人教版六年级数学上册第8单元试卷

合集下载

六年级数学上册第八单元《数学广角—数与形》测试题-人教版(含答案)

六年级数学上册第八单元《数学广角—数与形》测试题-人教版(含答案)

六年级数学上册第八单元《数学广角—数与形》测试题-人教版(含答案)一、单选题1.根据规律填数字15,25,35,45 ()。

A. 60B. 65C. 50D. 552.下图是某蓄水池横截面图,分为深水区与浅水区,如果这个蓄水池以固定的流量注水,那么下图能表达水的最大深度h和注水时间t之间关系的是()。

A. B. C. D. 以上都不对3.乐乐与同学们在老师的带领下到茶厂开展研学旅行活动.第一天她参加采茶叶体验活动.上午采茶叶2小时,吃过午饭后接着采茶叶3小时.下面能较准确地描述这件事的是图()A. B.C. D.4.一列分数的前4个是、、、.根据这4个分数的规律可知,第8个分数是()A. B. C. D.二、判断题5.摆1个正方形需要4根小棒,往后每多摆1个正方形就增加3根小棒,按这样的规律摆10个正方形,一共需要31根小棒.6.下图是小明和小敏两人在相同的600米路上步行情况统计图,从图中可以看出小敏的速度更快。

()三、填空题7.找规律.9876,8765,7654,________,________,________3210.8.我会按规律写数。

(1)2002,3003,________,________,6006,________,________。

(2)6060,6040,________,________,________,5960,________。

9.找规律填数.1.1、1.01、1.001、________、________、________.10.10 20 30 (________) (________) (________) (________)四、解答题11.一条线段把一个长方形分为两部分,4条线段最多能把一个长方形分成几部分?20条呢?12.根据前面的规律,画出图④。

五、应用题13.如下图所示,小刚早晨7时出门步行到离家6千米远的车站去。

返回时骑自行车,上午9时到达家中.(1)返回时的骑车速度是多少?(2)路上一共休息了多长时间?参考答案一、单选题1.【答案】D【解析】【解答】根据前两个数,可以找出规律,每次递增10,45+10=55。

人教版课标(2023年秋)六年级数学上册第八单元试卷(附答案)

人教版课标(2023年秋)六年级数学上册第八单元试卷(附答案)

人教版新课标六年级数学上册第八单元试卷姓名___________________ 座号_______ 成绩___________一.填一填。

(每小题2分,共16分)1、今有鸡兔共35只,脚共有94只,鸡()只,兔()只。

2、有龟和鹤共30只,龟的腿和鹤的腿共有82条。

龟()只、鹤()只。

3、停车场有三轮车和小轿车共7辆,总共有25个轮子。

三轮车有()辆,小轿车有()辆。

4、2元和5元的人民币共9张,合计33元。

2元有()张,5元有()张。

5、28名师生去公园划船,恰好坐满了大、小船共5只。

大船每只坐6人,小船每只坐4人,租了()只小船和租了()只大船。

6、松鼠妈妈采松子,晴天每天采20个,雨天每天可采12个,它一连采了112个,平均每天采14个,这几天中有()天是雨天。

7、一个工人要将63个零件装进两种盒子里,每只大盒子装12个零件,每只小盒子装5个零件,需要准备4个大盒子和()个小盒子才能把这些零件装下去。

8、口袋里有1个黄球、2个白球、3个绿球和4个红球,这些球的大小相同,从中任意摸一个球,摸到黄球的可能性是(),摸到白球的可能性是(),摸到绿球的可能性是(),摸到()球的可能性最大。

二、选一选。

(每小题2分,共12分)1.学校买回4个篮球和5个排球一共用185元,一个篮球比一个排球贵8元,篮球的单价是()元。

A、17B、20C、252.钢笔每支12元,圆珠笔每支7元,共买了6支,用了52元,钢笔买了()支。

A、5B、4C、23.两个大人带几个小孩去公园游玩,大人门票每人5元,小孩门票每人3元,买门票一共花了22元,则这两个大人带了()个小孩。

A、3B、4C、54.甲级铅笔5角钱一枝,乙级铅笔7角钱一枝,用7.5元可买这两种铅笔各()枝。

A、8 , 5B、9 , 7C、8 , 75.面粉每千克5元,大米每千克3元。

王叔买面粉和大米共150千克,共付人民币650元,面粉买()千克。

A、50B、100C、1506.幼儿园买来20张小桌和30张小凳共用去1860元,已知每张小桌比小凳贵8元,问小凳的价格是()?A、34元B、42元C、56元三、算一算。

人教版六年级上册数学第八单元数学广角-数与形单元试题

人教版六年级上册数学第八单元数学广角-数与形单元试题

人教版六年级上册数学第八单元数学广角-数与形单元试题一、选择题1.秋季运动会上,小刚、小明、小林、小强、小兵和小山六位同学进行兵乒球比赛,每2人之间都要赛一场,小刚赛了5场,小明赛了4场,小林赛了2场,小强赛了2场,小兵赛了1场。

请你帮忙算一算,小山赛了()场。

A.1B.2C.3D.42.观察下列各图,它们是按一定规律排列的。

根据规律,第n个图形中五角星的个数是()。

A.4n B.4n+1C.3n+1D.3n+43.古希腊毕达哥拉斯学派把1,3,6,10,…这样的数称为“三角形数”,而把1,4,9,16,…这样的数称为“正方形数”。

从图中可以发现,任何一个大于1的“正方形数”都可以看成两个相邻“三角形数”之和。

下面的等式中,符合这一规律的是()。

A.13=3+10B.25=19+6C.36=15+21D.49=18+31 4.有一组图,它的排列规律如下图,第7个图形由()个●组成。

A.21B.25C.28D.325.根据下图的规律,可知第⑥个图中有()个。

A .21B .25C .296.正方形纸片按规律拼成如下的图案,第( )个图案中恰好有365个纸片。

A .73B .81C .917.摆一个小正方形要4根小棒,如果按照下图的摆法,摆n 个小正方形需要( )根小棒。

A .4nB .41n -()C .31n +D .31n -8.如下图所示,摆1个六边形要用6根小棒,摆2个六边形要用11根小棒,摆3个六边形要用16根小棒……,摆30个六边形要用( )根小棒。

A .151B .179C .180D .181二、填空题9.如图,用同样的小棒可以摆成一个正方形,照这样的摆法,摆第n 个图形需要( )根小捧。

10.用火柴棒,按……搭正方形,摆5个正方形需要( )根火柴棒;像这样摆正方形,85根火柴棒一共可以摆出( )个正方形。

11.如图所示,这样的8张桌子连起来,一共可以坐( )人;n 张桌子连起来一共可以坐( )人。

人教版数学六年级上册第八单元测试(附答案)

人教版数学六年级上册第八单元测试(附答案)

精品数学单元测试卷一.选择题(共10小题)1.观察下面的点阵图形,根据圆点的变化,探究其规律,则第8个图形中圆点的个数为()A.25B.26C.27D.292.按如图方式摆放桌子和椅子.当摆放8张桌子时,可以坐()人.A.30B.32C.34D.363.下面这组图形是按照一定规律排列的,照这样的规律,第8个图形有()个黑色小方形A.26B.24C.22D.204.观察下面的算式:5×9=4555×99=5445555×999=5544455555×9999=55544445则=()A.B.C.5.已知99×99=9801,999×999=9980019999×9999=99980001,下一个式子是()A.99999×99999=999800001B.99999×99999=9999800001C.99999×99999=9999980001D.99999×99999=999999800016.根据你发现的规律,算式1234567×8+7的得数是()A.9876B.98765C.987654D.98765437.一组数据按下面顺序依次排列:1,3,2014,2,4,2012,3,5,2010,4,6,2008 (2016)数是()A.672B.674C.670D.6768.观察已给数列,括号中应填入所缺的数为:1,1,2,3,5,8,13(),34,……A.15B.17C.21D.309.将化成小数后,小数点后第2013位上的数字是()A.2B.4C.3D.810.0.123412341234…,小数点后第100个数字是()A.1B.2C.3D.4二.填空题(共8小题)11.如图,下面每个图中有多少个白色小正方形和多少个灰色小正方形?(1)把下面的表格补充完整.第1个图第2个图第3个图第4个图白色12灰色810(2)照这样接着画下去,第6个图中有个自色小正方形和个灰色小正方形.(3)想一想:照这样的规律,第n个图中有个白色小正方形和个灰色小正方形.(4)照这样的规律,如果某个图中灰色小正方形有30个,那么自色小正方形有个,它是第个图.12.用小棒按照如下的方式摆图形.(1)摆一个六边形需要6根小棒,摆2个六边形需要11根小棒,摆三个六边形需要根小棒.(2)照这样摆下去:摆n个六边形需要根小棒,但n=60时,需要根小棒.13.已知1=12,1+3=22,1+3+5=32,1+3+5+7=42那么1+3+5+7+9+11+13=.14.观察前四个算式的规律,利用发现的规律巧算最后一题.1=121+3=221+3+5=321+3+5+7=4221+23+25+…+45+47+49=2﹣2=.15.按规律填1,,,,,……16.按规律继续填数:10、13、16、19、、、.18、27、36、45、、、.17.10.1÷11商的小数部分第100位上的数字是.18.找规律:、、、、、、三.判断题(共5小题)19.如图:那么第7个点阵有45个点..(判断对错)20.44×9=396,444×9=3996,由此可得44444×9=399996.(判断对错)21.在数列”,,,,,,…”中,第10个数是.(判断对错)22.一个数列为:1,2,3,1,2,3,…按这样的顺序排下去,第20个数是3.(判断对错)23.30÷11=2.,小数点后100位上的数字是7..(判断对错)四.应用题(共3小题)24.小明用小棒搭房子.搭2间用9根,搭3间用13根.照这样计算,如果搭10间房子,需要用多少根小棒?25.先计算前三题,再根据发现的规律直接写出其他算式的结果.1+3═=221+3+5═=321+3+5+7═=…1+3+5+7+…+15═=1+3+5+7+…+2017==26.有一列数:,,,,,,,…它的前2015个数的和是多少?五.解答题(共6小题)27.将小长方体木块按如图方式进行摆放.12345…小长方体的个数露在外面的面数…28.用一根长96厘米的绳子在地上摆正方形.1234正方形个数正方形边长(厘米)2412顶点数47(1)填写上表.(2)像这样摆下去,当这根绳子摆出12个正方形时,正方形的边长是厘米;当这根绳子摆出n个正方形时,顶点数是个.29.将小正方体按图方式摆放在地上.123456…a小正方体的个数露在外面的面的个数5…30.根据各式的规律填空:1=121+3=221+3+5=321+3+5+7=42(1)1+3+5+7+9+11+13=2.(2)从1开始,个连续奇数相加的和是202.31.数列2,3,,,……,则其中第6个数是.32.2÷11的商用简便方法记作,小数点后面第100位上的数字是答案与解析一.选择题(共10小题)1.解:由分析可图可知,第n个图的点数是(4n﹣3)个第8个图形中圆点的个数为:4×8﹣3=32﹣3=29答:第8个图形中圆点的个数为29.故选:D.2.解:6+4×(8﹣1)=6+4×7=6+28=34(人)答:当摆放8张桌子时,可以坐34人.故选:C.3.解:第一个图形中黑色正方形有:8个;第二个图形中黑色正方形有:8+2=10(个);第三个图形中黑色正方形有:8+2+2=12(个);……第n个图形中黑色正方形有:8+(n﹣1)×2=(2n+6)(个).所以,第8个图形中黑色小正方形个数为:2×8+6=16+6=22(个)答:第8个图形有22个黑色小方形.故选:C.4.解:的积中,应该有10个4,4前面有9个5,积的最后一位数字是5.=.故选:C.5.解:已知99×99=9801,999×999=998001 9999×9999=99980001,下一个式子是: 99999×99999=9999800001故选:B.6.解:1+9=2+8=3+7=4+6=5+5=6+4=7+3,算式1234567×8+7=9876543.故选:D.7.解:根据观察发现,这组数据每3个数一组:第一个数字为从1开始的自然数排列;第二个数为从3开始的自然数排列;第3个数为从2014开始,每组减2.第2016个数包含几组:2016÷3=672(组)所以第2016个数为:2014﹣(672﹣1)×2=2014﹣1342=672答:第2016个数为672.故选:A.8.解:要填的数是:8+13=21;故选:C.9.解:=0.4285,它每6个数字一个循环:1、4、2、8、5、7;2013÷6=335 (3)余数是3,所以小数点后第2013位上的数字是2;故选:A.10.解:小数0.123412341234…循环节为1234,共4位数.100÷4=25,小数点后第100个数字是4.故选:D.二.填空题(共8小题)11.解:(1)观察可知,第1个图有1个白色小正方形和8个灰色小正方形,第2个图有2个白色小正方形和10个灰色小正方形,第3个图有3个白色小正方形和12个灰色小正方形,第4个图有4个白色小正方形和14个灰色小正方形.(2)根据上题可推出第6个图中有6个自色小正方形和18个灰色小正方形;(3)第n个图中有n个白色小正方形和2n+6个灰色小正方形;(4)2n+6=302n=30﹣62n=24n=24÷2n=12故答案为:(1)3,4,12,14;(2)6,18:;(3)n,2n+6;(4)12,12.12.解:根据题干分析可得:摆1个六边形需要6根小棒,可以写作:5×1+1=6(根);摆2个需要11根小棒,可以写作:5×2+1=11(根);摆3个需要16根小棒,可以写成:5×3+1=16(根);…,摆n个六边形需要(5n+1)根小棒.摆n=60个六边形需要:5×60+1=301(根)小棒,故答案为:16,(5n+1),301.13.解:1+3+5+7+9+11+13=72=49;故答案为:49.14.解:(1+3+5+7+......49)﹣(1+3+5+ (19)=[(49+1)÷2]2﹣[(1+19)÷2]2=252﹣102=625﹣100=525故答案为:25,10,525.15.解:利用规律,则组数为:1、、、、、……故答案为:;.16.解:(1)19+3=2222+3=2525+3=28;(2)45+9=5454+9=6363+9=72;故答案为:22,25,28;54,63,72.17.解:10.1÷11=0.9181818…观察可知双数位上永远是1,第100位是双位数,所以10.1÷11商的小数部分第100位上的数字是1.故答案为:118.解:第一空分子是8+2=10,分母是52=25第二空分子是10+2=12,分母是62=36、、、、、、.故答案为:,.三.判断题(共5小题)19.解:1+4+6+8+10+12+14=5555>45所以第7个点阵有45个点的说法是错误的;故答案为:×.20.解:因为44×9=396444×9=3996所以44444×9=399996.故答案为:√.21.解:这个数列中从左到右分别是1、3、5、7、9、11、13、15、17、19…分母是102=100因此,在数列”,,,,,,…”中,第10个数是.故答案为:√.22.解:20÷3=6(组)…2(个)每组中的第2个是2,所以第20个数是2.故答案为:×.23.解:循环节是72两个数字;100÷2=50,说明到第100位数字出现了50个循环节,所以100位上的数字是2;所以原题错误.故答案为:×.四.应用题(共3小题)24.解:根据图示,2间房:5+4=9(根)3间房:5+4+4=13(根)……10间房:5+4×(10﹣1)=41(根)答:搭10间房子,需要用41根小棒.25.解:1+3═4=221+3+5═9=321+3+5+7═16=42…1+3+5+7+…+15═64=821+3+5+7+…+2017=1016064=10082故答案为:4,22,9,32,16,42,64,82,1016064,10082.26.解:以1为分母的数有1个,相加和S1=1,以2为分母的数有2个,相加和S2=+=,以3为分母的数有3个,相加和S3=++=2,…以n为分母的数有n个,相加和S n=++…+==,求前2015个数的和,先确定第2015个数分母是什么,即求满足1+2+3+4…+m=≥2015的最小整数n,易得n=63,62×63÷2=1953,分母为63的数有2015﹣1953=62个,即、、、…、,则前2015个数的和是:S=S1+S2+…S62++++…+=(1+2+3+…62)÷2+(1+2+3+…+62)÷63=(1+62)×62÷2÷2+(1+62)×62÷2÷63=976.5+31=1007.5答:它的前2015个数的和是1007.5.五.解答题(共6小题)27.解:根据题干分析可得:1个小长方体有5个面露在外面,再增加一个长方体,2个小长方体有8个面露在外面;3个小长方体有11个面露在外面.每增加1个长方体漏在外面的面就增加3个即:n个长方体有5+(n﹣1)×3=5+(n﹣1)×3=5+3n﹣3=3n+2当n=4时,3×4+2=14(个)当n=5时,3×5+2=17(个)据此完成表格如下:12345小长方体的个数58111417露在外面的面数发现:n个长方体有5+(n﹣1)×3=3n+2个面露在外面.28.解:(1)正方形个数1234正方形边长(厘米)2412(8)(6)顶点数47(10)(13)(2)96÷12÷4=8÷4=2(厘米)根据所给图形顶点的个数发现规律:1个正方形,顶点个数:3+1=4(个)2个正方形,顶点个数:3×2+1=7(个)3个正方形,顶点个数:3×3+1=10(个)……n个正方形,顶点个数:(3×n+1)个.答:摆12个正方形,边长为2厘米;摆n个正方形,有(3n+1)个顶点.故答案为:2;(3n+1).29.解:根据题干分析可得,1个小正方体,露在外面的面的个数是3×1+2=5个,2个小正方体拼在一起,露在外面的面的个数是3×2+2=8(个)3个小正方体拼在一起,露在外面的面的个数是3×3+2=11(个)4个小正方体拼在一起,露在外面的面的个数是3×4+2=14(个)5个小正方体拼在一起,露在外面的面的个数是3×5+2=17(个)6个小正方体拼在一起,露在外面的面的个数是3×6+2=20(个)…,则a个小正方体拼在一起,露在外面的面的个数是3×a+2=3a+2(个)故完成表格如下:小正方体的个数123456…a 露在外面的面的个数5811141720…3a+2 30.解:(1)1+3+5+7+9+11+13=72;(2)观察图形可知,从1开始的连续奇数的和等于奇数个数的平方,所以从1开始,20个连续奇数相加的和是202.故答案为:(1)7;(2)20.31.解:这组数据的规律为:后面的数等于前面的数乘所以,第6个数为:2×=答:其中第6个数是.故答案为:.32.解:2÷11=0.循环节是18两个数字;100÷2=50,说明到第100位数字出现了50个循环节,所以100位上的数字是8;故答案为:0.,8.。

人教版数学六年级上册第八单元综合测试卷(附答案)

人教版数学六年级上册第八单元综合测试卷(附答案)

第⑧单元测试卷一.选择题(共6小题)1.摆1个正方形需要4根小棒,摆2个正方形需要7根小棒.照这样横着摆下去,10个正方形需要()根小棒.A.31B.30C.27D.322.按如图规律摆放三角形则第⑥个图三角形的个数为()A.15B.17C.20D.243.仔细观察37×3=111;37×6=222;37×9=333;请你推算出37×21的得数是()A.444B.555C.7774.按规律填上合适的数:160,145,(),115,100.A.120B.130C.135D.1405.根据3×4=12、33×34=1122、333×334=111222,推测3333×3334=()A.11111222B.11122222C.11112222D.111111126.0.123412341234…,小数点后第100个数字是()A.1B.2C.3D.4二.填空题(共8小题)7.甲、乙两人在楼梯上玩石头剪子布的游戏,每次必须分出胜负.约定:每次胜者上5个台阶,负者下3个台阶.甲、乙二人同时在第50个台阶上开始玩,玩了25次后,甲的位置比乙高40个台阶.那么,甲胜了次.8.按规律填数:,,,,,,.9.找规律填数1,2,4,7,11,.1,4,9,16,25,.10.按规律写数:9×7=63,99×97=9603,999×997=996003,9999×9997=99960003……9999999×9999997=.11.如果1+3=22,1+3+5=32,那么1+3+5+7+9=2.12.根据38×3=114,154÷14=11,直接写出下面两组算式的得数:380×3=38×30=380×30=1540÷140=308÷28=1540÷14=13.探究用小棒摆正方形,如图所示.正方形的个数图形小棒的根数1424+334+3+3………………(1)摆8个正方形,需要根小棒.(2)如果摆n个正方形,需要根小棒.14.找规律填数:图中正方形表示桌子,圆圈表示椅子.25张桌子可以坐人.三.判断题(共5小题)15.如图,第五个点阵中点的个数是17个.(判断对错)16.3×4=12,33×34=1122,333×334=111222根据前三题的得数,33333×33334=11112222.(判断对错)17.若一列数为:2,4,6,8,10,……96,98,100,则这列数的和是2550.(判断对错)18.19.小数点后第10位上的数字是3.(判断对错)19.在1+3+5+7+9+…中,从“1”到数“13”的和是49..(判断对错)四.计算题(共1小题)20.已知:=+=+=+利用上面的规律计算:1+﹣+﹣+﹣.五.应用题(共2小题)21.用6根同样长的小棒可以摆成一个正六边形(如图①),再接着摆下去(如图②、③、④),图⑧一共需要多少根小棒?22.如图,第二个图形是由第一个图形连接三边中点而得到的,第三个图形是由第二个图形中间的一个三角形连接三边中点而得到的,以此类推……分别写出第二个图形、第三个图形和第四个图形中的三角形个数.如果第n个图形中的三角形个数为8057,n是多少?六.操作题(共2小题)23.如图是用小棒摆出的正方形,观察图形中的规律,画出后面的图形,再填一填.24.找规律填一填,画一画.(1)、.(2)3、6、9、12、、.(3)80、40、、10、.(4)1、3、9、、81、.七.解答题(共2小题)25.观察下列点阵的规律,在括号里画出下一个点阵图,并写出点的个数.26.仔细观察下面的点子图,看看有什么规律.(1)根据上面图形与数的规律接着画一画,填一填.(2)探索填空:按照上面的规律,第6个点子图中的点子数是;第10个点子图中的点子数是.答案与解析一.选择题(共6小题)1.【分析】根据题意可知:摆1个正方形需要小棒根数:4根;摆2个正方形需要小棒根数:4+3=7(根);摆3个正方形需要小棒根数:4+3+3=10(根);……摆n个正方形需要小棒根数:4+3(n﹣1)=(3n+1)根.据此解答.【解答】解:摆1个正方形需要小棒根数:4根摆2个正方形需要小棒根数:4+3=7(根)摆3个正方形需要小棒根数:4+3+3=10(根)……摆n个正方形需要小棒根数:4+3(n﹣1)=(3n+1)根……摆10个正方形需要小棒根数:3×10+1=30+1=31(根)答:10个正方形需要31根小棒.故选:A.【点评】本题主要考查数与形结合的规律,关键根据所给图示发现这组图形的规律,并运用规律做题.2.【分析】根据图示,发现这组图形的规律:图①三角形的个数:2×3﹣1=5(个);图②三角形的个数:3×3﹣1=8(个);图③三角形的个数:4×3﹣1=11(个);……图n三角形的个数:3(n+1)﹣1=(3n+2)个.据此解答.【解答】解:图①三角形的个数:2×3﹣1=5(个)图②三角形的个数:3×3﹣1=8(个)图③三角形的个数:4×3﹣1=11(个)……图n三角形的个数:3(n+1)﹣1=(3n+2)个……第⑥个图三角形的个数为:3×6+2=18+2=20(个)答:第⑥个图三角形的个数为20个.故选:C.【点评】本题主要考查数与形结合的规律,关键根据所给图示发现这组图形的规律,并运用规律做题.3.【分析】与37×3=111相比,算式37×21的第一个因数相同,第二个因数扩大了7倍,所以积111也要扩大了7倍是777;据此解答即可.【解答】解:37×21=37×3×7=111×7=777故选:C.【点评】“式”的规律:关键是根据已知的式子或数得出前后算式或前后数之间的变化关系和规律,然后再利用这个变化规律再回到问题中去解决问题.4.【分析】160﹣145=15,115﹣100=15,规律:每次递减15,据此解答即可.【解答】解:145﹣15=130故选:B.【点评】数列中的规律:关键是根据已知的式子或数得出前后算式或前后数之间的变化关系和规律,然后再利用这个变化规律再回到问题中去解决问题.5.【分析】根据观察知:当因数是3和4时,它们的积是12,当因数是33,34时,积是1122,当因数是333,334时积是111222,它们的规律是当在每个因数的前面添上一个3时,它的积的前面就是添一个1,后面就要添一个2.也就是因数有3的个数与积中1的个数和2的个数相同.据此解答.【解答】解:根据观察知:因数有3的个数与积中1的个数和2的个数相同.3333×3334=11112222.故选:C.【点评】本题的关键是找出题目中的规律再进行解答.6.【分析】因为0.123412341234…循环节为1234,共4位数,则100÷4=25,正好除尽,因此小数点后第100个数字是循环节的第4个数,即数字4.【解答】解:小数0.123412341234…循环节为1234,共4位数.100÷4=25,小数点后第100个数字是4.故选:D.【点评】此题解答的关键在于运用“找循环节,看余数”的方法,解决问题.二.填空题(共8小题)7.【分析】根据题意,每次二人相差3+5=8(个)台阶,甲比乙高40个台阶,说明甲比乙多赢40÷8=5(次),其余次数二人输赢一样多.据此解答即可.【解答】解:[25+40÷(5+3)]÷2=[25+40÷8]÷2=[25+5]÷2=30÷2=15(次)答:甲胜了15次.故答案为:15.【点评】本题主要考查算术中的规律,关键根据题意找出二人每次胜负的台阶差.8.【分析】分母10﹣4=6;16﹣10=6;所以规律是:分母依次增加6,分子都是1.【解答】解:==故答案为:;.【点评】数列中的规律:关键是根据已知的式子或数得出前后算式或前后数之间的变化关系和规律,然后再利用这个变化规律再回到问题中去解决问题.9.【分析】(1)2﹣1=1,4﹣2=2,7﹣4=3,11﹣7=4,规律:每次分别增加1、2、3、4、5、…;(2)1=1×1,4=2×2,9=3×3,16=4×4,25=5×5,规律:是连续自然数的平方数.【解答】解:(1)11+5=16(2)6×6=36故答案为:16;36.【点评】数列中的规律:关键是根据已知的式子或数得出前后算式或前后数之间的变化关系和规律,然后再利用这个变化规律再回到问题中去解决问题.10.【分析】先观察前4个算式,得出规律:第一个因数如果有n个9,第二个因数9的个数就是(n﹣1),有一个7,得数中9的个数也是(n﹣1),有一个6,0的个数也是(n﹣1),最后是数字3.据此解答.【解答】解:9×7=6399×97=9603999×997=9960039999×9997=999600039999999×9999997=99999960000003.故答案为:99999960000003.【点评】“式”的规律:关键是根据已知的式子或数得出前后算式或前后数之间的变化关系和规律,然后再利用这个变化规律再回到问题中去解决问题.11.【分析】观察已知的三个算式,可得规律:连续几个奇数的和,就等于奇数个数的平方数;据此解答即可.【解答】解:1+3+5+7+9=52故答案为:5.【点评】“式”的规律:关键是根据已知的式子或数得出前后算式或前后数之间的变化关系和规律,然后再利用这个变化规律再回到问题中去解决问题.12.【分析】(1)已知38×3=114,当一个因数扩大10倍,另一个因数不变时,积也扩大10倍,当两个因数各扩大10倍时,扩大10×10倍,即100倍.(2)已知154÷14=11,根据商不变的规律,被除数、除数同时乘或除以相同的数(0除外)商不变;当除数不变,被除数乘扩大多少倍,商也扩大多少倍;当被除数不变,除数扩大多少倍,则商缩小相同的倍数.【解答】解:(1)380×3=1140(2)38×30=1140(3)380×30=11400(4)1540÷140=11(5)308÷28=11(6)1540÷14=110故答案为:1140,1140,11400,11,11,110.【点评】此题主要是考查乘法算式中因数与积的变化规律、除法算式中商不变的规律.13.【分析】根据图示发现:摆1个正方形需要小棒:4根;摆2个正方形需要小棒:4+3=7(根);摆3个正方形需要小棒:4+3+3=10(根);……摆n个正方形需要小棒:4+3(n﹣1)=(3n+1)根.据此解答.【解答】解:摆1个正方形需要小棒:4根摆2个正方形需要小棒:4=3=7(根)摆3个正方形需要小棒:4+3+3=10(根)……摆8个正方形需要小棒:4+3×(8﹣1)=4+21=25(根)……摆n个正方形需要小棒:4+3(n﹣1)=(3n+1)根.(1)摆8个正方形,需要25根小棒.(2)如果摆n个正方形,需要(3n+1)根小棒.故答案为:25;(3n+1).【点评】本题主要考查数与形结合的规律,关键根据图示发现这组图形的规律,并运用规律做题.14.【分析】根据题目中的图形,可以写出前几张桌子坐的人数,从而发现随着桌子增加,所坐人数的变化规律,即每增加一张桌子,就多坐4个人,从而可以计算出25张桌子可以坐的人数.【解答】解:由图可知,1张桌子可以坐2+4=6个人,2张桌子可以坐2+4×2=2+8=10个人,3张桌子可以坐2+4×3=2+12=14个人,…则25张桌子可以坐2+4×25=2+100=102个人,故答案为:102.【点评】此题主要考查数与形结合的规律,解答本题的关键是明确题意,发现题目中所坐人数的变化规律,利用数形结合的思想解答.三.判断题(共5小题)15.【分析】根据图示,发现这组图形的规律:第一个点阵中点的个数:1个;第二个点阵中点的个数:1+4=5(个);第三个点阵中点的个数:1+4+4=9(个);……第n个点阵中点的个数:1+4(n﹣1)=(4n+3)(个).据此判断即可.【解答】解:第一个点阵中点的个数:1个第二个点阵中点的个数:1+4=5(个)第三个点阵中点的个数:1+4+4=9(个)……第n个点阵中点的个数:1+4(n﹣1)=(4n+3)(个)……第五个点阵中点的个数:4×5+3=20+3=23(个)答:第五个点阵中点的个数是23个.所以原说法错误.故答案为:×.【点评】本题主要考查数与形结合的规律,关键根据图示发现这组图形的规律,并运用规律做题.16.【分析】根据3×4=12,33×34=1122,333×334=111222,可得规律是:积的各位数字是由1和2组成,1在2的前面;因数的位数都相同,积中1和2的个数等于其中一个因数的位数;然后据此规律解答即可.【解答】解:根据分析可得:33333×33334=1111122222;所以,原题说法错误.故答案为:×.【点评】本题关键是找到积的规律和积与因数的位数的关系,然后再利用这个规律去解答问题.17.【分析】求2,4,6,8,10,……96,98,100的和即为求:2+4+6+8+10+…+100=?n=50,根据等差数列的求和公式完成计算.【解答】解:2+4+6+8+10+…+100===2550所以原题计算正确.故答案为:√.【点评】根据等差数列求和公式进行计算,找出等差数列的公差,首项,尾项和项数是计算的关键.18.【分析】19.是一个循环小数,循环节是325,因为10÷3=3…1,所以循环节的第1个数是第10个数字,即3;据此判断.【解答】解:该小数的循环节是325,因为10÷3=3…1,所以第10位上的数字是3;故答案为:正确.【点评】本题重点要确定循环节有几位,10里面有几个循环周期.19.【分析】在1+3+5+7+9+…中首先求出“13”是第几项(由于项数比较少,可能用数的方法),由于相邻两数的差是1,所以项数等于(末项﹣首项)÷2+1,据即可求13是第几项;前n项和的计算公式是(末项+首项)×,根据公式可求出前13项的和,根据计算结果进行判断.【解答】解:在1+3+5+7+9+…中,从“1”到数“13”的项数为:(13﹣1)÷2+1=12÷2+1=6+1=7前6项的和为:(13+1)×=14×3.5=49因此,在1+3+5+7+9+…中,从“1”到数“13”的和是49,原题的说法是正确的.故答案为:√.【点评】此题项数较少,写出所有项,通过计算即可得到正确的结果.如果项数较多,只能先总结出求项数、前n项和公式解答.四.计算题(共1小题)20.【分析】由已知条件可以看出:分母是相邻自然数,分子是1的两个分数相加,这两个自然数的和为分子,积为分母.根据这规律先算式中的、、、、,然后再计算.【解答】解:1+﹣+﹣+﹣=1+﹣(+)+(+)﹣(+)+(+)﹣(+)=1+﹣﹣++﹣﹣++﹣﹣=1﹣=【点评】解答此题的关键是把算式中的、、、、,分别用+、+、+、+代换,相同的分数加、减相抵消,可使计算简便.五.应用题(共2小题)21.【分析】摆1个六边形需要6根小棒,可以写作:5×1+1;摆2个需要11根小棒,可以写作:5×2+1;摆3个需要16根小棒,可以写成:5×3+1;…由此可以推理得出一般规律解答问题.【解答】解:根据题干分析可得:摆1个六边形需要6根小棒,可以写作:5×1+1;摆2个需要11根小棒,可以写作:5×2+1;摆3个需要小棒:5×3+1=16;摆n个需要小棒:5×n+1=5n+1;当n=8时,5n+1=5×8+1=41;答:图⑧一共需要41根小棒.【点评】根据题干中已知的图形的排列特点及其数量关系,推理得出一般的结论进行解答,是此类问题的关键.22.【分析】根据图示,发现其规律为:第一个图形中三角形个数:1个;第二个图形中三角形个数:1×4+1=5(个);第三个图形中三角形个数:2×4+1=9(个);第四个图形中三角形个数:3×4+1=13(个);第n个图形中三角形个数:(n﹣1)×4+1=(4n﹣3)(个),计算n的值即可.【解答】解:第一个图形中三角形个数:1个;第二个图形中三角形个数:1×4+1=5(个);第三个图形中三角形个数:2×4+1=9(个);第四个图形中三角形个数:3×4+1=13(个);第n个图形中三角形个数:(n﹣1)×4+1=(4n﹣3)(个)4n﹣3=8057,n=2015.答:n是第2015个图形.【点评】本题主要考查数与形结合的规律,关键根据所给图示发现图示排列的规律,并运用规律做题.六.操作题(共2小题)23.【分析】根据图示,发现这组图形的规律:摆1个正方形需要小棒:4根;摆2个正方形需要小棒:4+3=7(根);摆3个正方形需要小棒:4+3+3=10(根);……摆n个正方形需要小棒:4+3(n﹣1)=(3n+1)根.据此解答并完成作图.【解答】解:如图:摆1个正方形需要小棒:4根摆2个正方形需要小棒:4+3=7(根)摆3个正方形需要小棒:4+3+3=10(根)……摆n个正方形需要小棒:4+3(n﹣1)=(3n+1)根所以,摆4个正方形需要小棒:3×4+1=12+1=13(根)【点评】本题主要考查数与形结合的规律,关键根据所给图示发现这组图形的规律,然后利用规律做题.24.【分析】(1)1×2=2,2×2=4,规律:每次个数扩大2倍;(2)3=3×1、6=3×2、9=3×3、12=3×4,;规律:依次都是3的倍数;(3)80÷40=2,规律:依次缩小2倍数;(4)3÷1=3,9÷3=3,规律:每次个数扩大3倍.【解答】解:(1)(2)3×5=153×6=18(3)40÷2=2010÷2=5(4)9×3=2781×3=243故答案为:,;15,18;20,5;27,243.【点评】数列中的规律:关键是根据已知的式子或数得出前后算式或前后数之间的变化关系和规律,然后再利用这个变化规律再回到问题中去解决问题.七.解答题(共2小题)25.【分析】根据题目中的图形,可以写出前几个图形的点的个数,从而可以发现点的个数的变化规律,即每一个图形都比前一个图形中多4个点,从可以计算出第四幅图中点的个数,进而可以画出相应的图形,写出相应的点的个数.【解答】解:由图可知,第一幅图有1个点,第二幅图有1+4=5个点,第三幅图有1+4×2=1+8=9个点,则第四幅图有1+4×3=1+12=13个点,如右图所示.【点评】此题主要考查数与形结合的规律,解答本题的关键是明确题意,发现题目中点的个数的变化规律,利用数形结合的思想解答.26.【分析】(1)根据点子图,找出规律:图1,2个点,图2,2+3个,图3,2+3+4个,图4,2+3+4+5个,则图5,2+3+4+5+6个,据此即可画图;(2)根据上面的分析可得图6,2+3+4+5+6+7,图10,2+3+4+5+6+7+8+9+10+11,计算即可.【解答】解:(1)根据题干分析画图如下:(2)第6个点子图中的点子数是:2+3+4+5+6+7=2+5+(3+7+4+6)=27(个)第10个点子图中的点子数是:2+3+4+5+6+7+8+9+10+11=13×5=65(个)答:第6个点子图中的点子数是27个,第10个点子图中的点子数是65个.故答案为:27,65.【点评】此题重点考查根据图形排列找出规律,进而根据规律解决问题.。

人教版数学六年级上册单元练习卷(易错题)-第八单元 数学广角——数与形(含答案)

人教版数学六年级上册单元练习卷(易错题)-第八单元 数学广角——数与形(含答案)

人教版数学六年级上册单元练习卷(易错题)第八单元数学广角——数与形学校:___________姓名:___________班级:___________考号:___________一、选择题1.按规律填数:1020、2040、()、4080。

A.2060B.4100C.30602.按照规律填数,5337、5437、5537、()。

A.5347B.5637C.6537D.55383.用同样长的小棒摆出如下的图形。

照这样继续摆,第6个图形用了()根小棒A.20B.24C.254.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是()。

A.86B.32C.158D.745.如表,照这样的规律摆下去,当图形中有17个圆时,正方形有()个A.8B.9C.18D.35二、填空题6.小明按照如图的方法用灰色和白色正方形摆图形。

当中间摆n个灰色的正方形时,四周共需要摆________个白色正方形。

7.如果照下图这样排列下去,第5个图形中涂色的小三角形有( )个;第10个图形中涂色的小三角形有( )个,没有涂色的小三角形有( )个。

8.根据下列数的规律,填上适当的数。

5,12,( ),26,33,40,( ),54,61。

9.找规律,填一填。

①0.2、0.6、1.8、( )、16.2、( )、( )。

①0.1、0.2、0.3、0.5、0.8、( )、2.1、( )。

10.按规律填数。

100%,0.9,45,( )(成数),( )(百分数),( )(小数),( )(分数)。

11.将一些▲按一定的规律摆放,(如图所示)。

图中▲的个数依次是6、10、16、24…第10个图形共有( )个▲。

第m个图形中共有( )个▲。

12.观察前四个算式的规律,利用发现的规律巧算最后一题。

1=121+3=221+3+5=321+3+5+7=4221+23+25+…+45+47+49=_____2-_____2=_____。

2022年新人教版小学六年级数学上册第八单元学习质量检测卷(附参考答案)

2022年新人教版小学六年级数学上册第八单元学习质量检测卷(附参考答案)

2022年新人教版小学六年级数学上册第八单元学习质量检测卷时间:90分钟满分:100分班级__________姓名__________得分__________一、选择题(共8小题,满分16分,每小题2分)1.(2分)下列图形都是由一样大小的小棒按照一定规律所组成的,其中第1个图形中有1根小棒,第2个图形中有3根小棒,第3个图形中有7根小棒,第4个图形中有15根小棒,⋯按此规律排列下去,则第6个图形中有()根小棒。

A.31B.32C.63D.642.(2分)将黑色棋子按照一定规律排列成一系列如图所示的图案,第1个图中有8枚黑棋子,第2个图中有13枚黑棋子,第3个图中有18枚黑棋子,按照此规律,第9个图中有()枚黑棋子。

A.49B.48C.47D.463.(2分)观察图形,按此规律,第⑩个图中〇的个数有()个。

A.55B.40C.36D.104.(2分)如图所示,用白色小正方形和黑色长方形按照下面的摆法,组成不同的长方形。

当摆5个黑色长方形时,四周需要摆()个白色小正方形。

A.16B.20C.26D.365.(2分)如图是由同样大小的圆按一定规律排列所组成的,其中第1个图形中有4个圆,第2个图形中有8个圆,第3个图形中有14个圆,第4个图形中有22个圆……,按此规律排列下去,第20个图形中有()个圆。

A.422B.412C.402D.3926.(2分)疫情期间,为方便全员核酸检测,某社区需要搭建如图1的单顶帐篷,需要17根钢管。

这样的帐篷按图2、图3的方式串起来搭建,则串起来搭建n顶帐篷需要()根钢管。

A.11n+6B.11n﹣6C.17n D.17n﹣67.(2分)△◎◇口△◎◇☐△◎◇☐……这组排列共有110个图形,其中◎共有()个。

A.26B.27C.28D.298.(2分)小明在玩一张长10厘米、宽6厘米的卡片时,意外地发现下面两种摆法,都正好从写字台的一端摆到另一端,写字台的这条边可能是()厘米。

六年级上册数学第八单元练习卷含答案(8.数与形)新人教版

六年级上册数学第八单元练习卷含答案(8.数与形)新人教版

新人教版六年级上册数学第八单元练习卷含答案8.数与形一、填空1.如图所示,观察小圆圈的摆放规律,第一个图中有5个小圆圈,第二个图中有8个小圆圈,第100个图中有_____个小圆圈。

2.找规律,下列图中有大小相同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,则第4幅图中有____个菱形,第n幅图中有______个菱形。

1 2 3 n3.用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第n个图形需棋子_______枚(用含n的代数式表示)。

…第1个图第2个图第3个图4.观察表一,寻找规律,表二、表三、表四分别是从表一中截取的一部分,其中a、b、c的值分别为________。

表一表二表三表四5.如图①是一块瓷砖的图案,用这种瓷砖来铺设地面。

如果铺成一个2x2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3x3的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个4x4的正方形图案(如图④),其中完整的圆共有25个。

若这样铺成一个10x10的正方形图案,则其中完整的圆共有___个。

……①②③④6.如下图,用同样大小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n个图案需要用白色棋子______枚(用含有n的代数式表示,并写成最简形式)。

7.用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第334个图形需___根火柴棒。

(a)(b)(c)8.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示实数9,则表示实数17的有序实数对是_____。

1………………第一排3 2…………第二排4 5 6………第三排10 9 8 7……第四排…9.如下图,用n表示等边三角形边上的小圆圈,f (n)表示这个三角形中小圆圈的总数,那么f(n)和n的关系是________。

……10.观察下图中角的个数,计算出第50个图中有_______个角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级数学上册第八单元(总复习)测试卷
一、填空题:
1、最大的三位数比最小的四位数少( )%,1.2比它的倒数多( )。

2、4
3的分数单位是( ),它含有( )个这样的分数单位,它再加上( )个这样的分数单位就成为最小的合数。

3、( )决定圆的位置,( )决定圆的大小。

4、把5米长的绳子平均分成3段,每段长是全长的( )。

5、鸡兔同笼,共32个头,102只脚,问有( )只鸡,( )只兔。

6、有10吨煤,第一次用去51,第二次用去5
1吨,还剩下( )吨煤。

7、广场上的大钟5时敲响5下,8秒敲完,12时敲响12下,需要( )秒。

8、5
4=( )%=( )(小数) 9、在浓度为15%的盐水中,再加入25克盐,这时盐水的浓度是( )%。

10、一个数增加它的50%是60,这个数是( )。

11、用圆规画一个周长为18.84厘米的圆,圆规两脚间的距离应取( )厘米,
所画圆的面积是( )平方厘米。

12、一辆汽车从甲地到乙地,去时用5小时,返回时用4小时,去时的速度是返回
时速度的( )%。

13、把7
3、46%和0.45按从大到小的顺序排列起来应为( )。

二、选择:
1、在150克水中加入10克盐,这时盐占盐水的( )。

A 、15%
B 、10%
C 、6.25%
2、一个圆环,它的外直径是内直径的2倍,这个圆环的面积是( )。

A 、比内圆面积小
B 、比内圆面积大
C 、与内圆面积相等
3、下列百分率可能大于100%的是( )
A 、成活率
B 、发芽率
C 、出勤率
D 、增长率
4、要统计人民公园各种树木所占百分比的情况,你会选用( )。

A 、条形统计图
B 、折线统计图
C 、扇形统计图
5、圆的半径扩大3倍,面积扩大( )。

A 、3倍
B 、9倍
C 、6倍
三、计算题:
1、直接写出得数: 72×2= 1914÷197= 127+21= 4×(121+4
1)=
1÷37.5%= 5÷5÷51= 32-32×81= (4
1-51)×20= 2、计算,能简便的要简便。

3×(
152+121)-41 65÷125+127×7
3
178÷9+91×178 (21-83)÷43

125―73)―(74―127) 54÷[85×(1-51)]
3、解方程。

χ-12%χ=2.816
54×41-21χ=201
4、列式计算。

(1)一个数的
54等于120的65,求这个数。

(2)
74的倒数,加上43与3
2的积,和是多少?
四、做一做,画一画。

1、画出图A 的另一半,使它成为
一个轴对称图形。

2、把图B向右平移5格。

3、把图C绕O点顺时针旋转90°。

五、解决问题:
1、在长为8厘米,宽为6厘米的长方形中画一个最大的圆,这个圆的面积是多少平
方厘米?
2、青年旅行社在元旦期间推出优惠活动,原价2800元的“黄山游”现在打八五折,比原价便宜了多少元?
3、一辆客车从A地开往B地,行了全程的80%,这时距B地52千米。

A、B两地相距
多少千米?
4、歌厅有一个圆形表演台,周长43.96米。

现在半径加宽1米,比原来的面积增加
多少?
5、实验小学有3名同学去参加数学竞赛,一份试卷共10道题,答对一题得10分,
答错一题不但不得分,还要扣去3分,这3名同学都回答了所有的题目,小明得74分,他答对多少题?
6、一项工程,甲队单独做20天完成,乙队单独做30天完成,两队合作多少天可以
完成这项工程的一半?
7、一桶油连桶重23千克,用去油的50%以后,称得连桶重是12千克,问桶中原来
共有油多少千克?桶重多少千克?
8、一根绳子用去了3
2米,正好是剩下的81,这根绳子原来有多少米?。

相关文档
最新文档