间有什么联系?与同伴进行交流。
练习:
1、一条隧道的截面如图所示,它
的上部是一个半圆,下部是一个矩
形,矩形的一边条为2.5
(1)求隧道的截面面积S(m2)关于
上部半径 r (m)的函数关系式;
2.5m
(2)求当上部半径为2时的截面面
积(π取3.14,结果精确到0.1m2 )。
解决用二次函数所表示的问题。 难点:掌握二次、二次函数y=ax2+bx+c的图象有什么性质?
2、已知抛物线过点A(-1,0),B(0,-3),
且对称轴为x=2.求此抛物线的解析式。
例1.已知矩形的周长为20cm,并且设它的一边长为x cm, 面积为y cm。 y随x变化而变化的规律是什么?你能分别用函数表达
相关文档
最新文档