计量经济学 计算题
计量经济学计算题与答案解析

1、根据某城市1978——1998年人均储蓄(y)与人均收入(x)的数据资料建立了如下回归模型x y6843.1521.2187ˆ+-= se=(340.0103)(0.0622)6066.733,2934.0,425.1065..,9748.02====F DW E S R试求解以下问题:(1)取时间段1978——1985和1991——1998,分别建立两个模型。
模型1:x y3971.04415.145ˆ+-= 模型2:x y 9525.1365.4602ˆ+-= t=(-8.7302)(25.4269) t=(-5.0660)(18.4094) ∑==202.1372,9908.0212eR ∑==5811189,9826.0222e R计算F 统计量,即∑∑===9370.4334202.137258111892122eeF ,对给定的05.0=α,查F 分布表,得临界值28.4)6,6(05.0=F 。
请你继续完成上述工作,并回答所做的是一项什么工作,其结论是什么?(2)根据表1所给资料,对给定的显著性水平05.0=α,查2χ分布表,得临界值81.7)3(05.0=χ,其中p=3为自由度。
请你继续完成上述工作,并回答所做的是一项什么工作,其结论是什么? 表1F-statistic 6.033649 Probability 0.007410 Obs*R-squared10.14976 Probability0.017335Test Equation:Dependent Variable: RESID^2 Method: Least SquaresDate: 06/04/06 Time: 17:02 Sample(adjusted): 1981 1998Included observations: 18 after adjusting endpoints Variable Coefficie ntStd. Error t-Statistic Prob. C244797.2 373821.3 0.654851 0.5232 RESID^2(-1)1.226048 0.3304793.7099080.0023RESID^2(-2) -1.405351 0.379187 -3.706222 0.0023 R-squared 0.563876 Mean dependent var 971801.3 Adjusted R-squared 0.470421 S.D. dependent var 1129283. S.E. of regression 821804.5 Akaike info criterion 30.26952 Sum squared resid 9.46E+12 Schwarz criterion 30.46738 Log likelihood -268.4257 F-statistic6.033649 Durbin-Watson stat 2.124575 Prob(F-statistic) 0.0074101、(1)解:该检验为Goldfeld-Quandt 检验。
计量经济学练习题完整版

计量经济学试题1一 名词解释(每题5分,共10分) 1. 经典线性回归模型2. 加权最小二乘法(WLS ) 二 填空(每空格1分,共10分)1.经典线性回归模型Y i = B 0 + B 1X i + µi 的最小二乘估计量b 1满足E ( b 1 ) = B 1,这表示估计量b 1具备 性。
2.广义差分法适用于估计存在 问题的经济计量模型。
3.在区间预测中,在其它条件不变的情况下,预测的置信概率越高,预测的精度越 。
4.普通最小二乘法估计回归参数的基本准则是使 达到最小。
5.以X 为解释变量,Y 为被解释变量,将X 、Y 的观测值分别取对数,如果这些对数值描成的散点图近似形成为一条直线,则适宜配合 模型。
6.当杜宾-瓦尔森统计量 d = 4时,ρˆ= ,说明 。
7.对于模型i i i X Y μββ++=10,为了考虑“地区”因素(北方、南方两种状态)引入2个虚拟变量,则会产生 现象。
8. 半对数模型LnY i = B 0 + B 1X i + µI 又称为 模型。
9.经典线性回归模型Y i = B 0 + B 1X i + µi 的最小二乘估计量b 0、b 1的关系可用数学式子表示为 。
三 单项选择题(每个1分,共20分)1.截面数据是指--------------------------------------------------------------( )A .同一时点上不同统计单位相同统计指标组成的数据。
B .同一时点上相同统计单位相同统计指标组成的数据。
C .同一时点上相同统计单位不同统计指标组成的数据。
D .同一时点上不同统计单位不同统计指标组成的数据。
2.参数估计量βˆ具备有效性是指------------------------------------------( ) A .0)ˆ(=βar V B.)ˆ(βarV 为最小 C .0)ˆ(=-ββD.)ˆ(ββ-为最小 3.如果两个经济变量间的关系近似地表现为:当X 发生一个绝对量(X ∆)变动时,Y 以一个固定的相对量(Y Y /∆)变动,则适宜配合的回归模型是------------------------------------------------------------------------------------------- ( )A .i i i X Y μβα++= B.i i i X Y μβα++=ln C .i ii X Y μβα++=1D.i i i X Y μβα++=ln ln 4.在一元线性回归模型中,不可能用到的假设检验是----------( ) A .置信区间检验 B.t 检验 C.F 检验 D.游程检验5.如果戈里瑟检验表明 ,普通最小二乘估计的残差项有显著的如下性质:24.025.1i i X e +=,则用加权最小二乘法估计模型时,权数应选择-------( )A .i X 1 B. 21i X C.24.025.11i X + D.24.025.11i X +6.对于i i i i X X Y μβββ+++=22110,利用30组样本观察值估计后得56.827/)ˆ(2/)ˆ(2=-∑-∑=iiiY Y Y Y F ,而理论分布值F 0.05(2,27)=3.35,,则可以判断( )A . 01=β成立 B. 02=β成立 C. 021==ββ成立 D. 021==ββ不成立7.为描述单位固定成本(Y )依产量(X )变化的相关关系,适宜配合的回归模型是:A .i i i X Y μβα++= B.i i i X Y μβα++=ln C .i ii X Y μβα++=1D.i i i X Y μβα++=ln ln 8.根据一个n=30的样本估计ii i e X Y ++=10ˆˆββ后计算得d=1.4,已知在95%的置信度下,35.1=L d ,49.1=U d ,则认为原模型------------------------( )A .存在正的一阶线性自相关 B.存在负的一阶线性自相关 C .不存在一阶线性自相关 D.无法判断是否存在一阶线性自相关9.对于ii i e X Y ++=10ˆˆββ,判定系数为0.8是指--------------------( ) A .说明X 与Y 之间为正相关 B. 说明X 与Y 之间为负相关 C .Y 变异的80%能由回归直线作出解释 D .有80%的样本点落在回归直线上10. 线性模型i i i i X X Y μβββ+++=22110不满足下列哪一假定,称为异方差现象-------------------------------------------------------------------------------( )A .0)(=j i ov C μμ B.2)(σμ=i ar V (常数) C .0),(=i i ov X C μ D.0),(21=i i ov X X C11.设消费函数i i i X D Y μβαα+++=10,其中虚拟变量⎩⎨⎧=南方北方01D ,如果统计检验表明1α统计显著,则北方的消费函数与南方的消费函数是--( )A .相互平行的 B.相互垂直的 C.相互交叉的 D.相互重叠的12. 在建立虚拟变量模型时,如果一个质的变量有m 种特征或状态,则一般引入几个虚拟变量:----------------------------------------------------------------( )A .m B.m+1 C.m -1 D.前三项均可 13. 在模型i i iX Y μββ++=ln ln ln 10中,1β为---------------------( )A .X 关于Y 的弹性 B.X 变动一个绝对量时Y 变动的相对量 C .Y 关于X 的弹性 D.Y 变动一个绝对量时X 变动的相对量14.对于i i i e X Y ++=10ˆˆββ,以S 表示估计标准误差,iY ˆ表示回归值,则-------------------------------------------------------------------------------------------( )A .S=0时,0)ˆ(=-∑ti Y Y B.S=0时,∑==-ni i i Y Y 120)ˆ( C .S=0时,)ˆ(ii Y Y -∑为最小 D.S=0时,∑=-ni i i Y Y 12)ˆ(为最小 15.经济计量分析工作的基本工作步骤是-----------------------------( )A .设定理论模型→收集样本资料→估计模型参数→检验模型B .设定模型→估计参数→检验模型→应用模型C .理论分析→数据收集→计算模拟→修正模型D .确定模型导向→确定变量及方程式→应用模型16.产量(X ,台)与单位产品成本(Y ,元/台)之间的回归方程为:X Y5.1356ˆ-=,这说明-----------------------------------------------------------( )A .产量每增加一台,单位产品成本平均减少1.5个百分点B .产量每增加一台,单位产品成本减少1.5元C .产量每增加一台,单位产品成本减少1.5个百分点D .产量每增加一台,单位产品成本平均减少1.5元17.下列各回归方程中,哪一个必定是错误的------------------------( )A .8.02.030ˆ=+=XY i i r X Y B. 91.05.175ˆ=+-=XY i i r X Y C .78.01.25ˆ=-=XY ii r X Y D. 96.05.312ˆ-=--=XY ii r X Y18.用一组有28个观测值的样本估计模型i i i X Y μββ++=10后,在0.05的显著性水平下对1β的显著性作t 检验,则1β显著地不等于0的条件是统计量t 大于-------------------------------------------------------------------------------------( )A .t 0.025(28) B. t 0.05(28) C. t 0.025(26) D. t 0.05(26)19.下列哪种形式的序列相关可用DW 统计量来检验(V t 为具有零均值、常数方差,且不存在序列相关的随机变量)---------------------------------( )A .t t t V +=-1ρμμ B.t t t t V +⋅⋅⋅++=--121μρρμμ C. t t V ρμ= D. ⋅⋅⋅++=-12t t t V V ρρμ20.对于原模型t t t X Y μββ++=10,一阶差分模型是指------------( )A .)()()(1)(1t tt t t t t X f X f X X f X f Y μββ++=B .t t t X Y μβ∆+∆=∆1C .t t t X Y μββ∆+∆+=∆10D .)()()1(11101----+-+-=-t t t t t t X X Y Y ρμμρβρβρ四 多项选择题(每个2分,共10分)1.以Y 表示实际值,Yˆ表示回归值,i e 表示残差项,最小二乘直线满足------------------------------------------------------------------------------------------( )A .通用样本均值点(Y X ,) B.ii Y Y ˆ∑=∑ C .0),ˆ(=i i ov e Y C D.0)ˆ(2=-∑i i Y Y E .0)ˆ(=-∑Y Y i2.剩余变差(RSS )是指--------------------------------------------------( )A .随机因素影响所引起的被解释变量的变差B .解释变量变动所引起的被解释变量的变差C .被解释变量的变差中,回归方程不能作出解释的部分D.被解释变量的总变差与解释变量之差E.被解释变量的实际值与回归值的离差平方和3. 对于经典线性回归模型,0LS估计量具备------------------------()A.无偏性 B.线性特性 C.正确性 D.有效性 E.可知性4. 异方差的检验方法有---------------------------------------------------()A.残差的图形检验 B.游程检验 C.White检验D.帕克检验E.方差膨胀因子检验5. 多重共线性的补救有---------------------------------------------------()A.从模型中删掉不重要的解释变量 B.获取额外的数据或者新的样本 C.重新考虑模型 D.利用先验信息 E. 广义差分法五简答计算题(4题,共50分)1.简述F检验的意图及其与t检验的关系。
计量经济学习题及全部答案

计量经济学习题一一、判断正误1.在研究经济变量之间的非确定性关系时,回归分析是唯一可用的分析方法; 2.最小二乘法进行参数估计的基本原理是使残差平方和最小;3.无论回归模型中包括多少个解释变量,总离差平方和的自由度总为n -1; 4.当我们说估计的回归系数在统计上是显着的,意思是说它显着地异于0; 5.总离差平方和TSS 可分解为残差平方和ESS 与回归平方和RSS 之和,其中残差平方和ESS 表示总离差平方和中可由样本回归直线解释的部分; 6.多元线性回归模型的F 检验和t 检验是一致的;7.当存在严重的多重共线性时,普通最小二乘估计往往会低估参数估计量的方差; 8.如果随机误差项的方差随解释变量变化而变化,则线性回归模型存在随机误差项的自相关;9.在存在异方差的情况下,会对回归模型的正确建立和统计推断带来严重后果; 10...DW 检验只能检验一阶自相关; 二、单选题1.样本回归函数方程的表达式为 ;A .i Y =01i i X u ββ++B .(/)i E Y X =01i X ββ+C .i Y =01ˆˆi i X e ββ++D .ˆi Y =01ˆˆiX ββ+ 2.下图中“{”所指的距离是 ;A .随机干扰项B .残差C .i Y 的离差D .ˆiY 的离差 3.在总体回归方程(/)E Y X =01X ββ+中,1β表示 ;A .当X 增加一个单位时,Y 增加1β个单位B .当X 增加一个单位时,Y 平均增加1β个单位C .当Y 增加一个单位时,X 增加1β个单位D .当Y 增加一个单位时,X 平均增加1β个单位 4.可决系数2R 是指 ;A .剩余平方和占总离差平方和的比重B .总离差平方和占回归平方和的比重C .回归平方和占总离差平方和的比重D .回归平方和占剩余平方和的比重 5.已知含有截距项的三元线性回归模型估计的残差平方和为2i e ∑=800,估计用的样本容量为24,则随机误差项i u 的方差估计量为 ;A .B .40C .D .6.设k 为回归模型中的参数个数不包括截距项,n 为样本容量,ESS 为残差平方和,RSS 为回归平方和;则对总体回归模型进行显着性检验时构造的F 统计量为 ;A .F =RSSTSSB .F =/(1)RSS k ESS n k --C .F =/1(1)RSS k TSS n k --- D .F =ESSTSS7.对于模型i Y =01ˆˆi iX e ββ++,以ρ表示i e 与1i e -之间的线性相关系数2,3,,t n =,则下面明显错误的是 ;A .ρ=,..DW =B .ρ=-,..DW =-C .ρ=0,..DW =2D .ρ=1,..DW =08.在线性回归模型 011...3i i k ki i Y X X u k βββ=++++≥;如果231X X X =-,则表明模型中存在 ;A .异方差B .多重共线性C .自相关D .模型误设定9.根据样本资料建立某消费函数 i Y =01i i X u ββ++,其中Y 为需求量,X 为价格;为了考虑“地区”农村、城市和“季节”春、夏、秋、冬两个因素的影响,拟引入虚拟变量,则应引入虚拟变量的个数为 ;A .2B .4C .5D .610.某商品需求函数为ˆi C =100.5055.350.45i i D X ++,其中C 为消费,X 为收入,虚拟变量10D ⎧=⎨⎩城镇家庭农村家庭,所有参数均检验显着,则城镇家庭的消费函数为 ;A .ˆi C =155.850.45i X +B .ˆiC =100.500.45i X + C .ˆi C =100.5055.35i X +D .ˆiC =100.9555.35i X + 三、多选题1.一元线性回归模型i Y =01i i X u ββ++的基本假定包括 ;A .()i E u =0B .()i Var u =2σ常数C .(,)i j Cov u u =0 ()i j ≠D .(0,1)iu NE .X 为非随机变量,且(,)i i Cov X u =02.由回归直线ˆi Y =01ˆˆi X ββ+估计出来的ˆiY ; A .是一组平均数 B .是实际观测值i Y 的估计值 C .是实际观测值i Y 均值的估计值 D .可能等于实际观测值i Y E .与实际观测值i Y 之差的代数和等于零 3.异方差的检验方法有A .图示检验法B .Glejser 检验C .White 检验D ...DW 检验E .Goldfeld Quandt -检验4.下列哪些非线性模型可以通过变量替换转化为线性模型 ;A .i Y =201i i X u ββ++B .1/i Y =01(1/)i i X u ββ++C .ln i Y =01ln i i X u ββ++D .i Y =iui i AK L e αβE .i Y =1122012iiX X i e e u ββααα+++5.在线性模型中引入虚拟变量,可以反映 ;A .截距项变动B .斜率变动C .斜率与截距项同时变动D .分段回归E .以上都可以 四、简答题1.随机干扰项主要包括哪些因素它和残差之间的区别是什么2.简述为什么要对参数进行显着性检验试说明参数显着性检验的过程;3.简述序列相关性检验方法的共同思路; 五、计算分析题1.下表是某次线性回归的EViews 输出结果,根据所学知识求出被略去部分的值用大写字母标示,并写出过程保留3位小数;Dependent Variable: Y Method: Least Squares Included observations: 132.用Goldfeld Quandt -方法检验下列模型是否存在异方差;模型形式如下:i Y =0112233 i i i i X X X u ββββ++++其中样本容量n =40,按i X 从小到大排序后,去掉中间10个样本,并对余下的样本按i X 的大小等分为两组,分别作回归,得到两个残差平方和1ESS =、2ESS =,写出检验步骤α=;F 分布百分位表α=3.有人用广东省1978—2005年的财政收入AV 作为因变量,用三次产业增加值作为自变量,进行了三元线性回归;第一产业增加值——1VAD ,第二产业增加值——2VAD ,第三产业增加值——3VAD ,结果为:AV =12335.1160.0280.0480.228VAD VAD VAD +-+2R =,F =- ..DW =试简要分析回归结果; 五、证明题求证:一元线性回归模型因变量模拟值ˆi Y 的平均值等于实际观测值i Y 的平均值,即ˆiY =i Y ; 计量经济学习题二一、判断正误正确划“√”,错误划“×” 1.残差剩余项i e 的均值e =()i e n ∑=0;2.所谓OLS 估计量的无偏性,是指参数估计量的数学期望等于各自的真值; 3.样本可决系数高的回归方程一定比样本可决系数低的回归方程更能说明解释变量对被解释变量的解释能力;4.多元线性回归模型中解释变量个数为k ,则对回归参数进行显着性检验的t 统计量的自由度一定是1n k --;5.对应于自变量的每一个观察值,利用样本回归函数可以求出因变量的真实值; 6.若回归模型存在异方差问题,可以使用加权最小二乘法进行修正;7.根据最小二乘估计,我们可以得到总体回归方程;8.当用于检验回归方程显着性的F 统计量与检验单个系数显着性的t 统计量结果矛盾时,可以认为出现了严重的多重共线性9.线性回归模型中的“线性”主要是指回归模型中的参数是线性的,而变量则不一定是线性的;10.一般情况下,用线性回归模型进行预测时,单个值预测与均值预测相等,且置信区间也相同; 二、单选题1.针对同一经济指标在不同时间发生的结果进行记录的数据称为A .面板数据B .截面数据C .时间序列数据D .以上都不是 2.下图中“{”所指的距离是A .随机干扰项B .残差C .i Y 的离差D .ˆiY 的离差 3.在模型i Y =01ln i i X u ββ++中,参数1β的含义是A .X 的绝对量变化,引起Y 的绝对量变化B .Y 关于X 的边际变化C .X 的相对变化,引起Y 的平均值绝对量变化D .Y 关于X 的弹性4.已知含有截距项的三元线性回归模型估计的残差平方和为2i e ∑=90,估计用的样本容量为19,则随机误差项i u 方差的估计量为A .B .6C .D .55.已知某一线性回归方程的样本可决系数为,则解释变量与被解释变量间的相关系数为A .B .0.8C .D .6.用一组有20个观测值的样本估计模型i Y =01i i X u ββ++,在的显着性水平下对1β的显着性作t 检验,则1β显着异于零的条件是对应t 统计量的取值大于 A .0.05(20)t B .0.025(20)t C .0.05(18)t D .0.025(18)t7.对于模型i Y =01122ˆˆˆˆi ik ki iX X X e ββββ+++++,统计量22ˆ()/ˆ()/(1)ii i Y Y kY Y n k ----∑∑服从A .()t n k -B .(1)t n k --C .(1,)F k n k --D .(,1)F k n k --8.如果样本回归模型残差的一阶自相关系数ρ为零,那么..DW 统计量的值近似等于 ;A .1B .2C .4D .9.根据样本资料建立某消费函数如下i Y =01i i X u ββ++,其中Y 为需求量,X 为价格;为了考虑“地区”农村、城市和“季节”春、夏、秋、冬两个因素的影响,拟引入虚拟变量,则应引入虚拟变量的个数为A .2B .4C .5D .610.设消费函数为i C =012i i i i X D X u βββ+++,其中C 为消费,X 为收入,虚拟变量10D ⎧=⎨⎩城镇家庭农村家庭,当统计检验表明下列哪项成立时,表示城镇家庭与农村家庭具有同样的消费行为A .1β=0,2β=0B .1β=0,2β≠0C .1β≠0,2β=0D .1β≠0,2β≠0 三、多选题1.以i Y 表示实际观测值,ˆiY 表示用OLS 法回归后的模拟值,i e 表示残差,则回归直线满足A .通过样本均值点(,)X YB .2ˆ()i iY Y -∑=0 C .(,)i i Cov X e =0 D .i Y ∑=ˆiY ∑ E .i i e X ∑=0 2.对满足所有假定条件的模型i Y =01122i i i X X u βββ+++进行总体显着性检验,如果检验结果显示总体线性关系显着,则可能出现的情况包括A .1β=2β=0B .10β≠,2β=0C .10β≠,20β≠D .1β=0,20β≠E .1β=2β≠0 3.下列选项中,哪些方法可以用来检验多重共线性 ;A .Glejser 检验B .两个解释变量间的相关性检验C .参数估计值的经济检验D .参数估计值的统计检验E ...DW 检验 4.线性回归模型存在异方差时,对于回归参数的估计与检验正确的表述包括A .OLS 参数估计量仍具有线性性B .OLS 参数估计量仍具有无偏性C .OLS 参数估计量不再具有效性即不再具有最小方差D .一定会低估参数估计值的方差5.关于虚拟变量设置原则,下列表述正确的有A .当定性因素有m 个类型时,引入1m -个虚拟变量B.当定性因素有m个类型时,引入m个虚拟变量会产生多重共线性问题C.虚拟变量的值只能取0和1D.在虚拟变量的设置中,基础类别一般取值为0E.以上说法都正确四、简答题1.简述计量经济学研究问题的方法;2.简述异方差性检验方法的共同思路;3.简述多重共线性的危害;五、计算分析题1.下表是某次线性回归的EViews输出结果,被略去部分数值用大写字母标示,根据所学知识解答下列各题计算过程保留3位小数;本题12分Dependent Variable: YMethod: Least SquaresIncluded observations: 181求出A 、B 的值;2求TSS2.有人用美国1960-1995年36年间个人实际可支配收入X 和个人实际消费支出Y 的数据单位:百亿美元建立收入—消费模型 i Y =01i i X u ββ++,估计结果如下:ˆiY =9.4290.936i X -+ t :2R = ,F = ,..DW =1检验收入—消费模型的自相关状况5%显着水平; 2用适当的方法消除模型中存在的问题; 五、证明题证明:用于多元线性回归方程显着性检验的F 统计量与可决系数2R 满足如下关系: 计量经济学习题三 一、判断对错1、在研究经济变量之间的非确定性关系时,回归分析是惟一可用的分析方法;2、对应于自变量的每一个观察值,利用样本回归函数可以求出因变量的真实值;DW 检验临界值表α=3、OLS 回归方法的基本准则是使残差平方和最小;4、在存在异方差的情况下,OLS 法总是高估了估计量的标准差;5、无论回归模型中包括多少个解释变量,总离差平方和的自由度总为n -1;6、线性回归分析中的“线性”主要是指回归模型中的参数是线性的,而变量则不一定是线性的;7、当我们说估计的回归系数在统计上是显着的,意思是说它显着异于0; 8、总离差平方和TSS 可分解为残差平方ESS 和与回归平方和RSS,其中残差平方ESS 表示总离差平方和可由样本回归直线解释的部分;9、所谓OLS 估计量的无偏性,是指回归参数的估计值与真实值相等; 10、当模型中解释变量均为确定性变量时,则可以用DW 统计量来检验模型的随机误差项所有形式的自相关性;二、单项选择1、回归直线t ^Y =0ˆβ+1ˆβX t 必然会通过点 A 、0,0; B 、_X ,_Y ;C 、_X ,0;D 、0,_Y ;2、针对经济指标在同一时间所发生结果进行记录的数据列,称为 A 、面板数据;B 、截面数据;C 、时间序列数据;D 、时间数据;3、如果样本回归模型残差的一阶自相关系数ρ接近于0,那么DW 统计量的值近似等于 A 、0 B 、1 C 、2 D 、44、若回归模型的随机误差项存在自相关,则参数的OLS 估计量A 、无偏且有效B 、有偏且非有效C 、有偏但有效D 、无偏但非有效 5、下列哪一种检验方法不能用于异方差检验A、戈德菲尔德-夸特检验;B、DW检验;C、White检验;D、戈里瑟检验;6、当多元回归模型中的解释变量存在完全多重共线性时,下列哪一种情况会发生A、OLS估计量仍然满足无偏性和有效性;B、OLS估计量是无偏的,但非有效;C、OLS估计量有偏且非有效;D、无法求出OLS估计量;7、DW检验法适用于的检验A、一阶自相关B、高阶自相关C、多重共线性 D都不是8、在随机误差项的一阶自相关检验中,若DW=,给定显着性水平下的临界值d L=,d U=,则由此可以判断随机误差项A、存在正自相关B、存在负自相关C、不存在自相关D、无法判断9、在多元线性线性回归模型中,解释变量的个数越多,则可决系数R2A、越大;B、越小;C、不会变化;D、无法确定10、在某线性回归方程的估计结果中,若残差平方和为10,回归平方和为40,则回归方程的拟合优度为A、 B、 C、 D、无法计算;三、简答与计算1、多元线性回归模型的基本假设有哪些2、计量经济模型中的随机误差项主要包含哪些因素3、简答经典单方程计量模型的异方差性概念、后果以及修正方法;4、简述方程显着性检验F检验与变量显着性检验t检验的区别;5、对于一个三元线性回归模型,已知可决系数R2=,方差分析表的部份结果如下:1样本容量是多少2总离差平方和TSS为多少3残差平方和ESS为多少4回归平方和RSS和残差平方和ESS的自由度各为多少5求方程总体显着性检验的F统计量;四、案例分析下表是中国某地人均可支配收入INCOME与储蓄SAVE之间的回归分析结果单位:元:Dependent Variable: SAVEMethod: Least SquaresSample: 1 31Included observations: 31Variable CoefficientStd.Errort-Statistic Prob.CINCOME――――R-squared Mean dependent var AdjustedR-squared. dependent var. of regression Akaike info criterionSum squared resid1778097Schwarz criterion.Log likelihood F-statisticDurbin-Watsonstat ProbF-statistic1、请写出样本回归方程表达式,然后分析自变量回归系数的经济含义2、解释样本可决系数的含义3、写出t检验的含义和步骤,并在5%的显着性水平下对自变量的回归系数进行t 检验临界值: 29=;4、下表给出了White异方差检验结果,试在5%的显着性水平下判断随机误差项是否存在异方差;5、下表给出LM序列相关检验结果滞后1期,试在5%的显着性水平下判断随机误差项是否存在一阶自相关;计量经济学习题四一、判断对错1、一般情况下,在用线性回归模型进行预测时,个值预测与均值预测结果相等,且它们的置信区间也相同;2、对于模型Yi =β+β1X1i+β2X2i+……+βkXki+μi,i=1,2, ……,n;如果X2=X5+X6, 则模型必然存在解释变量的多重共线性问题;3、OLS回归方法的基本准则是使残差项之和最小;4、在随机误差项存在正自相关的情况下,OLS法总是低估了估计量的标准差;5、无论回归模型中包括多少个解释变量,总离差平方和的自由度总为n-1;6、一元线性回归模型的F检验和t检验是一致的;7、如果随机误差项的方差随解释变量变化而变化,则线性回归模型存在随机误差项的序列相关;8、在近似多重共线性下,只要模型满足OLS的基本假定,则回归系数的最小二乘估计量仍然是一BLUE估计量;9、所谓参数估计量的线性性,是指参数估计量是解释变量的线性组合;10、拟合优度的测量指标是可决系数R2或调整过的可决系数,R2越大,说明回归方程对样本的拟合程度越高;二、单项选择1.在多元线性回归模型中,若两个自变量之间的相关系数接近于1,则在回归分析中需要注意模型的问题;A、自相关;B、异方差;C、模型设定偏误;D、多重共线性;2、在异方差的众多检验方法中,既能判断随机误差项是否存在异方差,又能给出异方差具体存在形式的检验方法是A、图式检验法;B、DW检验;C、戈里瑟检验;D、White检验;3、如果样本回归模型残差的一阶自相关系数ρ接近于1,那么DW统计量的值近似等于A、0B、1C、2D、44、若回归模型的随机误差项存在异方差,则参数的OLS估计量A、无偏且有效B、无偏但非有效C、有偏但有效D、有偏且非有效5、下列哪一个方法是用于补救随机误差项自相关问题的A、OLS;B、ILS;C、WLS;D、GLS;6、计量经济学的应用不包括:A、预测未来;B、政策评价;C、创建经济理论;D、结构分析;7、LM检验法适用于的检验A、异方差;B、自相关;C、多重共线性; D都不是8、在随机误差项的一阶自相关检验中,若DW=,给定显着性水平下的临界值d L=,d U=,则由此可以判断随机误差项A、存在正自相关B、存在负自相关C、不存在自相关D、无法判断9、在多元线性线性回归模型中,解释变量的个数越多,则调整可决系数2RA、越大;B、越小;C、不会变化;D、无法确定10、在某线性回归方程的估计结果中,若残差平方和为10,总离差平方和为100,则回归方程的拟合优度为A、;B、;C、;D、无法计算;三、简答与计算1、多元线性回归模型的基本假设有哪些2、简述计量经济研究的基本步骤3、简答经典单方程计量模型自相关概念、后果以及修正方法;4、简述对多元回归模型01122...i i i k ki i Y X X X u ββββ=+++++进行显着性检验F 检验的基本步骤5、对于一个五元线性回归模型,已知可决系数R 2=,方差分析表的部份结果如下:1样本容量是多少2回归平方和RSS 为多少3残差平方和ESS 为多少 4回归平方和RSS 和总离差平方和TSS 的自由度各为多少 5求方程总体显着性检验的F 统计量;四、实验下表是某国1967-1985年间GDP 与出口额EXPORT 之间的回归分析结果单位:亿美元:Dependent Variable: EXPORT Method: Least Squares Sample: 1967 1985Included observations: 19VariableCoefficientStd. Errort-Statist icProb. CGDP――――R-squaredMean dependent varAdjusted R-squared. dependent var. of regressionAkaike infocriterionSum squared residSchwarz criterion Log likelihoodF-statisticDurbin-Watson statProbF-statistic1、请写出样本回归方程表达式,然后分析自变量回归系数的经济含义2、解释样本可决系数的含义3、写出t 检验的含义和步骤,并在5%的显着性水平下对自变量的回归系数进行t 检验临界值: 17=;4、下表给出了White 异方差检验结果,试在5%的显着性水平下判断随机误差项是否存在异方差;5、下表给出LM 序列相关检验结果滞后1期,试在5%的显着性水平下判断随机误差项是否存在一阶自相关;计量经济学习题五一、判断正误正确划“√”,错误划“x ”1、最小二乘法进行参数估计的基本原理是使残差平方和最小;2、一般情况下,用线性回归模型进行预测时,个值预测与均值预测相等,且置信区间也相同;3、如果随机误差项的方差随解释变量变化而变化,则线性回归模型存在随机误差项的序列相关;4、若回归模型存在异方差问题,应使用加权最小二乘法进行修正;5、多元线性回归模型的F 检验和t 检验是一致的;6、DW 检验只能检验随机误差项是否存在一阶自相关;7、总离差平方和TSS 可分解为残差平方RSS 和与回归平方和ESS,其中残差平方RSS 表示总离差平方和可由样本回归直线解释的部分;8、拟合优度用于检验回归方程对样本数据的拟合程度,其测量指标是可决系数或调整后的可决系数;9、对于模型011... 1,2,...,i i n ni i Y X X u i n βββ=++++=;如果231X X X =-,则模型必然存在解释变量的多重共线性问题;10、所谓OLS 估计量的无偏性,是指参数估计量的数学期望等于各自真值; 二、单项选择1、回归直线01ˆˆˆi iY X ββ=+必然会通过点A、0,0B、_X,_YC、_X,0D、0,_Y2、某线性回归方程的估计的结果,残差平方和为20,回归平方和为80,则回归方程的拟合优度为A、 B、C、 D、无法计算3、针对经济指标在同一时间所发生结果进行记录的数据列,称为A、面板数据B、截面数据C、时间序列数据D、时间数据4、对回归方程总体线性关系进行显着性检验的方法是A、Z检验B、t检验C、F检验D、预测检验5、如果DW统计量等于2,那么样本回归模型残差的一阶自相关系数ρ近似等于A、0B、-1C、1D、6、若随机误差项存在异方差,则参数的普通最小二乘估计量A、无偏且有效B、有偏且非有效C、有偏但有效D、无偏但非有效7、下列哪一种方法是用于补救随机误差项的异方差问题的A、OLS;B、ILS;C、WLSD、GLS8、如果某一线性回归方程需要考虑四个季度的变化情况,那么为此设置虚拟变量的个数为A、1B、2C、3D、49、样本可决系数R2越大,表示它对样本数据拟合得A、越好B、越差C、不能确定D、均有可能10、多元线性回归模型中,解释变量的个数越多,可决系数R2A、越大;B、越小;C、不会变化;D、无法确定三、简答题1、简述计量经济学的定义;2、多元线性回归模型的基本假设有哪些3、简答异方差概念、后果以及修正方法;4、简述t检验的目的及基本步骤;四、计算对于一个三元线性回归模型,已知可决系数20.8R ,方差分析表的部份结果如下:变差来源平方和自由度源于回归ESS 200源于残差RSS总变差TSS 221样本容量是多少2总变差TSS为多少3残差平方和RSS为多少4ESS和RSS的自由度各为多少5求方程总体显着性检验的F统计量值;计量经济学习题六-案例题一、根据美国各航空公司航班正点到达的比率X%和每10万名乘客投诉的次数Y 进行回归,EViews输出结果如下:Dependent Variable: YMethod: Least SquaresSample: 1 9Included observations: 91对以上结果进行简要分析包括方程显着性检验、参数显着性检验、DW值的评价、对斜率的解释等,显着性水平均取;2按标准书写格式写出回归结果;二、以下是某次线性回归的EViews输出结果,部分数值已略去用大写字母标示,但它们和表中其它特定数值有必然联系,分别据此求出这些数值,并写出过程;保留3位小数Dependent Variable: YMethod: Least SquaresSample: 1 13Included observations: 131求A 的值; 2求B 的值; 3求C 的值;三、用1970-1994年间日本工薪家庭实际消费支出Y 与实际可支配收入X 单位:103日元数据估计线性模型Y =01X u ββ++,然后用得到的残差序列t e 绘制以下图形; 1试根据图形分析随机误差项之间是否存在自相关若存在,是正自相关还是负自相关答:图形显示,随机误差项之间存在着相关性,且为正的自相关; 2此模型的估计结果为 试用DW 检验法检验随机误差项之间是否存在自相关;四、用一组截面数据估计消费Y —收入X 方程Y =01X u ββ++的结果为1根据回归的残差序列et 图分析本模型是否存在异方差注:abset 表示et 的绝对值;2其次,用White 法进行检验;EViews 输出结果见下表:附表:DW 检验临界值表α=White Heteroskedasticity Test:Dependent Variable: RESID^2 Method: Least Squares Sample: 1 60Included observations: 60若给定显着水平0.05α=,以上结果能否说明该模型存在异方差查卡方分布临界值的自由度是多少五、下图描述了残差序列{}t e 与其滞后一期值1{}t e -之间的散点图,试据此判断随机误差项之间是否存在自相关若存在,则是正自相关还是负自相关六、在一多元线性回归模型中,为检验解释变量之间是否存在多重共线性问题,以解释变量1x 作为被解释变量,对其余解释变量进行辅助回归,得到可决系数20.95R =;试计算变量1x 的方差扩大因子1VIF ,并根据经验判断解释变量间是否存在多重共线性问题七、下表是中国某地人均可支配收入INCOME 与储蓄SAVE 之间的回归分析结果单位:元:Sample: 1 31Included observations: 31VariableCoefficientStd. Errort-Statist ic Prob.CINCOME--R-squaredMean dependent varAdjusted R-squared. dependent var. of regressionAkaike infocriterionSum squared resid 1778097. Schwarz criterion Log likelihoodF-statisticDurbin-Watson statProbF-statistic1、请写出样本回归方程表达式,然后分析自变量INCOME 回归系数的经济含义2、解释可决系数的含义3、若给定显着性水平5%α=,试对自变量INCOME 的回归系数进行显着性检验已知0.025(29) 2.045t =4、在5%α=的显着性水平下,查31n =的DW 临界值表得 1.363L d =, 1.496U d =,试根据回归结果判断随机误差项是否存在一阶自相关5、下表为上述回归的White 检验结果,在5%α=的显着性水平下,试根据P 值检验判断随机误差项是否存在异方差 White Heteroskedasticity Test:F-statisticProbabilityObsR-squaredProbability计量经济学习题一答案一、判断正误1. × 2. √ 3. √ 4. √ 5. × 6. × 7. ×8. × 9. √ 10. √ 二、单选题每小题分,共15分1. D ;2. B ;3. B ;4. C ;5. B ; 6. B ;7. B ;8. B ;9. B ;10. A ; 三、多选题1. ABCE 2. BCDE 3. ABCE 4. ABCD 5. ABCDE ; 四、简答题1.随机干扰项主要包括哪些因素它和残差之间的区别是什么答:随机干扰项包括的主要因素有:1众多细小因素的影响;2未知因素的影响;3数据测量误差或残缺;4模型形式不完善;5变量的内在随机性;随机误差项羽残差不同,残差是样本观测值与模拟值的差,即i e =ˆi iY Y -;残差项是随机误差项的估计;2.简述为什么要对参数进行显着性检验试说明参数显着性检验的过程;答:最小二乘法得到的回归直线是对因变量与自变量关系的一种描述,但它是不是恰当的描述呢一般会用与样本点的接近程度来判别这种描述的优劣,而当获得以上问题的肯定判断之后,还需要确定每一个参数的可靠程度,即参数本身以及对应的变量该不该保留在方程里,这就有必要进行参数的显着性检验;这种检验是确定各个参数是否显着地不等于零;检验分为三个步骤:①提出假设:原假设0:0i H β=;备择假设1:0i H β≠ ②在原假设成立的前提下构造统计量:()ˆ~(1)ˆiit t n k Se ββ=--③给定显着性水平α,查t 分布表求得临界值/2(1)t n k α--,把根据样本数据计算出的t 统计量值t *与/2(1)t n k α--比较:若/2(1)t t n k α*>--,则拒绝原假设0H ,即在给定显着性水平下,解释变量i X 对因变量有显着影响;若/2(1)t t n k α*<--,则不能拒绝原假设0H ,即在给定显着性水平下,解释变量i X 对因变量没有显着影响.3.简述序列相关性检验方法的共同思路;答:由于自相关性,使得相对于不同的样本点,随机干扰项之间存在相关关系,那么检验自相关性,首先根据OLS 法估计残差,将残差作为随机干扰项的近似估计值,然后检验这些近似估计值之间的相关性以判定随机干扰项是否存在序列相关;各种检验方法就是在这个思路下发展起来的;五、计算分析题1.下表是某次线性回归的EViews 输出结果,根据所学知识求出被略去部分的值用大写字母标示,Dependent Variable: Y Method: Least Squares Included observations: 13解:A=ˆ()Se β=ˆt β=7.10604.3903=;B=2R =211(1)1n R n k -----=1311(10.8728)1321-----=由公式2ˆσ=21ien k --∑,得C=2ie ∑=2ˆ(1)n k σ--=21.1886(1321)--=; 2.用Goldfeld Quandt -方法检验下列模型是否存在异方差;模型形式如下:i Y =0112233 i i i i X X X u ββββ++++其中样本容量n =40,按i X 从小到大排序后,去掉中间10个样本,并对余下的样本按i X 的大小等分为两组,分别作回归,得到两个残差平方和1ESS =、2ESS =,写出检验步骤α=;α。
计量经济学题库(超完整版)及答案.详解

计量经济学题库(超完整版)及答案.详解计量经济学题库计算与分析题(每⼩题10分)1.下表为⽇本的汇率与汽车出⼝数量数据,X:年均汇率(⽇元/美元) Y:汽车出⼝数量(万辆)问题:(1)画出X 与Y 关系的散点图。
(2)计算X 与Y 的相关系数。
其中X 129.3=,Y 554.2=,2X X 4432.1∑(-)=,2Y Y 68113.6∑(-)=,()()X X Y Y ∑--=16195.4 (3)采⽤直线回归⽅程拟和出的模型为81.72 3.65YX =+ t 值 R 2= F= 解释参数的经济意义。
2.已知⼀模型的最⼩⼆乘的回归结果如下:i i ?Y =101.4-4.78X 标准差()() n=30 R 2= 其中,Y :政府债券价格(百美元),X :利率(%)。
回答以下问题:(1)系数的符号是否正确,并说明理由;(2)为什么左边是iY ⽽不是i Y ;(3)在此模型中是否漏了误差项i u ;(4)该模型参数的经济意义是什么。
3.估计消费函数模型i i i C =Y u αβ++得i i ?C =150.81Y + t 值()() n=19 R 2= 其中,C :消费(元) Y :收⼊(元)已知0.025(19) 2.0930t =,0.05(19) 1.729t =,0.025(17) 2.1098t =,0.05(17) 1.7396t =。
问:(1)利⽤t 值检验参数β的显著性(α=);(2)确定参数β的标准差;(3)判断⼀下该模型的拟合情况。
4.已知估计回归模型得i i ?Y =81.7230 3.6541X + 且2X X 4432.1∑(-)=,2Y Y 68113.6∑(-)=,求判定系数和相关系数。
5.有如下表数据⽇本物价上涨率与失业率的关系(1)设横轴是U ,纵轴是P ,画出散点图。
根据图形判断,物价上涨率与失业率之间是什么样的关系拟合什么样的模型⽐较合适(2)根据以上数据,分别拟合了以下两个模型:模型⼀:16.3219.14P U=-+ 模型⼆:8.64 2.87P U =- 分别求两个模型的样本决定系数。
计量经济学题库(判断题简答题计算题)

2
52. 53. 虚拟变量是用来表示数量差异的变量() 54. 杜宾沃森检验在某些期数据缺失的情况下特别有用。 55. 假设检验可以告诉我们只有那个样本数据与我们的猜想一致或者相容。 56. 杜宾沃森(Durbin-Watson)检验是用来检验一阶自相关的。( ) 57. 改变解释变量或者是被解释变量的单位,对 t 统计量和 R2 没有影响 58. 当存在异方差时,最小二乘估计是有偏的。( ) 59. 最小二乘估计量是确定的数。 60. 在存在自相关时,最小二乘估计是有偏的。( ) 61. 模型的拟合优度不是判断模型质量的唯一标准,为了追求模型的经济 意义,可以牺牲一点拟合优度。 () 62. 在 Y 对 X 的标准线性回归中,回归线和 X 的值的水平距离被极小 化了。 63. 样本平均值点在拟合回归线上 64. 模型中没有常数项时,对于 m 个类别的定性变量可以引入 m 个虚拟 变量。 () 65. 滞后变量的长期效应等于滞后变量的各期滞后值的系数之和。( ) 66.Goldfeld−Quandt 检验在检验自相关时很有用 67. 正自相关在经济时序数据中是不常见的。 68. 如果存在异方差,通常用的 t 检验和 F 检验是无效的() 69.OLS 法不适用于估计联立方程模型中的结构方程。 () 70. 联立方程中一个方程具有唯一的统计形式,则它是可识别的。( ) 71. 一个结构方程中包含的变量越多,则越有助于它的识别。( ) 72. 如果存在异方差通常用的 t检验和 F检验是无效的。 73. 如果某一辅助回归的 R2 较高,则表明一定存在高度共线性。 74. 异方差性使得模型的最小二乘估计是有偏的。( ) 75. 模型为 Yi = α0 + α1 Xi + α2 Di + ui ,其中 D 在选举年等于 1,否则 等于 0。如果 α2 显著地区别于零,那么选举年和其他年份比有显著的差异。 76. 异方差性在使用时间序列数据的模型中最普遍 77. 模型的拟合优度不是判断模型质量的唯一标准,为了追求模型的经济 意义,可以牺牲一点拟合优度。 78. 存在异方差时,假设检验是不可靠的 79. 如果给定解释变量值,根据模型就可以得到被解释变量的预测值。 80. 复相关系数 R2 可以取任意非负实数。( ) 81. 最小二乘估计的残差平方和小于任何其他线性估计的残差平方和。( ) 82. 求参数的区间估计就是要找一个未知参数肯定落入的区间。 () 83. 尽管有完全的多重共线性,OLS 估计量仍然是 BLUE。 () ¯ −ˆ ¯ ,其中,上加一杠表示样本平均值。 84. 截距项的估计量是 a ˆ=Y bX
计量经济学题库(超完整版)及答案.详解

计量经济学题库计算与分析题(每小题10分)1.下表为日本的汇率与汽车出口数量数据,X:年均汇率(日元/美元) Y:汽车出口数量(万辆) 问题:(1)画出X 与Y 关系的散点图。
(2)计算X 与Y 的相关系数。
其中X 129.3=,Y 554.2=,2X X 4432.1∑(-)=,2Y Y 68113.6∑(-)=,()()X X Y Y ∑--=16195.4 (3)采用直线回归方程拟和出的模型为ˆ81.72 3.65YX =+ t 值 R 2= F= 解释参数的经济意义。
2.已知一模型的最小二乘的回归结果如下:i i ˆY =101.4-4.78X 标准差 () () n=30 R 2= 其中,Y :政府债券价格(百美元),X :利率(%)。
回答以下问题:(1)系数的符号是否正确,并说明理由;(2)为什么左边是iˆY 而不是i Y ; (3)在此模型中是否漏了误差项i u ;(4)该模型参数的经济意义是什么。
3.估计消费函数模型i i i C =Y u αβ++得i i ˆC =150.81Y + t 值 ()() n=19 R 2= 其中,C :消费(元) Y :收入(元)已知0.025(19) 2.0930t =,0.05(19) 1.729t =,0.025(17) 2.1098t =,0.05(17) 1.7396t =。
问:(1)利用t 值检验参数β的显著性(α=);(2)确定参数β的标准差;(3)判断一下该模型的拟合情况。
4.已知估计回归模型得i i ˆY =81.7230 3.6541X + 且2X X 4432.1∑(-)=,2Y Y 68113.6∑(-)=, 求判定系数和相关系数。
5.有如下表数据日本物价上涨率与失业率的关系(1)设横轴是U ,纵轴是P ,画出散点图。
根据图形判断,物价上涨率与失业率之间是什么样的关系拟合什么样的模型比较合适 (2)根据以上数据,分别拟合了以下两个模型: 模型一:16.3219.14P U=-+ 模型二:8.64 2.87P U =- 分别求两个模型的样本决定系数。
计量经济学计算题题库

五、简答题: 1.给定一元线性回归模型:t t t X Y μββ++=10 n t ,,2,1Λ=(1)叙述模型的基本假定;(2)写出参数0β和1β的最小二乘估计公式;(3)说明满足基本假定的最小二乘估计量的统计性质; (4)写出随机扰动项方差的无偏估计公式。
2.对于多元线性计量经济学模型:t kt k t t t X X X Y μββββ+++++=Λ33221 n t ,,,Λ21=(1)该模型的矩阵形式及各矩阵的含义; (2)对应的样本线性回归模型的矩阵形式; (3)模型的最小二乘参数估计量。
6.线性回归模型的基本假设。
违背基本假设的计量经济模型是否可以估计五、简答题:1.答:(1)零均值,同方差,无自相关,解释变量与随机误差项相互独立(或者解释变量为非随机变量)(2)∑∑===nt tnt tt xyx 1211ˆβ,X Y 10ˆˆββ-= (3)线性即,无偏性即,有效性即(4)2ˆ122-=∑=n ent tσ,其中∑∑∑∑∑=====-=-=nt t t n t t n t tn t tn t ty x y x y e 111212211212ˆˆββ2. 答: (1)N XB Y+=;121⨯⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n n Y Y Y Y M)1(212221212111111+⨯⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=k n kn n n k k X X X X X X X X X X ΛMM M M ΛΛ1)1(210⨯+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=k n B ββββM 121⨯⎪⎪⎪⎪⎪⎭⎫⎝⎛=n n N μμμM (2)E BX Y+=ˆ; (3)()YX X X B''=-1ˆ。
6.答:(1)随机误差项具有零均值。
即精品文库E(i μ)=0 i=1,2,…n(2)随机误差项具有同方差。
即 Var(i μ)=2μσ i=1,2,…n(3)随机误差项在不同样本点之间是独立的,不存在序列相关。
计量经济学习题含答案

计量经济学习题含答案第1章绪论习题一、单项选择题1•把反映某一总体特征的同一指标的数据,按一定的时间顺序和时间间隔排列起来,这样的数据称为(B )A. 横截面数据B.时间序列数据C.面板数据D.原始数据2 •同一时间、不同单位按同一统计指标排列的观测数据称为(B )A. 原始数据B?截面数据C. 时间序列数据D ?面板数据3•用计量经济学研究问题可分为以下四个阶段( B )A.确定科学的理论依据、建立模型、模型修定、模型应用B ?建立模型、估计参数、检验模型、经济预测C?搜集数据、建立模型、估计参数、预测检验D. 建立模型、模型修定、结构分析、模型应用4 •下列哪一个模型是计量经济模型(C )A.投入产出模型B.数学规划模型C.包含随机变量的经济数学模型D.模糊数学模型二、问答题1 •计量经济学的定义2•计量经济学的研究目的3•计量经济学的研究内容1 •答:计量经济学是统计学、经济学、数学相结合的一门综合性学科,是一门从数量上研究物质资料生产、交换、分配、消费等经济尖系和经济活动规律及其应用的科学2•答:计量经济学的研究目的主要有三个:(1 )结构分析。
指应用计量经济模型对经济变量之间的尖系作出定量的度量。
(2 )预测未来。
指应用已建立的计量经济模型求因变量未来一段时期的预测值。
(3)政策评价。
指通过计量经济模型仿真各种政策的执行效果,对不同的政策进行比较和选择。
3•答:计量经济学在长期的发展过程中逐步形成了两个分支:理论计量经济学和应用计量经济学。
理论计量经济学主要研究计量经济学的理论和方法。
应用计量经济学将计量经济学方法应用于经济理论的特殊分支,即应用理论计量经济学的方法分析经济现象和预测经济变量2一元线性回归模型习题、单项选择题1 •最小二乘法是指(D )A.使达到最小值B.使达到最小值C.使达到最小值D.使达到最小值2 •在一元线性回归模型中,样本回归方程可表示为(C )C • D.3?线设OLS 法得到的样本回归直线为,以下说法不正确的是A-B • D.在回归直线上4•对样本的相尖系数,以下结论错误的是(A )A. 越接近0,与之间线性相矢程度高B. 越接近1,与之间线性相尖程度高C.D ,则与相互独立二、多 项选择题1 ■最小二乘估计量的统计性质有(A.无偏性B. C.不一致性 E.2. 利用普通最小二乘法求得的样本回归直线的特点(ACD )A.必然通过点B.可能通过点C. 残差的均值为常数D.的平均值与的平均值相等C. 残差与解释变量之间有一定的相尖性3. 随机变量(随机误差项)中一般包括那些因素(ABCDE )C. ABC )线性性C.最小方差性有偏性A回归模型中省略的变量B人们的随机行为C建立的数学模型的形式不够完善。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、答、(1)解:该检验为Goldfeld-Quandt 检验。
因为 F=4334.937>4.28,所以模型存在异方差。
(2)解:该检验为ARCH 检验由Obs*R-squared=10.1498>7.81,表明模型存在异方差。
2、答、(1)因为DW=0.68<1.106,所以模型中的随机误差存在正的自相关。
(2)由DW=0.68,计算得ˆρ=0.66(ˆρ=1-d/2),所以广义差分表达式为:112110.660.34(0.66)0.66t t t t t t y y x x u u ββ----=+-+-3、某人试图建立我国煤炭行业生产方程,指出该计量经济学问题中可能存在的主要错误,并简单说明理由。
答:⑴ 模型关系错误。
直接线性模型表示投入要素之间完全可以替代,与实际生产活动不符。
⑵ 估计方法错误。
该问题存在明显的序列相关性,不能采用OLS 方法估计。
⑶ 样本选择违反一致性。
行业生产方程不能选择企业作为样本。
⑷ 样本数据违反可比性。
固定资产原值用资产形成年当年价计算的价值量,不具备可比性。
⑸ 变量间可能不存在长期均衡关系。
变量中有流量和存量,可能存在1个高阶单整的序列。
应该首先进行单位根检验和协整检验。
4、答:(1)这是异方差检验,使用的是样本分段拟和(Goldfeld-Quant ),28.4937.4334>=F ,因此拒绝原假设,表明模型中存在异方差。
(2)这是异方差ARCH检验,81.71862.105659.0*18)(2>==-R p n ,所以拒绝原假设,表明模型中存在异方差。
(3)这两种方法都是用于检验异方差。
但二者适用条件不同:A 、Goldfeld-Quant 要求大样本;扰动项正态分布;可用于截面数据和时间序列数据。
B 、ARCH 检验仅适宜于时间序列数据,无其他条件。
5、解:(1)由l n 12.7183X X =⇒=,也就是说,人均收入每增加1.7183倍,平均意义上各国的期望寿命会增加9.39岁。
若当为富国时,1i D =,则平均意义上,富国的人均收入每增加1.7183倍,其期望寿命就会减少3.36岁,但其截距项的水平会增加23.52,达到21.12的水平。
但从统计检验结果看,对数人均收入lnX 对期望寿命Y 的影响并不显著。
方程的拟合情况良好,可进一步进行多重共线性等其他计量经济学的检验。
(2)若1i D =代表富国,则引入()ln 7i i D X -的原因是想从截距和斜率两个方面考证富国的影响,其中,富国的截距为()2.403.36721.12-+⨯=,斜率为()9.393.366.03-=,因此,当富国的人均收入每增加1.7183倍,其期望寿命会增加6.03岁。
(3)对于贫穷国,设定10i D ⎧=⎨⎩若为贫穷国若为富国,则引入的虚拟解释变量的形式为((7ln ))i i D X -;对于富国,回归模型形式不变。
6、解:(1)每小时通过该百货店的汽车增加10辆,该店的每日收入就会平均增加10美元。
该区域居民人均收入每增加1美元,该店每日收入就会平均增加1美元。
(2) 最后一个系数与期望的符号不一致,应该为负数,即该区竞争的店面越多,该店收入越低。
其余符号符合期望。
(3) 用t检验。
t =0.1/0.02=5,有t>06.2)25(025.0=t 知道,该变量显著。
7、解:(1)根据回归结果,认为最后一个回归模型(第四个)最佳,即将NX (净出口)对汇率、DGDP (GDP 的一阶差分)回归的模型最好。
因为其各个变量t 检验显著,模型的F 检验显著,拟合优度最高。
而其他三个:第一个NX 对E 的回归拟合优度太低,第二个NX 对GDP 回归拟合优度也较低,而第三个将NX 对E 、GDP 的回归有多重共线性存在。
(2)所选模型的经济意义是:影响净出口的主要因素是汇率和GDP 的增长量。
汇率每提高一个单位,净出口就会增加8.781248个单位(亿元),DGDP 每增加一个单位(亿元),则净出口增加0.03682亿元。
8、答:存在严重多重共线性。
因为方程整体非常显著,表明三次产业GDP 对财政收入的解释能力非常强,但是每个个别解释变量均不显著,且存在负系数,与理论矛盾,原因是存在严重共线性。
9、通过建模发现,某企业的某种产品价格P 和可变成本V 之间满足如下关系:V P ln 56.05.34ln +=。
目前可变成本占产品价格的20%。
现在,企业可以改进该产品,但是改进要增加10%可变成本(其他费用保持不变)。
问,企业是否该选择改进?10、解:(1)由模型可知,价格和可变成本之间的弹性为0.56。
假设改进产品,则可变成本增加10%,价格的变化率为0.56*10%=5.6%,可见价格增加的幅度不如可变成本增加的幅度。
(2)利润增量为5.6%*P -10%*V ,只要利润增量大于0,就应该选择改进。
(3)易得,只要当P/V>(10/5.6),就有利润大于0。
而目前成本只占价格的20%,远小于10/5.6,所以应该选择改进。
11、答:(1)每小时通过该百货店的汽车增加10辆,该店的每日收入就会平均增加10美元。
该区域居民人均收入每增加1美元,该店每日收入就会平均增加1美元。
(2) 最后一个系数与期望的符号不一致,应该为负数,即该区竞争的店面越多,该店收入越低。
其余符号符合期望。
(3) 用t检验。
t =0.1/0.02=5,有t>06.2)25(025.0=t 知道,该变量显著。
已知某公司的广告费用(X)与销售额(Y)的统计数据如下表所示:估计销售额关于广告费用的一元线性回归模型 说明参数的经济意义在的显著水平下对参数的显著性进行t 检验。
12、解:(1)利用OLS 法估计样本回归直线为:i iX Y 185.4086.319ˆ+= (2)参数的经济意义:当广告费用每增加1万元,公司的销售额平均增加4.185万元。
(3))10(79.3)ˆ(ˆ025.011t Var t >==ββ,广告费用对销售额的影响是显著的。
13、解:将自适应预期假设写成tt t rX X r X =--**+)1(1原模型t t t u X Y ++=*+110ββ ① 将①滞后一期并乘以)1(r -,有1101)1()1()1()1(-*--+-+-=-t t t u r X r r Y r ββ ②①式减去②式,整理后得到t t t t v Y r X r r Y +-++=-110)1(ββ 式中:1)1(---=t t tu r u v14、解:地方预算内财政收入(Y )和GDP 的关系近似直线关系,可建立线性回归模型:t t tu GDP Y ++=21ββ 即t t GDP Y 134582.0611151.3ˆ+-=(4.16179) (0.003867) t=(-0.867692) (34.80013) R2=0.99181 F=1211.049R2=0.99181,说明GDP 解释了地方财政收入变动的99%,模型拟合程度较好。
模型说明当GDP 每增长1亿元,平均说来地方财政收入将增长0.134582亿元。
当2005年GDP 为3600亿元时,地方财政收入点预测值为:884.4803600134582.0611151.3ˆ2005=⨯+-=Y (亿元)区间预测:222(1)587.2686(121)3793728.494ixx n σ=-=⨯-=∑221()(3600917.5874)7195337.357f X X -=-=取0.05α=,fY 平均值置信度95%的预测区间为:^^21f Y t nασ20053600GDP =时480.884 2.2287.5325⨯480.88425.2735=(亿元)fY 个别值置信度95%的预测区间为:^^21fY t ασ+即 =480.884 2.2287.5325⨯480.88430.3381=(亿元)15、解:(1)给定0.05α=和自由度为2下,查卡方分布表,得临界值2 5.9915χ=,而White 统计量25.2125nR=,有220.05(2)nR χ<,则不拒绝原假设,说明模型中不存在异方差。
(2)因为对如下函数形式e βϖ=得样本估计式2ˆ(4.5658)0.2482eR ==由此,可以看出模型中随机误差项有可能存在异方差。
(3)对异方差的修正。
可取权数为1/wX=。
16、解:(1)由l n 12.7183X X =⇒=,也就是说,人均收入每增加1.7183倍,平均意义上各国的期望寿命会增加9.39岁。
若当为富国时,1i D =,则平均意义上,富国的人均收入每增加1.7183倍,其期望寿命就会减少3.36岁,但其截距项的水平会增加23.52,达到21.12的水平。
但从统计检验结果看,对数人均收入lnX 对期望寿命Y 的影响并不显著。
方程的拟合情况良好,可进一步进行多重共线性等其他计量经济学的检验。
(2)若1i D =代表富国,则引入()ln 7i i D X -的原因是想从截距和斜率两个方面考证富国的影响,其中,富国的截距为()2.40 3.36721.12-+⨯=,斜率为()9.39 3.36 6.03-=,因此,当富国的人均收入每增加1.7183倍,其期望寿命会增加6.03岁。
(3)对于贫穷国,设定10i D ⎧=⎨⎩若为贫穷国若为富国,则引入的虚拟解释变量的形式为((7ln ))i i D X -;对于富国,回归模型形式不变。
17、答:(1)选择第二个模型。
因为不同的性别,身高与体重的关系是不同的,并且从模型的估计结果看出,性别虚拟变量统计上是显著的。
(2)如果选择了第一个模型,会发生异方差问题。
(3)D 的系数23.8238说明当学生身高每增加1英寸时,男生比女生的体重平均多23.8238磅。
18、解:(1)描述投诉率(Y )依赖航班按时到达正点率(X )的回归方程:i i iu X Y ++=21ββ即 i iX Y 070414.0017832.6ˆ-=(1.052260)(0.014176) t=(5.718961) (-4.967254) R2=0.778996 F=24.67361(2)这说明当航班正点到达比率每提高1个百分点, 平均说来每10万名乘客投诉次数将下降0.07次。
(3)如果航班按时到达的正点率为80%,估计每10万名乘客投诉的次数为384712.080070414.0017832.6ˆ=⨯-=iY (次) 19、设消费函数为:i i i i u X X Y +++=33221βββ式中,i Y 为消费支出;i X 2为个人可支配收入;i X 3为个人的流动资产;iu 为随机误差项,并且222)(,0)(i i i Xu V a r u E σ==(其中2σ为常数)。