浙教版八年级数学上册期末复习试卷 (362)

合集下载

浙教版八年级上册数学期末复习试题(含答案)

浙教版八年级上册数学期末复习试题(含答案)

浙教新版八年级上册数学期末复习试题(1)一.选择题(共10小题,满分30分,每小题3分)1.下列甲骨文中,不是轴对称图形的是()A.B.C.D.2.如图,在由25个边长为1的小正方形拼成的网格中以AB为边画Rt△ABC,使点C在格点上,满足这样条件的点C共()个.A.5B.6C.7D.83.在平面直角坐标系中,若点A(a,﹣b)在第三象限,则点B(﹣ab,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.在平面直角坐标系中,一次函数y=﹣2x+1的图象经过P1(﹣1,y1),P2(2,y2)两点,则()A.y1>y2B.y1<y2C.y1=y2D.y1≥y25.在数轴上表示a,b两数的点如图所示,则下列判断正确的是()A.a+b>0B.|a|>|b|C.ab>0D.a﹣b>06.下列命题是真命题的是()A.如果一个数的平方等于这个数本身,那么这个数一定是0B.如果一个数的平方根等于这个数本身,那么这个数一定是0C.如果一个数的算术平方根等于这个数本身,那么这个数定是0D.如果一个数的立方根等于这个数本身,那么这个数定是07.已知等腰三角形的一边长为2,周长为8,那么它的腰长为()A.2B.3C.2或3D.不能确定8.下列判断正确的个数是()①三角形的三条高都在三角形的内部,并且相交于一点;②两边及一角对应相等的两个三角形全等;③两角及一边对应相等的两个三角形全等;④到三角形的三边所在的直线距离相等的点有三个.A.4B.3C.2D.19.某种商品的进价为80元,出售时标价为120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至多可打( )A .六折B .七折C .八折D .九折10.若y 关于x 的函数关系式为y =kx +1,当x =1时,y =2,则当x =﹣3时函数值是( )A .﹣1B .﹣2C .﹣3D .﹣4二.填空题(共6小题,满分18分,每小题3分)11.某会场座位号将“7排4号”记作(7,4),那么“3排5号”记作 .12.请你写出一个原命题与它的逆命题都是真命题的命题 .13.不等式>﹣3的非负整数解为 .14.关于x 的一元一次方程﹣2ax +3=﹣2x ﹣9的解为负数,且一次函数y =(2a ﹣7)x +a +2的图象不经过第三象限,则符合条件的整数a 的值之和为 .15.如图,在△ABC 和△DBC 中,∠A =40°,AB =AC =2,∠BDC =140°,BD =CD ,以点D 为顶点作∠MDN =70°,两边分别交AB ,AC 于点M ,N ,连接MN ,则△AMN 的周长为 .16.如图,点O 是边长为2的等边三角形ABC 内任意一点,且OD ⊥AC ,OE ⊥AB ,OF ⊥BC ,则OD +OE +OF = .三.解答题(共8小题,满分52分)17.解下列不等式或不等式组:(1);(2).18.如图,已知点D 为△ABC 的边AB 上一点,请在边AC 上确定一点E ,使得S △BCD =S △BCE (要求:尺规作图、保留作图痕迹、不写作法).19.如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.【问题解决】如图1,若点D在边BC上,求证:CE+CF=CD;【类比探究】如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.20.如图,直线y=kx+b与x轴,y轴分别交于点A,点B,点A的坐标为(﹣2,0),点B的坐标为(0,4).(1)求直线AB解析式;(2)如图,将△AOB向右平移6个单位长度,得到△A1O1B1,求线段OB1的长;(3)求(2)中△AOB扫过的面积.21.如图,Rt△ABC中,∠B=90°,点D在线段AB上,点E在线段AC上,将△ADE沿DE翻折,使得点A的对应点F落在线段BC上,且EF⊥BC.(1)求证:四边形ADFE为菱形;(2)若DE=5,∠C=30°,求CF的长.22.如图,已知直线l1:y1=﹣2x﹣3,直线l2:y2=x+3,l1与l2相交于点P,l1,l2分别与y轴相交于点A,B.(1)求点P的坐标.(2)若y1>y2>0,求x的取值范围.(3)点D(m,0)为x轴上的一个动点,过点D作x轴的垂线分别交l1和l2于点E,F,当EF=3时,求m的值.23.某市为鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过40立方米时,按2元/立方米计费;月用水量超过40立方米时,其中的40立方米仍按2元/立方米收费,超过部分按3.5元/立方米计费.设每户家庭月用水量为x立方米.(1)当x不超过40时,应收水费为(用x的代数式表示);当x超过40时,应收水费为(用x的代数式表示化简后的结果);(2)小明家四月份用水26立方米,五月份用水52立方米,请帮小明计算一下他家这两个月一共应交多少元水费?(3)小明家六月份交水费150元,请帮小明计算一下他家这个月用水量多少立方米?24.如图1,OA=2,OB=4,以点A为顶点,AB为腰在第三象限作等腰直角△ABC.(Ⅰ)求C点的坐标;(Ⅱ)如图2,OA=2,P为y轴负半轴上的一个动点,若以P为直角顶点,PA为腰等腰直角△APD,过D作DE⊥x轴于E点,求OP﹣DE的值;(Ⅲ)如图3,点F坐标为(﹣4,﹣4),点G(0,m)在y轴负半轴,点H(n,0)x轴的正半轴,且FH⊥FG,求m+n的值.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:A.是轴对称图形,故本选项不合题意;B.不是轴对称图形,故本选项符合题意;C.是轴对称图形,故本选项不合题意;D.是轴对称图形,故本选项不合题意;故选:B.2.解:根据题意可得以AB为边画直角△ABC,使点C在格点上,满足这样条件的点C共8个.故选:D.3.解:∵点A(a,﹣b)在第三象限,∴a<0,﹣b<0,∴b>0,∴﹣ab>0,∴点B(﹣ab,b)所在的象限是第一象限.故选:A.4.解:∵一次函数y=﹣2x+1的图象经过P1(﹣1,y1),P2(2,y2)两点,∴y1=3,y2=﹣3.∵3>﹣3,∴y1>y2.故选:A.5.解:根据数轴上点的位置得:b<0<a,且|b|>|a|,∴a+b<0,|a|<|b|,ab<0,a﹣b>0,故选:D.6.解:A、如果一个数的平方等于这个数本身,那么这个数一定是0或1,本选项说法是假命题;B、如果一个数的平方根等于这个数本身,那么这个数一定是0,本选项说法是真命题;C、如果一个数的算术平方根等于这个数本身,那么这个数定是0或1,本选项说法是假命题;D、如果一个数的立方根等于这个数本身,那么这个数定是0或±1,本选项说法是假命题;故选:B.7.解:当腰长为2时,底边长为8﹣2×2=4,三角形的三边长为2,2,4,不能构成三角形;当底边长为2时,腰长为(8﹣2)÷2=3,三角形的三边长为3,3,2,能构成三角形;所以等腰三角形的腰长为3.故选:B.8.解:①只有当三角形是锐角三角形时,三条高才在三角形的内部,此选项错误;②有两边及一角对应相等的两个三角形全等,此选项错误;③有两角和一边对应相等,满足AAS或ASA,此选项正确;④在三角形内部到三边距离相等的点是三条内角平分线的交点,交点重合,只有一点;在三角形的外部到三条边所在直线距离相等的点是外角平分线的交点,交点不重合,有三个.则到三角形三边所在直线距离相等的点有4个.正确的有一个③,故选:D.9.解:设打x折,根据题意得120•﹣80≥80×5%,解得x≥7.所以最低可打七折.故选:B.10.解:x=1,y=2代入y=kx+1得2=k+1,解得,k=1,所以y关于x的函数解析式是y=x+1;当x=﹣3时,y=﹣3+1=﹣2.故选:B.二.填空题(共6小题,满分18分,每小题3分)11.解:∵“7排4号”记作(7,4),∴3排5号记作(3,5).故答案为:(3,5).12.解:原命题:两直线平行、同位角相等,它的逆命题:同位角相等,两直线平行,故答案为:原命题:两直线平行、同位角相等,它的逆命题:同位角相等,两直线平行.13.解:>﹣3,3(x﹣3)﹣(6x﹣1)>﹣18,3x﹣9﹣6x+1>﹣18,﹣3x>﹣10,x<,所以不等式的非负整数解是0,1,2,3.14.解:∵一次函数y=(2a﹣7)x+a+2的图象不经过第三象限,∴2a﹣7<0且a+2≥0.∴﹣2≤a<3.5.解一元一次方程﹣2ax+3=﹣2x﹣9得到:x=.∵关于x的一元一次方程﹣2ax+3=﹣2x﹣9的解为负数,∴<0.∴a﹣1<0,∴a<1.综上所述,a的取值范围为﹣2≤a<1.∴整数a的值为:﹣2、﹣1、0,共有3个,∴符合条件的整数a的值之和为﹣3.故答案为﹣3.15.解:延长AC至E,使CE=BM,连接DE.∵BD=CD,且∠BDC=140°,∴∠DBC=∠DCB=20°,∵∠A=40°,AB=AC=2,∴∠ABC=∠ACB=70°,∴∠MBD=∠ABC+∠DBC=90°,同理可得∠NCD=90°,∴∠ECD=∠NCD=∠MBD=90°,在△BDM和△CDE中,,∴△BDM≌△CDE(SAS),∴MD=ED,∠MDB=∠EDC,∴∠MDE=∠BDC=140°,∵∠MDN=70°,∴∠EDN=70°=∠MDN,在△MDN和△EDN中,,∴△MDN≌△EDN(SAS),∴MN=EN=CN+CE,∴△AMN的周长=AM+MN+AN=AM+CN+CE+AN=AM+AN+CN+BM=AB+AC=4;故答案为:4.16.解:连接OA、OB、OC,过A作AQ⊥BC于Q,∵△ABC是边长为2的等边三角形,∴AB=AC=BC=2,BQ=CQ==1,由勾股定理得:AQ===,∵S△ABC =S△ABO+S△BCO+S△ACO,∴=++,∴=,∴=×2×(OE+OF+OD),解得:OD+OE+OF=,故答案为:.三.解答题(共8小题,满分52分)17.解:(1)去分母得:2(3+4x)﹣6>3+12x,6+8x﹣6>3+12x,8x﹣12x>3﹣6+6,﹣4x>3,;(2)解不等式①得:x<3,解不等式②得:x≥2,所以不等式组的解集是2≤x<3.18.解:如图,点E即为所求.19.【问题解决】证明:在CD上截取CH=CE,如图1所示:∵△ABC是等边三角形,∴∠ECH=60°,∴△CEH是等边三角形,∴EH=EC=CH,∠CEH=60°,∵△DEF是等边三角形,∴DE=FE,∠DEF=60°,∴∠DEH+∠HEF=∠FEC+∠HEF=60°,∴∠DEH=∠FEC,在△DEH和△FEC中,,∴△DEH≌△FEC(SAS),∴DH=CF,∴CD=CH+DH=CE+CF,∴CE+CF=CD;【类比探究】解:线段CE,CF与CD之间的等量关系是FC=CD+CE;理由如下:∵△ABC是等边三角形,∴∠A=∠B=60°,过D作DG∥AB,交AC的延长线于点G,如图2所示:∵GD∥AB,∴∠GDC=∠B=60°,∠DGC=∠A=60°,∴∠GDC=∠DGC=60°,∴△GCD为等边三角形,∴DG=CD=CG,∠GDC=60°,∵△EDF为等边三角形,∴ED=DF,∠EDF=∠GDC=60°,∴∠EDG=∠FDC,在△EGD和△FCD中,,∴△EGD≌△FCD(SAS),∴EG=FC,∴FC=EG=CG+CE=CD+CE.20.解:(1)∵点A的坐标为(﹣2,0),把A(﹣2,0)和B(0,4)代入y=kx+b中得:,解得:,∴直线AB解析式为:y=2x+4;(2)∵∠AOB=90°,∴∠AO1B1=90°,由平移得:OO1=6,O1B1=OB=4,由勾股定理得:OB1==2,即线段OB1的长是2;(3)△AOB扫过的面积+4×6=28.21.证明:(1)∵将△ADE沿DE翻折,使得点A的对应点F落在线段BC上,∴AE=EF,AD=DF,∠AED=∠FED,∠ADE=∠EDF,∵EF⊥BC,∴∠EFC=90°=∠B,∴EF∥AB,∴∠ADE=∠DEF,∴∠FDE=∠DEF,∴DF=EF,∴AD=AE=EF=DF,∴四边形ADFE为菱形;(2)∵∠B=90°,∠C=30°,∴∠A=60°,∵AD=AE,∴△ADE是等边三角形,∴AE=DE=5=EF,∵EF⊥BC,∠C=30°,∴EC=2EF=10,∴FC===5.22.解:(1)根据题意,得:,解得:,∴点P的坐标为(﹣2,1).(2)在直线l2:y2=x+3中,令y=0,解得x=﹣3,由图象可知:若y1>y2>0,x的取值范围是﹣3<x<﹣2;(2)由题意可知E(m,﹣2m﹣3),F(m,m+3),∵EF=3,∴|﹣2m﹣3﹣m﹣3|=3,解得:m=﹣3或m=﹣1.23.解:(1)由题意可得,当x不超过40时,应收水费为2x元,当当x超过40时,应收水费为:40×2+3.5(x﹣40)=(3.5x﹣60)(元),故答案为:2x元,(3.5x﹣60)元;(2)由题意可得,小明家四月份的水费为:26×2=52(元),五月份的水费为3.5×52﹣60=122(元),∵52+122=174(元),∴小明家这两个月一共应交174元水费;(3)设小明家这个月用水量x立方米,∵40×2=80<150,∴3.5x﹣60=150,解得x=60,答:小明家这个月用水量60立方米.24.解:(Ⅰ)如图1,过C作CM⊥x轴于M点,如图1所示:∵CM⊥OA,AC⊥AB,∴∠MAC+∠OAB=90°,∠OAB+∠OBA=90°,∴∠MAC=∠OBA,在△MAC和△OBA中,,∴△MAC≌△OBA(AAS),∴CM=OA=2,MA=OB=4,∴OM=6,∴点C的坐标为(﹣6,﹣2),故答案为(﹣6,﹣2);(Ⅱ)如图2,过D作DQ⊥OP于Q点,则四边形OEDQ是矩形,∴DE=OQ,∵∠APO+∠QPD=90°,∠APO+∠OAP=90°,∴∠QPD=∠OAP,在△AOP和△PDQ中,,∴△AOP≌△PDQ(AAS),∴AO=PQ=2,∴OP﹣DE=OP﹣OQ=PQ=OA=2;(Ⅲ)如图3,过点F分别作FS⊥x轴于S点,FT⊥y轴于T点,则∠HSF=∠GTF=90°=∠SOT,∴四边形OSFT是正方形,∴FS=FT=4,∠EFT=90°=∠HFG,∴∠HFS=∠GFT,在△FSH和△FTG中,,∴△FSH≌△FTG(AAS),∴GT=HS,又∵G(0,m),H(n,0),点F坐标为(﹣4,﹣4),∴OT═OS=4,∴GT=﹣4﹣m,HS=n﹣(﹣4)=n+4,∴﹣4﹣m=n+4,∴m+n=﹣8.。

浙教版八年级(上)期末数学试卷(含答案)

浙教版八年级(上)期末数学试卷(含答案)

浙教版八年级第一学期期末数学试卷(考试时间:80分钟 满分50分)一、选择题(每小题2分,共10分)1、如图,直线l 1:1y x =+与直线2l :12y x =--把平面直角坐标系分成四个部分,点(12-,1)在( ) (A )第一部分 (B )第二部分 (C )第三部分 (D )第四部分 2、下列说法正确的个数有( )①等边三角形有三条对称轴;②在△ABC 中,若222a b c +≠,则△ABC 不是直角三角形;③等腰三角形的一边长为4,另一边长9,则它的周长为17或22;④一个三角形中至少有两个锐角。

(A )1个 (B )2个 (C )3个 (D )4个 3、已知一组数据6,8,10,x 的中位数与平均数相等,这样的x 有( ) (A )1个(B ) 2个 (C )3个(D )4个以上(含4个)4、在平面直角坐标系中,O 为坐标原点,直线221+=x y 与x 轴交于点P ,点Q 在直线上,且满足△OPQ 为等腰三角形,则这样的Q 点有( )个 (A )1 (B )2 (C )3 (D )4 5、如图所示,已知Rt ABC ∆中,90B ∠=,3AB =,4BC =,,,D E F 分别是三边,,AB BC CA 上的点,则DE EF FD ++的最小值为( )(A )125(B )245 (C )5 (D )6二、填空题(每小题2分,共12分)6、一个样本为1、3、2、2、,,a b c .已知这个样本的众数为3,平均数为2,那么这个样本的方差为_________.7、已知不等式30x a -≤的正整数解为1,2,3,则a 的取值范围是 .A 'B'BCA8、在一个仓库里堆积着正方体的货箱若干,要搬运这些箱子很困难,可是仓库管理员要落实一下箱子的数量,于是就想出一个办法:将这堆货物的三种视图画了出来,如图,你能根据三视图,帮他清点一下箱子的数量吗?这些箱子共有 个9、如图,有一种动画程序,屏幕上方正方形区域ABCD 表示黑色物体甲,其中A ( 1,1 ) B ( 2,1 ) C ( 2,2 ) D ( 1,2 ),用信号枪沿直线2y x b =+发射信号,当信号遇到区域甲时,甲由黑变白,则当b 的取值范围为___________时,甲能由黑变白.10、如图,在直角三角形ABC 中,∠C=90°,∠A=25°,以直角顶点C 为旋转中心,将△ABC 旋转到△A ’B ’C 的位置,其中A ’、B ’分别是A 、B 的对应点,且点B 在斜边A ’B ’上,直角边CA ’交AB 于点D ,则∠DCA 的度数_____________。

2022-2023学年浙教版八年级上册数学期末复习试卷1含答案解析

2022-2023学年浙教版八年级上册数学期末复习试卷1含答案解析

2022-2023学年浙教版八年级上册数学期末复习试卷一.选择题(共10小题,满分30分,每小题3分)1.下列图形中的建筑,不是轴对称图形的是()A.B.C.D.2.已知一次函数y=ax+b(a≠0)的图象经过点A(0,3)和x轴上的点B,点A到C(0,﹣2),B两点的距离相等,且函数y随x的增大而减小,则该函数的解析式为()A.y=﹣x+3B.y=x+4C.y=x﹣3D.y=﹣x+33.如图,在平面直角坐标系中,点A,B的坐标分别为A(0,6),B(﹣3,﹣3).将线段AB平移后A 点的对应点是A′(10,10),则点B的对应点B'的坐标为()A.(10,10)B.(﹣3,﹣3)C.(﹣3,3)D.(7,1)4.下列长度的各线段中,能组成三角形的是()A.3,12,8B.6,8,15C.3,3,5D.6,6,125.下列命题:①长度相等的弧是等弧;②任意三点确定一个圆;③相等的圆心角所对的弦相等;④平分弦的直径垂直于弦,并且平分弦所对的两条弧;其中真命题共有()A.0个B.1个C.2个D.3个6.如图,已知AE=AF,那么添加下列一个条件后,仍无法判定△AED≌△AFD的是()A.ED=FD B.∠EDA=∠FDAC.∠EAD=∠FAD D.∠AED=∠AFD=90°7.如图,在Rt△ABC中,∠ACB=90°,以AB,AC,BC为边作等边△ABD,等边△ACE,等边△CBF.设△AEH的面积为S1,△ABC的面积为S2,△BFG的面积为S3,四边形DHCG的面积为S4,则下列结论正确的是()A.S2=S1+S3+S4B.S1+S2=S3+S4C.S1+S4=S2+S3D.S1+S3=S2+S48.在平面直角坐标系中,点O(0,0),A(5,3),B(4,0),直线y=mx﹣5m+3将△OAB分成面积相等的两部分,则m的值为()A.1B.2C.3D.﹣19.在Rt△ABC中,∠C=90°,若∠A=37°,则∠B的度数为()A.53°B.63°C.73°D.83°10.张师傅驾车从甲地到乙地,两地相距500km,汽车出发前油箱中有油25L,途中加油若干升(加油时间忽略不计),加油前、后汽车都以100km/h的速度匀速行驶,已知油箱中的剩余油量y(L)与行驶时间t(h)之间的关系如图所示,则下列说法错误的是()A.当0<t<2时,y(L)与t(h)之间的函数表达式为y=﹣8t+25B.途中加油21LC.汽车加油后还可行驶4hD.汽车到达乙地时油箱中的剩余油量为6L二.填空题(共6小题,满分24分,每小题4分)11.命题“若两个角是对顶角,则两个角相等”的条件是,结论是.12.若x>y,试比较大小:﹣3x+5 ﹣3y+5.(填“>”、“<”或“=”)13.直线y=(m﹣2)x+5中,y随x的增大而增大,则m的取值范围是.14.等腰三角形的腰长为8,底边长为6,则其底边上的高为.15.计算器的显示器上数字0﹣9,这十个数字中是轴对称图形的数字是.16.如图,在△ABC中,∠ACB=90°,∠B=22.5°,DE垂直平分AB,交BC于点E,BE=8cm,则AC 等于cm.三.解答题(共7小题,满分66分)17.(6分)解不等式组:,并求出整数解.18.(8分)小明在学习三角形的知识时,发现如下数学问题:已知线段AB,CD交于点E,连结AD,BC.(1)如图①,若∠D=∠B=100°,∠DAB的平分线与∠BCE的平分线交于点G,求∠G的度数;(2)如图②,若∠D=∠B=90°,AM平分∠DAB,CF平分∠BCN,请判断CF与AM的位置关系,并说明理由.19.(8分)如图,已知一次函数y=x+m的图象与x轴交于点A(﹣6,0),与y轴交于点B.(1)求一次函数解析式;(2)若点C在y轴上,且使得△ABC的面积为15,请求出点C的坐标.20.(10分)如图,已知在△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点,点P在线段BC上由B点向C点运动,同时,点Q在线段CA上由点C向点A运动.(1)如果点P、Q的速度均为3厘米/秒,经过1秒后,△BPD与△CQP是否全等?请说明理由;(2)若点P的运动速度为2厘米/秒,点Q的运动速度为2.5厘米/秒,是否存在某一个时刻,使得△BPD 与△CQP全等?如果存在请求出这一时刻并证明;如果不存在,请说明理由.21.(10分)某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商场用80000元购进电冰箱的数量与用64000元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)现在商场准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售总利润y元,要求购进空调数量不超过电冰箱数量的2倍,且购进电冰箱不多于40台,请确定获利最大的方案以及最大利润.(3)实际进货时,厂家对电冰箱出厂价下调k(0<k<100)元,若商店保持这两种家电的售价不变,请你根据以上信息及(2)中条件,设计出使这100台家电销售总利润最大的进货方案.22.(12分)如图,已知△ABC中,AB=AC,D为BC边的中点,BE平分∠ABC,交AD于E,F为△ABC 外一点,且∠ACF=∠ACB,BE=CF,(1)求证:∠BAF=3∠BAD;(2)若DE=5,AE=13,求线段AB的长.23.(12分)根据我们学习函数的过程和方法,对函数y的图象和性质进行研究,当x<1的时候,函数解析式为y=x+1;当x≥1的时候,函数解析式为y=ax+b,已知该函数图象经过(2,0)与(3,﹣2)两点.根据以上信息,完成下列问题.(1)a=;b=;(2)请在给出的平面直角坐标系中画出函数y的图象,并写出它的一条性质;(3)直线y=x+t与这个函数的图象有两个交点,请直接写出t的取值范围.参考答案解析一.选择题(共10小题,满分30分,每小题3分)1.解:A,B,D选项中的图形都能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;C选项中的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;故选:C.2.解:设B(m,0),由题意得,=5,∴m=±4,∴B(4,0)或(﹣4,0),①当点B的坐标为(4,0)时,则,∴,则该函数的解析式为y=﹣x+3;②当点B的坐标为(﹣4,0)时,则,∴,∵函数y随x的增大而减小,∴a=舍去;∴图象经过点A(0,3)和B(4,0)的一次函数的解析式为y=﹣x+3,故选:A.3.解:∵点A(0,6)向右平移10个单位,向上平移4个单位得到A′(10,10),∴点B(﹣3,﹣3)向右平移10个单位,向上平移4个单位得到B′(7,1),故选:D.4.解:A、8+3<12,不能构成三角形,故此选项不符合题意;B、6+8<15,不能构成三角形,故此选项不合题意;C、3+3>5,能构成三角形,故此选项合题意;D、6+6=12,不能构成三角形,故此选项不合题意;故选:C.5.解:①长度相等的弧是等弧,是假命题;②任意三点确定一个圆,是假命题;③相等的圆心角所对的弦相等,是假命题;④平分弦的直径垂直于弦,并且平分弦所对的两条弧,是假命题;真命题有0个,故选:A.6.解:A、在△AED和△AFD中,,∴△AED≌△AFD(SSS),本选项不符合题意;B、当∠EDA=∠FDA时,无法判定△AED≌△AFD,本选项符合题意;C、在△AED和△AFD中,,∴△AED ≌△AFD (SAS ),本选项不符合题意;D 、在Rt △AED 和Rt △AFD 中,,∴Rt △AED ≌Rt △AFD (HL ),本选项不符合题意;故选:B .7.解:设AC =a ,BC =b ,AB =c ,∵△ABD ,△ACE ,△CBF 都是等边三角形,∴,,.∵∠ACB =90°,∴a 2+b 2=c 2.∴,即S △ACE +S △BCF =S △ABD .∴S 1+S 3=S 2+S 4.故选:D .8.解:设点C 为线段OB 的中点,则点C 的坐标为(2,0),如图所示.∵y =mx ﹣5m +3=(x ﹣5)m +3,∴当x =5时,y =(5﹣5)m +3=3,∴直线y =mx ﹣5m +3过三角形的顶点A (5,3).∵直线y =mx ﹣5m +3将△OAB 分成面积相等的两部分,∴直线y =mx ﹣5m +3过点C (2,0),∴0=2m ﹣5m +3,∴m =1.故选:A .9.解:在Rt △ABC 中,∠C =90°,∠A =37°,则∠B=90°﹣37°=53°,故选:A.10.解:由图象可得,当0<t<2时,y(L)与t(h)之间的函数表达式为y=﹣t+25=﹣8t+25,故选项A不符合题意;途中加油30﹣9=21(L),故选项B不符合题意;汽车加油后还可行驶:30÷=30÷8=3.75(小时),故选项C符合题意;汽车到达乙地时油箱中的剩余油量为:30﹣(500﹣100×2)÷100×=6(L),故选项D不符合题意;故选:C.二.填空题(共6小题,满分24分,每小题4分)11.解:命题“若两个角是对顶角,则两个角相等”的条件是两个角为对顶角,结论为这两个角相等.故答案为两个角为对顶角;这两个角相等.12.解:∵x>y,∴﹣3x<﹣3y,∴﹣3x+5<﹣3y+5.故答案为:<.13.解:∵直线y=(m﹣2)x+5中y的值随x的增大而增大,∴m﹣2>0,解得,m>2.故答案是:m>2.14.解:如图,在△ABC中,AB=AC=8,AD⊥BC,则AD为BC边上的中线,即D为BC中点,∴BD=DC=3,在直角△ABD中AD==.故答案为:.15.计算器的显示器上数字0﹣9,这十个数字中是轴对称图形的数字是:0,3,8.故答案为:0,3,8.16.解:∵DE垂直平分AB,∴EA=EB=8,∴∠EAB=∠B=22.5°,∴∠AEC=∠EAB+∠B=45°,∴AC=EC,由勾股定理得,AC2+EC2=AE2,即AC2+AC2=82,解得,AC=4,故答案为:4.三.解答题(共7小题,满分66分)17.解:解不等式2x>x﹣1,得:x>﹣1,解不等式2x≤,得:x≤,则不等式组的解集为﹣1<x≤,所以不等式组得整数解为0.18.解:(1)∵∠D=∠B=100°,∠AED=∠CEB,∠D+∠DAE+∠AED=∠B+∠ECB+∠CEB=180°,∴∠DAE=∠ECB,∵∠DAB的平分线与∠BCE的平分线交于点G∴∠DAG=∠GAF=∠ECF=∠FCB,∵∠B=100°,∴∠FCB+∠CFB=80°,∵∠CFB=∠AFG,∴∠AFG+∠FAG=80°,∵∠AFG+∠GAF+∠G=180°∴∠G=100°;(2)CF∥AM.理由:∵∠D=∠B=90°,∠AED=∠CEB,∠D+∠DAE+∠AED=∠B+∠ECB+∠CEB=180°,∴∠DAE=∠ECB,设∠DAE=∠ECB=x,∴∠DAG=∠EAG=x,∴∠EGA=90°+x,∵∠BCN=180°﹣x,CF平分∠BCN,∴∠FCB=x,∴∠FCE=∠BCE+∠FCB=x+90°﹣x=90°+x,∴∠FCE=∠EGA,∴CF||AM.19.解:(1)把点A(﹣6,0)代入,得,解得m=8,∴一次函数的表达式为:;(2)存在,当x=0时,y=8,则OB=8,设点C坐标为(0,b),∴BC=|8﹣b|,∴,解得b=3或b=13,∴点C坐标(0,13)或(0,3).20.(1)解:△BDP≌△CPQ,理由是:当t=1秒时BP=CQ=3,CP=8﹣3=5,∵D为AB中点,∴BD=AC=5=CP,∵AB=AC,∴∠B=∠C,在△BDP和△CPQ中∵,∴△BDP≌△CPQ(SAS).(2)解:假设存在时间t秒,使△BDP和△CPQ全等,则BP=2t,BD=5,CP=8﹣2t,CQ=2.5t,∵△BDP和△CPQ全等,∠B=∠C,∴或(此方程组无解),解得:t=2,∴存在时刻t=2秒时,△BDP和△CPQ全等,此时BP=4,BD=5,CP=8﹣4=4=BP,CQ=5=BD,在△BDP和△CQP中∵,∴△BDP≌△CQP(SAS).21.解:(1)设每台空调的进价为x元,则每台电冰箱的进价为(x+400)元,根据题意得:=,解得:x=1600,经检验,x=1600是原方程的解,且符合题意,x+400=1600+400=2000,答:每台空调的进价为1600元,则每台电冰箱的进价为2000元.(2)设购进电冰箱x台,这100台家电的销售总利润为y元,则y=(2100﹣2000)x+(1750﹣1600)(100﹣x)=﹣50x+15000,根据题意得:,解得:33≤x≤40,∵x为正整数,∴x=34,35,36,37,38,39,40,∴合理的方案共有7种,即①电冰箱34台,空调66台;②电冰箱35台,空调65台;③电冰箱36台,空调64台;④电冰箱37台,空调63台;⑤电冰箱38台,空调62台;⑥电冰箱39台,空调61台;⑦电冰箱40台,空调60台;∵y=﹣50x+15000,k=﹣50<0,∴y随x的增大而减小,∴当x=34时,y有最大值,最大值为:﹣50×34+15000=13300(元),答:当购进电冰箱34台,空调66台获利最大,最大利润为13300元.(3)当厂家对电冰箱出厂价下调k(0<k<100)元,若商店保持这两种家电的售价不变,则利润y=(2100﹣2000+k)x+(1750﹣1600)(100﹣x)=(k﹣50)x+15000,当k﹣50>0,即50<k<100时,y随x的增大而增大,∵33≤x≤40,∴当x=40时,这100台家电销售总利润最大,即购进电冰箱40台,空调60台;当k=50时,y=15000,各种方案利润相同;当k﹣50<0,即0<k<50时,y随x的增大而减小,∵33≤x≤40,∴当x=34时,这100台家电销售总利润最大,即购进电冰箱34台,空调66台;答:当50<k<100时,购进电冰箱40台,空调60台销售总利润最大;当k=50时,y=15000,各种方案利润相同;当0<k<50时,购进电冰箱34台,空调66台销售总利润最大.22.证明:(1)∵AB=AC,∴∠ABC=∠ACB,∵BE平分∠ABC,∴∠ABE=∠ABC,又∵∠ACF=∠ACB,∴∠ABE=∠ACF,又∵BE=CF,∴△ABE≌△ACF(SAS),∴∠BAE=∠CAF,∵AB=AC,D为BC中点,∴∠BAD=∠CAD,∴∠BAF=3∠BAD;(2)如图,过E作EH⊥AB于H,∵AB=AC,D为BC中点,∴AD⊥BC,∵BE平分∠ABC,∴DE=EH=5,∴RT△AEH中,AH=,在Rt△BED和Rt△BEH中,DE=EH,BE=BE,∴Rt△BED≌Rt△BEH(HL)∴BD=BH,设BD=BH=a,则Rt△ABD中,BD2+AD2=AB2,∴a2+182=(12+a)2,∴a=7.5,∴AB=AH+BH=7.5+12=19.5.23.解:(1)∵函数y=ax+b的图象经过(2,0)与(3,﹣2)两点.∴,解得;故答案为:﹣2,4;(2)画出函数图象如图:观察图象,函数有最大值2,故答案为:函数有最大值2;(3)把点(1,2)代入y=x+t得,2=+t,解得t=,∴直线y=x+t与这个函数的图象有两个交点,t的取值范围是t<.故答案为:t<.。

最新浙教版八年级上册数学期末试检测卷(附解析)

最新浙教版八年级上册数学期末试检测卷(附解析)

最新浙教版八年级上册数学期末试检测卷(附解析)最新浙教版八年级上册数学期末试卷(附解析)一、选择题(共30分,每小题3分)1.(3分)点P(1,3)向下平移2个单位后的坐标是()A.(1,2)B.(1,1)C.(1,5)D.(1,0)2.(3分)不等式x-1>0的解在数轴上表示为()A.(1,∞) B.(-∞,1) C.(1,∞) D.(-∞,1)3.(3分)以a,b,c为边的三角形是直角三角形的是()A.a=2,b=3,c=4 B.a=4,b=5,c=6 C.a=2,b=2,c=2√2 D.a=3,b=4,c=54.(3分)对于命题“若a^2=b^2”,则“a=b”下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=3 B.a=-3,b=-3 C.a=3,b=-3 D.a=-3,b=35.(3分)若x+aay,则()A.x0 B.x>y,ay,a>06.(3分)已知y=kx+k的图象与y=x的图象平行,则y=kx的大致图象为()A. B. C. D.7.(3分)如图,若△ABC的周长为20,则AB的长可能为()A.8 B.10 C.12 D.148.(3分)如图,△ABC中,D为AB的中点,BE⊥AC,垂足为E.若DE=4,AE=6,则BE的长度是()A.10 B.8 C.6 D.49.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=5,BC=12,将△ABC绕点B顺时针旋转60°,得到△BDE,连结DC交AB于点F,则△ACF与△BDF的周长之和为()A.44 B.43 C.42 D.4110.(3分)关于函数y=(k-3)x+k,给出下列结论:①此函数是一次函数。

②无论k取什么值,函数图象必经过点(-1,3)。

③若图象经过二、三、四象限,则k的取值范围是k<3。

④若函数图象与x轴的交点始终在正半轴可得k<3.其中正确的是()A.①② B.②③ C.③④ D.①③二、填空题(共24分,每小题4分)11.(4分)若函数y=2x+b(b为常数)的图象经过点A (-1,-2),则b=-4.12.(4分)若不等式组的解集是-1<x<2,则a=-1.13.(4分)已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为72°。

浙教版八年级上册数学期末考试试卷带答案

浙教版八年级上册数学期末考试试卷带答案

浙教版八年级上册数学期末考试试题一、单选题1.下列各组数分别是三根小木棒的长度,将它们首尾相连能摆成三角形的是( ) A .3cm ,4cm ,8cmB .4cm ,4cm ,8cmC .5cm ,6cm ,8cmD .5cm ,5cm ,12cm2.如果m >n ,那么下列结论错误的是( )A .m +2>n +2B .﹣2m >﹣2nC .2m >2nD .m ﹣2>n ﹣23.下列图形是轴对称图形的为( )A .B .C .D .4.已知△ABC 为直角坐标系中任意位置的一个三角形,现将△ABC 的各顶点横坐标乘以-1,得到△A 1B 1C 1,则它与△ABC 的位置关系是( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于直线y=x 对称 5.利用直角三角板,作ABC 的高,下列作法正确的是( )A .B .C .D .6.把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人能分到笔记本但数量不足3本,则共有学生( )A .4人B .5人C .6人D .5人或6人 7.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为() A .24y x =- B .24y x =+ C .22y x =+ D .22y x =-8.如图,在△ABC 中,△ACB =90°,AB 的中垂线交AC 于D ,P 是BD 的中点,若BC =4,AC =8,则S△PBC 为( )A .3B .3.3C .4D .4.59.若关于x 的不等式组0722x m x -<⎧⎨-≤⎩的整数解共有3个,则m 的取值范围是( ) A .5<m <6 B .5<m≤6 C .5≤m≤6 D .6<m≤710.如图,在等边△ABC 中,点D ,E 分别在边BC ,AB 上,且BD =AE ,AD 与CE 交于点F ,作CM△AD ,垂足为M ,下列结论不正确的是( )A .AD =CEB .MF =12CF C .△BEC =△CDA D .AM =CM二、填空题11.已知21y x =-,那么当=1x -时,y =________.12.同角的余角相等的逆命题是_________,它是一个___________命题(填“真”或“假”)13.如图,直线y =x+2与直线y =ax+c 相交于点P(m ,3).则关于x 的不等式x+2≥ax+c 的不等式的解为_____.14.如图,在ABC 中,AD 是BC 边上的高,BE 是AC 边上的高,且AD ,BE 交于点F ,若BF AC =,BD=8,3CD =,则线段AF 的长度为______.15.如图,BD 是Rt ABC ∆的角平分线,点F 是BD 上的动点,已知2AC =,2=AE ,30ABC ∠=︒,则(1)BE = ________;(2)AF EF +的最小值是________.16.已知:如图,AC 、BD 相交于点O ,△A =△D ,请你再补充一个条件,使AOB△DOC ,你补充的条件是_________.17.如图,在Rt ABC △中,90A ∠=︒,3AB =,4AC =,现将ABC 沿BD 进行翻折,使点A 刚好落在BC 上,则CD =__________.三、解答题18.解不等式(组):(1)9x ﹣2≤7x+3; (2)32123x x x +>⎧⎪⎨≤⎪⎩. 19.小明解不等式41132x x +--≤出现了错误,解答过程如下: 解:2(4)3(1)1x x +--≤….第一步,28331x x +-+≤…………..第二步,10x ≥………………………..第三步.(1)小明解答过程是从第__________步开始出错的,其错误的原因是_____________;(2)写出此题正确的解答过程.20.如图,点E ,C 在线段BF 上,AB DE =,BE CF =.(1)若要使ABC DEF ≌△△,可以添加的条件是:______; (2)请根据你所给的条件进行证明.21.已知一次函数3y x b =-+的图形过点M .(1)求实数b 的值;(2)设一次函数3y x b =-+的图形与y 轴交于点N ,连接OM .求MON △的面积.22.已知一次函数y 1=kx+b (其中k 、b 为常数且k≠0)(1)若一次函数y 2=bx ﹣k ,y 1与y 2的图象交于点(2,3),求k ,b 的值;(2)若b =k ﹣1,当﹣2≤x≤2时,函数有最大值3,求此时一次函数y 1的表达式.23.某中学计划购买A 型和B 型课桌凳共200套,经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳的总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的23,求该校本次购买A 型和B 型课桌凳共有几种购买方案?怎样的方案使总费用最低?并求出最低消费.24.甲、乙两人相约周末沿同一条路线登山,甲、乙两人距地面的高度y (米)与登山时间x (分钟)之间的函数图象如图所示,根据图象所提供的信息解答下列问题(1)甲登山的速度是每分钟 米;乙在A 地提速时,甲距地面的高度为 米;(2)若乙提速后,乙的速度是甲登山速度的3倍;△求乙登山全过程中,登山时距地面的高度y (米)与登山时间x (分钟)之间的函数解析式;△乙计划在他提速后5分钟内追上甲,请判断乙的计划能实现吗?并说明理由;(3)当x 为多少时,甲、乙两人距地面的高度差为80米?25.如图,在平面直角坐标系xoy 中,(15)A -,,(10)B -,,(43)C -,.(1)ABC 的面积为___________ ;(2)在图中作出ABC 关于y 轴的对称图形111A B C △;(3)写出点111A B C ,,的坐标:1A (_____,___), 1B (______,____),1C (_____,_______) 26.如图,ABC 中,E 是AC 边上一点,BE BC =,D 为三角形外一点,且DEA EBC ∠=∠,AC DE =.(1)求证:ABC △DBE .(2)若50ABD ∠=︒,求C ∠的度数.参考答案1.C2.B3.D4.B5.D6.C7.A8.A9.B10.D11.012. 如果两个角相等,那么这两个角是同一个角的余角, 假.【详解】解:“同角的余角相等”的逆命题为“如果两个角相等,那么这两个角是同一个角的余角”,故答案为如果两个角相等,那么这两个角是同一个角的余角,假.13.x≥1【详解】把P (m ,3)代入y =x+2得:m+2=3,解得:m =1,△P (1,3),△x≥1时,x+2≥ax+c ,△关于x 的不等式x+2≥ax+c 的不等式的解为x≥1.故答案为:x≥1.14.5【分析】首先证明△BDF△△ADC ,再根据全等三角形的性质可得FD=CD ,AD=BD ,根据AD=8,DF=3,即可算出AF 的长.【详解】解:△AD 是BC 边上的高,BE 是AC 边上的高,△△ADC=△FDB=90°,△AEB=90°,△△1+△C=90°,△1+△2=90°,△△2=△C ,△△2=△3,△△3=△C ,在△ADC 和△BDF 中,3C FDB CDA BF AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△BDF△△ADC (AAS ),△FD=CD ,AD=BD ,△CD=3,BD=8,△AD=8,DF=3,△AF=8-3=5,故答案为:5.15. 2 2【分析】(1)根据勾股定理求出AB 的长度,然后根据2=AE ,即可求出BE 的长度;(2)作E 点关于BD 的对称点G ,根据两点之间线段最短得到AE+EF 的最小值即AG 的长度,然后根据等边三角形的性质即可求出AG 的长度.【详解】解:(1)△2AC =,30ABC ∠=︒,90BAC ∠=︒,△24BC AC ==,△AB ==△()22BE AB AE =-==,故答案为:2;(2)如图所示,作E 点关于BD 的对称点G ,连接EG ,AG ,GF ,△BD 是ABC ∠的平分线,△点G 在线段BC 上,△根据对称性可得EF=GF ,BG=BE=2,△EF+AF=GF+AF≥AG ,△当点A ,F ,G 三点共线时,GF+AF 的长度最短,即EF+AF 的最小值为AG 的长度. △GC=BC -BG=4-2=2,又△30ABC ∠=︒,90BAC ∠=︒,△=60C ∠︒,又△AC=2,△AGC 是等边三角形,△AG=AC=2.△AF EF +的最小值是2.故答案为:2.16.AO=DO【分析】由已知条件可得△A =△D ,对顶角△AOB =△DOC ,应添加一对对应边相等,可添加AO=DO ,或AB=DC,或BO=CO ,再利用ASA ,或AAS 判定即可.【详解】解:添加AO=DO,在AOB 与DOC中,△A=△D,AO=DO,△AOB=△DOC,∴AOB△DOC(ASA),故答案为:AO=DO.17.5 2【详解】解:设CD=x,则AD=A′D=4-x.在直角三角形ABC中,.则A′C=BC-AB=BC-A′B=5-3=2.在直角三角形A′DC中:AD2+AC2=CD2.即:(4-x)2+22=x2.解得:x=52.故答案为:2.518.(1)x≤52;(2)﹣1<x≤6.【分析】(1)先移项得到9x﹣7x≤3+2,然后合并同类项后把x的系数化为1即可;(2)分别解两个不等式得到x>﹣1和x≤6,然后根据大于小的小于大的取中间得到不等式组的解集.【详解】(1)移项得9x﹣7x≤3+2,合并得2x≤5,系数化为1得x≤52;(2)32123x xx+>⎧⎪⎨≤⎪⎩①②,解△得x>﹣1,解△得x≤6,所以不等式组的解集为﹣1<x≤6.19.(1)第一步,两边同乘以6时漏乘了没有分母的项;(2)x≥5.【分析】(1)根据解不等式的步骤逐步分析即可;(2)根据去分母、去括号、移项、合并同类项、未知数的系数化为1的步骤求解即可.【详解】解:(1)第一步,两边同乘以6时漏乘了没有分母的项;(2)41132x x +--≤, 2(x+4)-3(x -1) ≤6,2x+8-3x+3≤6,2x -3x≤6-3-8,-x≤-5,x≥5.20.(1)AC=DF ;(2)见解析【分析】(1)由BE=CF 可得到BC=EF ,结合条件可再加一组边相等,或已知两边的夹角对应相等即可证明三角形全等;(2)利用全等三角形的判定方法,结合条件证明即可.【详解】解:(1)△BE=CF ,△BC=EF ,且AB=DE ,△可添加AC=DF ,利用SSS 来证明三角形全等,故答案为:AC=DF ;(2)证明:△BE=CF ,△BC=EF ,且AB=DE ,在△ABC 和△DEF 中,AC DF BC EF AB DE =⎧⎪=⎨⎪=⎩,△△ABC△△DEF (SSS ).21.(1)b =−2;(2)2【分析】(1)根据图象可以得到点M 的坐标,然后根据点M 在一次函数3y x b =-+的图象上,即可得到b 的值;(2)根据(1)中的结果,可以得到点N 的坐标,从而可以得到ON 的长,再根据点M 的坐标,可以得到点M 到y 轴的距离,从而可以计算出△MON 的面积.【详解】解:(1)由图象可得,点M 的坐标为(−2,4),△一次函数3y x b =-+的图形过点M (−2,4),△4=−2×(-3)+b ,解得:b=−2;(2)连接OM,如图所示,由(1)知,b=−2,△y=−3x−2,当x=0时,y=−3×0−2=−2,即点N的坐标为(0,−2),△ON=2,△点M(−2,4),△点M到y轴的距离是2,△△MON的面积=2×2÷2=2,即△MON的面积是2.22.(1)39,55;(2)y1=x或y1=﹣3x﹣4【分析】(1)y1与y2的图象交于点(2,3),代入y1与y2的解析式,组成k与b方程组,解之即可,(2)当﹣2≤x≤2时,y1函数有最大值3,一次函数y1增减性由k确定,分k>0,x=2,y=2与k<0,x=-2,y=2,代入解之即可.【详解】解:(1)△y1与y2的图象交于点(2,3),△把点(2,3)代入y1与y2的解析式得,23 23k bb k+=⎧⎨-=⎩,解得,3595kb⎧=⎪⎪⎨⎪=⎪⎩;(2)根据题意可得y 1=kx+k ﹣1,△当k >0时,在﹣2≤x≤2时,y 1随x 的增大而增大,△当x =2时,y 1=3k ﹣1=2,△k =1,△y 1=x ;△当k <0时,在﹣2≤x≤2时,y 1随x 的增大而减小,△当x =﹣2时,y 1=﹣k ﹣1=2,△k =﹣3,△y 1=﹣3x ﹣4.综上所述,y 1=x 或y 1=﹣3x ﹣4.23.(1)A 型课桌凳需180元,B 型课桌凳需220元;(2)共3种方案:方案一:A 型78套 ,B 型为122套;方案二:A 型79套 ,B 型为121套;方案三:A 型80套 ,B 型为120套;方案三总费用最低,费用为40880元【分析】(1)设A 型课桌凳需x 元,则B 型课桌凳需(x+40)元,根据4套A 型+5套B 型课桌凳=1820元,列出方程,解方程即可.(2)设购a 套A 型桌椅,()200a -套B 型桌椅,由购买这两种课桌凳总费用不能超过40880元可得到不等式,求得a 的取值范围,再分情况进行讨论.【详解】(1)设购一套A 型课桌凳需x 元,一套B 型课桌凳需()40x +元.依题意列方程得: ()45401820x x ++=解得:180x =:B 18040220+=(元)(2)设购a 套A 型桌椅,()200a -套B 型桌椅,列不等式组得:()()1802202004088022003a a a a ⎧+-≤⎪⎨≤-⎪⎩解得7880a ≤≤△a 为整数△78,79,80a =△共3种方案,分别为方案一:A型78套,B型为122套;方案二:A型79套,B型为121套;方案三:A型80套,B型为120套;方案一:78180122220140402684040880⨯+⨯=+=(元)方案二:79180121220142202662040840⨯+⨯=+=(元)方案三:80180120220144002640040800⨯+⨯=+=(元)△408004084040880<<△方案三总费用最低,费用为40880元.【点睛】考查了一元一次方程的应用和不等式组的应用,解题关键是根据已知得出不等式,求出a的取值.24.(1)10,120;(2)△15(02)3030(211)x xyx x≤≤⎧=⎨-<≤⎩,△能够实现.理由见解析;(3)当x为2.5或10.5或12时,甲、乙两人距地面的高度差为80米.【分析】(1)由时间,速度,路程的基本关系式可解;(2)△分段代入相关点的坐标,利用待定系数法来求解即可;△分别计算甲乙距离地面的高度再比较即可;(3)求出甲的函数解析式,分0≤x≤2时,2<x≤11时,11<x≤20时来讨论即可求解.【详解】(1)甲登山的速度为:(300﹣100)÷20=10米/分,100+10×2=120米,故答案为10,120.(2)△V乙=3V甲=30米/分,t=2+(300﹣30)÷30=11(分钟),设2到11分钟,乙的函数解析式为y=kx+b,△直线经过A(2,30),(11,300),△30230011k bk b=+⎧⎨=+⎩解得3030kb=⎧⎨=-⎩△当2<x≤11时,y=30x﹣30设当0≤x≤2时,乙的函数关系式为y=ax,△直线经过A(2,30)△30=2a解得a=15,△当0≤x≤2时,y=15x,综上,15(02)3030(211)x x y x x ≤≤⎧=⎨-<≤⎩ △能够实现.理由如下:提速5分钟后,乙距地面高度为30×7﹣30=180米.此时,甲距地面高度为7×10+100=170米.180米>170米,所以此时,乙已经超过甲.(3)设甲的函数解析式为:y =mx+100,将(20,300)代入得:300=20m+100 △m =10,△y =10x+100.△当0≤x≤2时,由(10x+100)﹣15x =80,解得x =4>2矛盾,故此时没有符合题意的解; 当2<x≤11时,由|(10x+100)﹣(30x ﹣30)|=80得|130﹣20x|=80△x =2.5或x =10.5;当11<x≤20时,由300﹣(10x+100)=80得x =12△x =2.5或10.5或12.△当x 为2.5或10.5或12时,甲、乙两人距地面的高度差为80米.25.(1)7.5(2)见解析(3)1A (1,5), 1B (1,0),1C (4,3).【分析】(1)利用三角形的面积公式求解即可;(2)先做出A ,B ,C 关于y 轴的对称点,然后顺次连接即可;(3)根据点的位置直接写出坐标即可.(1)解:S △ABC=1537.52⨯⨯=. (2)解:如图111A B C △即为所求.(3)解:1A (1,5), 1B (1,0),1C (4,3).【点睛】本题主要考查了坐标与图形、轴对称、三角形的面积等知识点,灵活运用相关知识成为解答本题的关键.26.(1)证明见解析;(2)65︒【详解】试题分析:(1)由三角形的外角性质得△DEB=△C ,从而易证ABC △DBE ;(2)由(1)可得△ABD=△EBC,由于BE=BC,故易求△C.试题解析:(1)△DEA ∠+△DEB=△EBC+△C ,DEA EBC ∠=∠△△DEB=△C ,又△BE CB =,DE AC =,△PBE △()ABC SAS(2)△ABC △DBE ,△DBE ABC =∠,△DBA EBC ∠=∠,△50EBC ∠=︒, △19050652C ∠=︒-⨯︒=︒.。

浙教版数学八年级上册期末考试试题含答案

浙教版数学八年级上册期末考试试题含答案

浙教版数学八年级上册期末考试试卷一、选择题(共10小题,每题3分,共30分).1.下列长度的三条线段能组成三角形的是()A.1,2.5,3.5B.4,6,10C.20,11,8D.5,8,12 2.在下列“绿色食品、回收、节能、节水”四个标志中,是轴对称图形的是()A.B.C.D.3.如图,雷达探测器发现了A,B,C,D,E,F六个目标.目标C,F的位置分别表示为C(6,120°),F(5,210°),按照此方法表示目标A,B,D,E的位置时,其中表示正确的是()A.A(4,30°)B.B(1,90°)C.D(4,240°)D.E(3,60°)4.在△ABC纸片上有一点P,且PA=PB,则P点一定()A.是边AB的中点B.在边AB的垂直平分线上C.在边AB的高线上D.在边AB的中线上5.若a>b,则下列不等式变形正确的是()A.3a<3b B.ac2>bc2C.a﹣c>b﹣c D.﹣ac<﹣bc 6.对假命题“若a>b,则a2>b2”举一个反例,符合要求的反例是()A.a=﹣1,b=﹣2B.a=2,b=一1C.a=2,b=1D.a=﹣1,b=0 7.下列函数中,自变量x的取值范围为x<1的是()A.B.C.D.8.直线y1=k1x+b与直线y2=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b≤k2x的解集为()A.x>﹣3B.x<﹣3C.x≤﹣3D.x≥﹣39.小明和爸爸从家里出发,沿同一路线到学校.小明匀速跑步先出发,2分钟后,爸爸骑自行车出发,匀速骑行一段时间后,在途中商店购买水果花费了5分钟,这时发现小明已经跑到前面,爸爸骑车速度增加60米/分钟,结果与小明同时到达学校.小明和爸爸两人离开家的路程s(米)与爸爸出发时间t(分钟)之间的函数图象如图所示.则下列说法错误的是()A.a=15B.小明的速度是150米/分钟C.爸爸从家到商店的速度为200米/分钟D.爸爸出发7分钟追上小明10.如图,在平面直角坐标系中,点A1在x轴的正半轴上,B1在第一象限,且△OA1B1是等边三角形.在射线OB1上取点B2,B3,…,分别以B1B2,B2B3,…为边作等边三角形△B1A2B2,△B2A3B3,…使得A1,A2,A3,…在同一直线上,该直线交y轴于点C.若OA1=1,∠OA1C=30°,则点B9的横坐标是()A.B.C.256D.二、填空题(本题有6小题,每小题4分,共24分)11.写出一个正比例函数,使其图象经过第二、四象限:.12.以A(﹣2,7),B(﹣2,﹣2)为端点的线段上任意一点的坐标可表示为(﹣2,y)(﹣2≤y≤7).现将这条线段水平向右平移7个单位,所得图形上任意一点的坐标可表示为.13.如图,在△ABC中,点E在AB上,D为AC的中点,过点C作CF∥AB交ED的延长线于点F.若AB=15cm,CF=10cm,则BE=cm.14.有一种感冒止咳药品的说明书上写着:“每日用量90~120mg(包括90mg和120mg),分2~3次服用”.若一次服用这种药品的剂量为amg,则a的取值的范围为.15.如图,在△ABC中,∠ACB=90°,D,E分别为AB,AC上一点,将△BCD,△ADE 沿CD,DE翻折,点A,B恰好重合于点P处,若△PCD中有一个角等于48°,则∠A =.16.已知直线y=x+2与函数y=图象交于A,B两点(点A在点B的左边).(1)点A的坐标是;(2)已知O是坐标原点,现把两个函数图象水平向右平移m个单位,点A,B平移后的对应点分别为A′,B′,连接OA′,OB′.当m=时,|OA'﹣OB'|取最大值.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.解不等式组.18.如图,在平面直角坐标系xOy中,△ABO的三个顶点坐标分别为A(0,﹣3),B(2,0),O(0,0).(1)将△OAB关于x轴作轴对称变换,在图1中画出对称后的图形,并涂黑.(2)将△OAB先向右平移3个单位,再向上平移2个单位,在图2中画出平移后的图形,并涂黑.19.已知一次函数y=kx+b的图象经过点A(﹣4,0),B(2,6)两点.(1)求一次函数y=kx+b的表达式.(2)在直角坐标系中,画出这个函数的图象.(3)求这个一次函数与坐标轴围成的三角形面积.20.在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:;结论:.(均填写序号)证明:21.为了“不忘历史,学习英雄”,学校开展“红色丰碑”演讲比赛;王老师负责为获奖同学购买奖品,现甲、乙两个商店正在做促销活动,分别给出了不同的优惠方案:甲商店优惠方案:购买奖品金额超过300元后,超出300元的部分按8折收费;乙商店优惠方案:购买奖品金额超过500元后,超出500元的部分按a折收费;如果王老师到乙商店购买奖品,当奖品金额是600元时,实际需支付570元.(1)填空:a=.(2)如果王老师到甲商店购买奖品金额x元,求实际支付y元与奖品金额x元之间的函数表达式.(3)如果王老师购买奖品的金额超过800元,那么到哪个商店进行采购更合算?22.我们发现,“用不同的方式表示同一图形的面积”可以解决计算线段的有关问题,这种方法称为面积法.(1)如图1,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,CD是斜边AB边上的高线.用“面积法”求CD的长.(2)如图2,在等腰三角形ABC中,AB=AC=13,BC=10,P为底边BC上的任意一=S△ABP+S△ACP,点,过点P作PM⊥AB,PN⊥AC,垂足分别为M,N,连接AP,利用S△ABC 求PM+PN的值.(3)如图3,有一直角三角形纸片ABC,∠ACB=90°,AC=4,BC=6.点D在斜边AB上,连接CD,将△ADC沿CD折叠,点A的对应点A′落在BC边上,求折叠后纸片重叠部分的面积.23.已知直线l:y=kx+3k+1(k>0)经过定点A.(1)探求定点A的坐标.把函数表达式作如下变形:y=kx+3k+1=k(x+3)+1,当x =﹣3时,可以消去k,求出y=1,则定点A的坐标为.(2)如图1,已知△BCD各顶点的坐标分别为B(0,1),C(﹣4,1),D(0,4),直线l将△BCD的周长分成7:17两部分,求k的值.(3)如图2,设直线l与y轴交于点P,另一条直线y=(k﹣1)x+3k﹣2与y轴交于点Q,交直线l于点E,点F是EQ的中点.当点P从(0,5)沿y轴正方向运动到(0,10)时,求点F运动经过的路径长.24.在平面直角坐标系中,点A的坐标为(4,0),直线l是经过点(0,)且平行于x 轴的直线,点B在直线l上,连接AB,设点B的横坐标为m(m>0).(1)如图1,当m=9时,以AB为直角边作等腰直角三角形ABC,使∠BAC=90°,求直线BC的函数表达式.(2)在图2中以AB为直角边作等腰直角三角形ABD,使∠ABD=90°,连接OD,求△AOD的面积(用含m的代数式表示).(3)在图3中以AB为边作等腰直角三角形ABP,当点P落在直线y=x+上时,求m的值.参考答案一、选择题(共10小题,每题3分,共30分).1.下列长度的三条线段能组成三角形的是()A.1,2.5,3.5B.4,6,10C.20,11,8D.5,8,12【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.解:A、1+2.5=3.5,不能够组成三角形;B、4+6=10,不能组成三角形;C、11+8<20,不能组成三角形;D、5+8>12,能组成三角形.故选:D.2.在下列“绿色食品、回收、节能、节水”四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:A.3.如图,雷达探测器发现了A,B,C,D,E,F六个目标.目标C,F的位置分别表示为C(6,120°),F(5,210°),按照此方法表示目标A,B,D,E的位置时,其中表示正确的是()A.A(4,30°)B.B(1,90°)C.D(4,240°)D.E(3,60°)【分析】按已知可得,表示一个点,横坐标是自内向外的环数,纵坐标是所在列的度数,分别判断各选项即可得解.解:由题意可知A、B、D、E的坐标可表示为:A(5,30°),故A选项错误;B(2,90°),故B选项错误;D(4,240°),故C选项正确;E(3,300°),故D选项错误.故选:C.4.在△ABC纸片上有一点P,且PA=PB,则P点一定()A.是边AB的中点B.在边AB的垂直平分线上C.在边AB的高线上D.在边AB的中线上【分析】根据线段垂直平分线的判定定理解答.解:∵PA=PB,∴P点在在边AB的垂直平分线上,故选:B.5.若a>b,则下列不等式变形正确的是()A.3a<3b B.ac2>bc2C.a﹣c>b﹣c D.﹣ac<﹣bc 【分析】根据不等式的性质逐一进行判断即可.不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.解:A.因为a>b,所以3a>3b,故本选项不合题意;B.不妨设c=0,则ac2=bc2,故本选项不合题意;C.因为a>b,所以a﹣c>b﹣c,故本选项符合题意;D.不妨设c=0,则﹣ac=﹣bc,故本选项不合题意;故选:C.6.对假命题“若a>b,则a2>b2”举一个反例,符合要求的反例是()A.a=﹣1,b=﹣2B.a=2,b=一1C.a=2,b=1D.a=﹣1,b=0【分析】根据有理数的大小比较法则、有理数的乘方法则计算,判断即可.解:当a=﹣1,b=﹣2时,a>b,而a2<b2,∴“若a>b,则a2>b2”是假命题,故选:A.7.下列函数中,自变量x的取值范围为x<1的是()A.B.C.D.【分析】根据函数自变量的取值得到x<1的取值的选项即可.解:A、自变量的取值为x≠1,不符合题意;B、自变量的取值为x≠0,不符合题意;C、自变量的取值为x≤1,不符合题意;D、自变量的取值为x<1,符合题意.故选:D.8.直线y1=k1x+b与直线y2=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b≤k2x的解集为()A.x>﹣3B.x<﹣3C.x≤﹣3D.x≥﹣3【分析】结合函数图象,写出直线y2=k2x在直线y1=k1x+b上方所对应的自变量的范围即可.解:∵直线y1=k1x+b与直线y2=k2x的交点的横坐标为﹣3,∴当x≤﹣3时,y2≥y1,∴关于x的不等式k1x+b≤k2x的解集为x≤﹣3.故选:C.9.小明和爸爸从家里出发,沿同一路线到学校.小明匀速跑步先出发,2分钟后,爸爸骑自行车出发,匀速骑行一段时间后,在途中商店购买水果花费了5分钟,这时发现小明已经跑到前面,爸爸骑车速度增加60米/分钟,结果与小明同时到达学校.小明和爸爸两人离开家的路程s(米)与爸爸出发时间t(分钟)之间的函数图象如图所示.则下列说法错误的是()A.a=15B.小明的速度是150米/分钟C.爸爸从家到商店的速度为200米/分钟D.爸爸出发7分钟追上小明【分析】由图象可得a的值;根据小明的路程和时间可得速度;设爸爸从家到商店的速度是x米/分钟,列一元一次方程可求解;根据追及问题中相距路程÷速度差=时间可得答案.解:线段BC是爸爸买水果的时间5分钟,a=10+5=15,故A不符合题意;由图象可得小明的速度是3300÷(20+2)=150(米/分钟),故B不符合题意;设爸爸从家到商店的速度是x米/分钟,则从商店到学校的速度是(x+60)米/分钟,依题意得,10x+(20﹣15)(x+60)=3300,解得x=200,所以爸爸从家到商店的速度是200米/分钟,故C不符合题意;爸爸追上小明得时间是150×2÷(200﹣150)=6(分钟),故D符合题意.故选:D.10.如图,在平面直角坐标系中,点A1在x轴的正半轴上,B1在第一象限,且△OA1B1是等边三角形.在射线OB1上取点B2,B3,…,分别以B1B2,B2B3,…为边作等边三角形△B1A2B2,△B2A3B3,…使得A1,A2,A3,…在同一直线上,该直线交y轴于点C.若OA1=1,∠OA1C=30°,则点B9的横坐标是()A.B.C.256D.【分析】根据题意求出点B1,B2,B3的坐标,然后找出B点坐标的变化规律,把B n的坐标用含n的式子表示出来,取n=9,即可求出B9的横坐标.解:∵△OA1B1是等边三角形,OA1=1,∴B1的横坐标为,OA1=OB1,设B1(,y),则,解答y=或y=(舍),∴B1(,),∴OB1所在的直线的解析式为y=x,∵OA1=1,∠OA1C=30°,△OA1B1是等边三角形,∴∠B1A1C=90°,∵∠O1BA1=∠B1B2A2=60°,∴B1A1∥B2A2,∴∠B1A1C=∠B2A2A1=90°,∴∠B1A2A1=30°,∴B1A2=2A1B1=2,∴B2的横坐标为,∴y=x=,∴B2(,),同理:B3(,),B4(,),总结规律:B1的横坐标为,B2的横坐标为+1=,B3的横坐标为+1+2=,B4的横坐标为+1+2+4=,...,∴点B9的横坐标是1+2+4+8+16+32+64=.故选:B.二、填空题(本题有6小题,每小题4分,共24分)11.写出一个正比例函数,使其图象经过第二、四象限:y=﹣x(答案不唯一).【分析】先设出此正比例函数的解析式,再根据正比例函数的图象经过二、四象限确定出k的符号,再写出符合条件的正比例函数即可.解:设此正比例函数的解析式为y=kx(k≠0),∵此正比例函数的图象经过二、四象限,∴k<0,∴符合条件的正比例函数解析式可以为:y=﹣x(答案不唯一).故答案为:y=﹣x(答案不唯一).12.以A(﹣2,7),B(﹣2,﹣2)为端点的线段上任意一点的坐标可表示为(﹣2,y)(﹣2≤y≤7).现将这条线段水平向右平移7个单位,所得图形上任意一点的坐标可表示为(5,y)(﹣2≤y≤7).【分析】根据平移时,点的坐标变化规律“左减右加”进行计算即可.解:现将这条线段水平向右平移7个单位,所得图形上任意一点的坐标可表示为(5,y)(﹣2≤y≤7),故答案为:(5,y)(﹣2≤y≤7).13.如图,在△ABC中,点E在AB上,D为AC的中点,过点C作CF∥AB交ED的延长线于点F.若AB=15cm,CF=10cm,则BE=5cm.【分析】根据CF∥AB就可以得出∠A=∠DCF,∠AED=∠F,证明△ADE≌△CDF (AAS),由全等三角形的性质得出AE=CF,则可得出答案.解:∵CF∥AB,∴∠AED=∠F,∠FCD=∠A.∵点D为AC的中点,∴AD=CD.在△ADE和△CDF中,,∴△ADE≌△CDF(AAS).∴AE=CF,∵AB=15cm,CF=10cm,∴BE=AB﹣AE=AB﹣CF=15﹣10=5(cm).故答案为5.14.有一种感冒止咳药品的说明书上写着:“每日用量90~120mg(包括90mg和120mg),分2~3次服用”.若一次服用这种药品的剂量为amg,则a的取值的范围为30≤a≤60.【分析】一次服用剂量a=,故可求出服用剂量的最大值和最小值,而一次服用的剂量应介于两者之间,依题意列出不等式即可.解:由题意,当每日用量90mg,分3次服用时,一次服用的剂量最小为=30mg;当每日用量120mg,分2次服用时,一次服用的剂量最大为=60mg;故一次服用这种药品的剂量范围是30mg~60mg.故答案为:30≤a≤60.15.如图,在△ABC中,∠ACB=90°,D,E分别为AB,AC上一点,将△BCD,△ADE 沿CD,DE翻折,点A,B恰好重合于点P处,若△PCD中有一个角等于48°,则∠A =42°或24°.【分析】由折叠的性质得出AD=PD=BD,∠CPD=∠B,∠PDC=∠BDC,∠PCD=∠DCB,由直角三角形斜边上的中线性质得出CD=AB=AD=BD,由等腰三角形的性质得出∠ACD=∠A,∠DCB=∠B,中分三种情况讨论即可.解:由折叠可得,AD=PD=BD,∠CPD=∠B,∠PDC=∠BDC,∠PCD=∠DCB,∴D是AB的中点∴CD=AB=AD=BD,∴∠ACD=∠A,∠DCB=∠B,当∠CPD=48°时,∠B=48°,∴∠A=90°﹣∠B=42°;当∠PCD=48°时,∠DCB=∠B=48°,∴∠A=42°;当∠PDC=48°时,∵∠PCD=DCB=48°,∠BDC=∠A+∠ACD,∴∠A=∠BDC=24°;故答案为:42°或24°.16.已知直线y=x+2与函数y=图象交于A,B两点(点A在点B的左边).(1)点A的坐标是(﹣,);(2)已知O是坐标原点,现把两个函数图象水平向右平移m个单位,点A,B平移后的对应点分别为A′,B′,连接OA′,OB′.当m=6时,|OA'﹣OB'|取最大值.【分析】(1)因为点A在点B左边,联立方程y=x+2与y=﹣x﹣1求解.(2)O,A',B'共线时满足题意,用含m代数式分别表示A',B'坐标,然后代入正比例函数解析式求出m即可.解:(1)联立方程,解得,∴A(﹣,),故答案为:(﹣,).(2)联立方程,解得,∴点B坐标为(,),将A,B向右平移m个单位得A'(﹣+m,),B'(+m,),∴OA'=,OB'=,∵三角形中两边之差小于第三边,∴O,A,B三点共线时,|OA'﹣OB'|取最大值,最大值为AB长度,设O,A,B所在直线正比例函数为y=kx,将A',B'坐标代入可得:,解得m=6.故答案为:6.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.解不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式3x﹣2≤x,得:x≤1,解不等式<,得:x>﹣7,∴不等式组的解集为﹣7<x≤1.18.如图,在平面直角坐标系xOy中,△ABO的三个顶点坐标分别为A(0,﹣3),B(2,0),O(0,0).(1)将△OAB关于x轴作轴对称变换,在图1中画出对称后的图形,并涂黑.(2)将△OAB先向右平移3个单位,再向上平移2个单位,在图2中画出平移后的图形,并涂黑.【分析】(1)直接利用轴对称图形的性质得出对应点位置得出答案;(2)直接利用平移的性质得出对应点位置,进而得出答案.解:(1)如图1所示:△CBO即为所求;(2)如图2所示:△A′B′O′即为所求.19.已知一次函数y=kx+b的图象经过点A(﹣4,0),B(2,6)两点.(1)求一次函数y=kx+b的表达式.(2)在直角坐标系中,画出这个函数的图象.(3)求这个一次函数与坐标轴围成的三角形面积.【分析】(1)将两点代入,运用待定系数法求解;(2)两点法即可确定函数的图象.(3)求出与x轴及y轴的交点坐标,然后根据面积公式求解即可.解:(1)∵一次函数y=kx+b的图象经过两点A(﹣4,0)、B(2,6),∴,∴函数解析式为:y=x+4;(2)函数图象如图;(3)一次函数y=x+4与y轴的交点为C(0,4),∴△AOC的面积=4×4÷2=8.20.在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:可以为①②③;结论:④.(均填写序号)证明:【分析】此题可以分成三种情况:情况一:题设:①②③;结论:④,可以利用SAS定理证明△ABC≌△DEF;情况二:题设:①③④;结论:②,可以利用AAS证明△ABC≌△DEF;情况三:题设:②③④;结论:①,可以利用ASA证明△ABC≌△DEF,再根据全等三角形的性质可推出结论.【解答】情况一:题设:①②③;结论:④.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠1=∠2;情况二:题设:①③④;结论:②.证明:在△ABC和△DEF中,∵,∴△ABC≌△DEF(AAS),∴BC=EF,∴BC﹣FC=EF﹣FC,即BF=EC;情况三:题设:②③④;结论:①.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE.21.为了“不忘历史,学习英雄”,学校开展“红色丰碑”演讲比赛;王老师负责为获奖同学购买奖品,现甲、乙两个商店正在做促销活动,分别给出了不同的优惠方案:甲商店优惠方案:购买奖品金额超过300元后,超出300元的部分按8折收费;乙商店优惠方案:购买奖品金额超过500元后,超出500元的部分按a折收费;如果王老师到乙商店购买奖品,当奖品金额是600元时,实际需支付570元.(1)填空:a=7.(2)如果王老师到甲商店购买奖品金额x元,求实际支付y元与奖品金额x元之间的函数表达式.(3)如果王老师购买奖品的金额超过800元,那么到哪个商店进行采购更合算?【分析】(1)由“当金额是600元时,实际只需支付了570”可得方程300+(600﹣300)×=570,再解即可;与奖品金额x元之间的函数表达式;(2)根据甲商店优惠方案即可求出y甲与奖品金额x元之间的函数表达式,再结合(2)的结论列方程和(3)根据题意求出y乙不等式解答即可.解:(1)由题意,得500+(600﹣500)×=570,解得x=7,故答案为:7;(2)由题意,得y=;甲=0.7x+150(x>500),(3)由题意,得y乙0.8x+60=0.7x+150,解得x=900,0.8x+60>0.7x+150,解得x>900,0.8x+60<0.7x+150,解得x<900,当800<x<900时,到甲商店更合算;当x=900时,两家商店任选一个;当x>900时,到乙商店更合算.22.我们发现,“用不同的方式表示同一图形的面积”可以解决计算线段的有关问题,这种方法称为面积法.(1)如图1,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,CD是斜边AB边上的高线.用“面积法”求CD的长.(2)如图2,在等腰三角形ABC中,AB=AC=13,BC=10,P为底边BC上的任意一=S△ABP+S△ACP,点,过点P作PM⊥AB,PN⊥AC,垂足分别为M,N,连接AP,利用S△ABC 求PM+PN的值.(3)如图3,有一直角三角形纸片ABC,∠ACB=90°,AC=4,BC=6.点D在斜边AB上,连接CD,将△ADC沿CD折叠,点A的对应点A′落在BC边上,求折叠后纸片重叠部分的面积.【分析】(1)利用勾股定理求出AB,再利用面积法求出CD即可.(2)如图2中,过点A作AH⊥BC于H.利用勾股定理求出AH,再利用面积法求出PM+PN即可.(3)如图,过点D作DM⊥AC于M,DN⊥EC于N.利用角平分线的性质定理证明PM =PN,再利用面积法求出PM,可得结论.解:(1)如图1中,∵∠ACB=90°,AC=3,BC=4,∴AB===5,∵CD⊥AB,=•AC•BC=•AB•CD,∴S△ABC∴CD==.(2)如图2中,过点A作AH⊥BC于H.∵AB=AC=13,BC=10,∴BH=CH=5,∴AH===12,=•BC•AH=•AB•PM+•AC•PN,∵S△ABC∴×13×PM+×13×PN=×10×12,∴PM+PN=.(3)如图,过点D作DM⊥AC于M,DN⊥EC于N.∵∠ACD=∠ECD,DM⊥AC,DN⊥CE,∴DM=DN,+s△BCD=S△ACB,∵S△ACD∴×4×DM+×6×DN=×4×6,∴DM=DN=,=•CA′•DN=×4×=.∴S△A′CD23.已知直线l:y=kx+3k+1(k>0)经过定点A.(1)探求定点A的坐标.把函数表达式作如下变形:y=kx+3k+1=k(x+3)+1,当x =﹣3时,可以消去k,求出y=1,则定点A的坐标为(﹣3,1).(2)如图1,已知△BCD各顶点的坐标分别为B(0,1),C(﹣4,1),D(0,4),直线l将△BCD的周长分成7:17两部分,求k的值.(3)如图2,设直线l与y轴交于点P,另一条直线y=(k﹣1)x+3k﹣2与y轴交于点Q,交直线l于点E,点F是EQ的中点.当点P从(0,5)沿y轴正方向运动到(0,10)时,求点F运动经过的路径长.【分析】(1)x=﹣3时,y的值与k无关,都为1,即得定点A(﹣3,1),(2)由A(﹣3,1),B(0,1),C(﹣4,1),D(0,4),得AB=3,BC=4,BD=3,CD=5,直线l将△BCD的周长分成7:17两部分,则两部分的长分别为:12×=,12×=,①若AB+BN=,得N(0,),将N(0,)代入y=kx+3k+1,即解得k=﹣,②若AC+CM=,可得M(﹣2,),把M(﹣2,)代入y=kx+3k+1,解得:k=;(3)由求得E(﹣3,1),故E与A重合,而点F是EQ的中点,得x F=﹣,根据y=kx+3k+1、y=(k﹣1)x+3k﹣2可得P(0,3k+1)、Q(0,3k﹣2),故PQ=3,可知点P从(0,5)沿y轴正方向运动到(0,10),则Q从(0,2)运动到(0,7),F从(﹣,)运动到(﹣,4),即可得F运动的路程为.解:(1)∵x=﹣3时,y的值与k无关,都为1,∴定点A(﹣3,1),故答案为:(﹣3,1);(2)∵A(﹣3,1),B(0,1),C(﹣4,1),D(0,4),∴AB=3,BC=4,BD=3,∵∠CDB=90°,∴CD===5,∴△BCD的周长为BD+CD+BC=12,∵直线l将△BCD的周长分成7:17两部分,∴两部分的长分别为:12×=,12×=,①若AB+BN=,如图:∴3+BN=,∴BN=,∴N(0,),将N(0,)代入y=kx+3k+1得:=3k+1,解得k=﹣,②若AC+CM=,如图:∴1+CM=,∴CM=,∴CM=CD,∴M为CD中点,∴M(﹣2,),把M(﹣2,)代入y=kx+3k+1得:=﹣2k+3k+1,解得:k=,综上所述,k的值为﹣或;(3)由得,∴E(﹣3,1),∴E与A重合,∵点F是EQ的中点,∴x F=﹣,而由y=kx+3k+1、y=(k﹣1)x+3k﹣2可得P(0,3k+1)、Q(0,3k﹣2),∴PQ=3,∵点P从(0,5)沿y轴正方向运动到(0,10),∴Q从(0,2)运动到(0,7),∴F从(﹣,)运动到(﹣,4),∴F运动的路程为:4﹣=.24.在平面直角坐标系中,点A的坐标为(4,0),直线l是经过点(0,)且平行于x 轴的直线,点B在直线l上,连接AB,设点B的横坐标为m(m>0).(1)如图1,当m=9时,以AB为直角边作等腰直角三角形ABC,使∠BAC=90°,求直线BC的函数表达式.(2)在图2中以AB为直角边作等腰直角三角形ABD,使∠ABD=90°,连接OD,求△AOD的面积(用含m的代数式表示).(3)在图3中以AB为边作等腰直角三角形ABP,当点P落在直线y=x+上时,求m的值.【分析】(1)作CN⊥轴于N,BM⊥轴于M,易证Rt△NCA Rt△MAB,可求得点C的坐标为(,5),再利用待定系数法即可求解;(2)过B作直线EF⊥轴于F,过D作DE⊥EF交直线EF于E,易证Rt△FAB≌Rt△EBD,可求得点D的坐标为(m﹣,m﹣)或(m+,﹣m),再利用三角形面积公式即可求解;(3)题中只给定了AB为直角边,所以分∠ABP=90°或∠BAP=90°两种情况讨论,即可求解.解:(1)作CN⊥轴于N,BM⊥轴于M,∵∠BAC=90°,∴∠NAC+∠NCA=∠NAC+∠MAB=90°,∴∠NCA=∠MAB,∵CA=AB,∴Rt△NCA Rt△MAB,∴NC=MA,NA=MB,∵点B的横坐标为,∴点B的坐标为(9,),∴NC=MA=MO﹣OA=9﹣4=5,NA=MB=,ON=OA﹣NA=,∴点C的坐标为(,5),设直线BC的解析式为y=kx+b,将(9,),(,5)代入,得:,解得:,∴直线BC的解析式为y=﹣x+;(2)过B作直线EF⊥轴于F,过D1作D1E⊥EF交直线EF于E,过D2作D2E⊥EF交直线EF于M,同理可证Rt△FAB≌Rt△EBD1≌Rt△MBD2,∴AF=BE=MB,FB=D1E=D2M,∵点B的横坐标为m,∴AF=BE=MB=m﹣4,FB=D1E=D2M=,点D1的坐标为(m﹣,m﹣4+),即D1的坐标为(m﹣,m﹣),点D2的坐标为(m+,﹣m+4),即D2的坐标为(m+,﹣m),=,∵S△OAD1D点位于直线AB左侧时,当0<m<1.5时,S=×4×(﹣m)=3﹣2m;当m≥1.5时,S=×4×(m﹣)=2m﹣3;D点位于直线AB右侧时,当0<m<6.5时,S=×4×(﹣m)=13﹣2m;当m≥6.5时,S=×4×(m﹣)=2m﹣13;(3)①当∠ABP=90°时,由(2)可知D与P重合,∴点P的坐标为(m﹣,m﹣),当点P落在直线y=上时,m﹣=,解得:m=,②当∠BAP=90°时,同理可证明Rt△HAP≌Rt△GBA,∵点B的坐标为(m,),∴PH=AG=m﹣4,AH=BG=,∴点P的坐标为(4﹣,m﹣4),即(,m﹣4),当点P落在直线y=上时,m﹣4=,解得:m=,综上,m的值为或.。

浙教版八年级(上)期末数学试卷(含答案)

浙教版八年级(上)期末数学试卷(含答案)

浙教版八年级(上)期末数学试卷一、选择题:(每小题3分,共30分)1.(3分)下列四个图形中,不是轴对称图形的是()A.B.C.D.2.(3分)已知三角形的两边长分别为8和4,则第三边长可能是()A.3B.4C.8D.123.(3分)如果a>b,下列各式中不正确的是()A.a﹣4>b﹣4B.﹣2a<﹣2b C.﹣5+a<﹣5+b D.﹣<﹣4.(3分)在△ABC和△A′B′C′中,已知∠A=∠A′,AB=A′B′,添加下列条件中的一个,不能使△ABC ≌△A′B′C′一定成立的是()A.AC=A′C′B.BC=B′C′C.∠B=∠B′D.∠C=∠C′5.(3分)在平面直角坐标系中,点P(﹣3,m2+1)关于原点的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)把函数y=x的图象向上平移2个单位,则下列各坐标所表示的点中,在平移后的直线上的是()A.(﹣2,2)B.(2,3)C.(2,4)D.(2,5)7.(3分)如图,△ABC中,DE垂直平分AC,垂足为D,AD=3,△ABE的周长为13,那么△ABC的周长为()A.10B.13C.16D.198.(3分)如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是()A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°﹣α﹣β9.(3分)关于x的不等式组的解集为x<3,那么a的取值范围为()A.a>3B.a≥3C.a<3D.a≤310.(3分)如图,在等腰△OAB中,∠OAB=90°,点A在x轴正半轴上,点B在第一象限,以AB为斜边向右侧作等腰Rt△ABC,则直线OC的函数表达式为()A.B.C.D.二、填空题(每题3分,满分24分)11.(3分)x的与x的2倍的和是非正数,用不等式表示为.12.(3分)把命题“对顶角相等”改写成“如果…那么…”的形式:.13.(3分)已知P(﹣3,4),则P点到x轴的距离为.14.(3分)若一次函数y=(2k+1)x﹣k﹣1的图象不经过第三象限,则k的取值范围是.15.(3分)等腰三角形的一边长为2,周长为5,那么它的腰长为.16.(3分)已知点A(x1,y1),B(x2,y2)是一次函数y=﹣2x+1图象上的两点,当x1>x2时,y1y2(填“>”“=”或“<”)17.(3分)如图,在平面直角坐标系中,直线y=x+8分别与x轴、y轴相交于A、B,线段AB的垂直平分线交y轴于点C,垂足为D,则点C的坐标为.18.(3分)如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD.要使点D恰好落在BC上,则AP的长是.三、解答题:(共46分)19.(7分)解下列不等式(组)(1)3x﹣1≥2x+4(2)20.(7分)如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC分成面积相等的两部分(要求:尺规作图,保留作图,痕迹,不写作法).21.(7分)某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示,其中BA 是线段,且BA∥x轴,AC是射线.(1)当x≥30,求y与x之间的函数关系式;(2)若小李4月份上网20小时,他应付多少元的上网费用?(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?22.(8分)如图,D是∠EAF平分线上的一点,若∠ACD+∠ABD=180°,请说明CD=DB的理由.23.(8分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象经过点A(﹣2,4),且与正比例函数y=﹣x的图象交于点B(a,2).(1)求a的值及一次函数y=kx+b的解析式;(2)若一次函数y=kx+b的图象与x轴交于点C,且正比例函数y=﹣x的图象向下平移m(m>0)个单位长度后经过点C,求m的值;(3)直接写出关于x的不等式﹣x>kx+b的解集.24.(9分)如图1,已知直线l的同侧有两个点A、B,在直线l上找一点P,使P点到A、B两点的距离之和最短的问题,可以通过轴对称来确定,即作出其中一点关于直线l的对称点,对称点与另一点的连线与直线l的交点就是所要找的点,通过这种方法可以求解很多问题.(1)如图2,在平面直角坐标系内,点A的坐标为(1,1),点B的坐标为(4,3),动点P在x轴上,求P A+PB 的最小值;(2)如图3,在锐角三角形ABC中,AB=6,∠BAC=60°,∠BAC的角平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值为.(3)如图4,∠AOB=30°,OC=5,OD=12,点E,F分别是射线OA,OB上的动点,则CF+EF+DE的最小值为.参考答案与试题解析一、选择题:(每小题3分,共30分)1.【解答】解:观察图形可知A、B、C都是轴对称图形;D、不是轴对称图形.故选:D.2.【解答】解:设第三边的长为x,∵三角形两边的长分别是4和8,∴8﹣4<x<8+4,即4<x<12.故选:C.3.【解答】解:∵a>b,∴a﹣4>b﹣4,故A正确,﹣2a<﹣2b,故B正确,a﹣5>b﹣5,故C错误,﹣<﹣,故D正确,故选:C.4.【解答】解:A、∠A=∠A′,AB=A′B′AC=A′C′,根据SAS能推出△ABC≌△A′B′C′,故A选项错误;B、具备∠A=∠A′,AB=A′B′,BC=B′C′,不能判断△ABC≌△A′B′C′,故B选项正确;C、根据ASA能推出△ABC≌△A′B′C′,故C选项错误;D、根据AAS能推出△ABC≌△A′B′C′,故D选项错误.故选:B.5.【解答】解:∵m2+1>0,∴点P(﹣3,m2+1)在第二象限,∴点P(﹣3,m2+1)关于原点的对称点在第四象限,故选:D.6.【解答】解:由“上加下减”的原则可知,将直线y=x向上平移2个单位所得直线的解析式为:y=x+2,当x=﹣2时,y=﹣2+2=0;x=2时,y=2+2=4,所以在平移后的直线上的是(2,4),故选:C.7.【解答】解:∵DE垂直平分AC,∴EA=EC,AC=2AD=6,△ABE的周长=AE+BE+AB=CE+BE+AB=BC+AB=13,∴△ABC的周长=AC+BC+AB=19,故选:D.8.【解答】解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选:A.9.【解答】解:解①得x<3,而不等式组的解集为x<3,所以a≥3.故选:B.10.【解答】解:如图,作CK⊥AB于K.∵CA=CB,∠ACB=90°,CK⊥AB,∴CK=AK=BK,设AK=CK=BK=m,∵AO=AB,∠OAB=90°,∴OA=AB=2m,∴C(3m,m),设直线OC的解析式为y=kx,则有m=3mk,解得k=,∴直线OC的解析式为y=x,故选:B.二、填空题(每题3分,满分24分)11.【解答】解:由题意得:x+2x≤0,故答案为:x+2x≤0.12.【解答】解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.13.【解答】解:P(﹣3,4),则P点到x轴的距离为:4.故答案为:4.14.【解答】解:∵一次函数y=(2k+1)x﹣k﹣1的图象不经过第三象限,∴一次函数y=(2k+1)x﹣k﹣1的图象经过第一、二、四象限或经过第二、四象限.当一次函数y=(2k+1)x﹣k﹣1的图象经过第一、二、四象限时,,解得:k<﹣1;当一次函数y=(2k+1)x﹣k﹣1的图象经过第二、四象限时,,解得:k=﹣1.综上所述:k的取值范围为k≤﹣1.故答案为:k≤﹣1.15.【解答】解:若等腰三角形的腰长为2,则底边长为:5﹣2﹣2=1,∵2+1>2,能组成三角形,此时它的腰长为2;若等腰三角形的底边长为2,则腰长为:=1.5,∵1.5+1.5>2,能组成三角形,此时它的腰长为1.5.∴它的腰长为1.5或2.故答案为:1.5或2.16.【解答】解:∵一次函数y=﹣2x+1中k=﹣2<0,∴该一次函数y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.17.【解答】解:直线y=x+8中,令y=0,则x+8=0,解得x=﹣6;令x=0,则y=8,∴A(0,8),B(﹣6,0),∴OA=8,OB=6,∴AB==10,∵CD是AB的垂直平分线,∴AD==5,∵∠ADC=∠AOB=90°∠A=∠A,∴△ADC∽△AOB,∴=,即=,∴AC=,∴OC=8﹣=,∴C(0,),故答案为(0,).18.【解答】解:∵∠A+∠APO=∠POD+∠COD,∠A=∠POD=60°,∴∠APO=∠COD,在△APO和△COD中,,∴△APO≌△COD(AAS),即AP=CO,∵CO=AC﹣AO=6,∴AP=6.故答案为6.三、解答题:(共46分)19.【解答】解:(1)3x﹣1≥2x+4移项,得3x﹣2x≥4+1,合并同类项,得x≥5;(2),解①得x<3,解②得x≥.则不等式组的解集是x<3.20.【解答】解:如图,作线段BC的中垂线,交BC于点D,则直线AD即为所求.21.【解答】解:(1)当x≥30时,设函数关系式为y=kx+b,则,解得.所以y=3x﹣30;(2)4月份上网20小时,应付上网费60元;(3)由75=3x﹣30解得x=35,所以5月份上网35个小时.22.【解答】解:过点D分别作AE,AF的垂线,交AE于M,交AF于N 则∠CMD=∠BND=90°,∵AD是∠EAF的平分线,∴DM=DN,∵∠ACD+∠ABD=180°,∠ACD+∠MCD=180°,∴∠MCD=∠NBD,在△CDM和△BDN中,∠CMD=∠BFD=90°,∠MCD=∠NBD,DM=DN,∴△CDM≌△BDN,∴CD=DB.23.【解答】解:(1)∵正比例函数y=﹣x的图象经过点B(a,2).∴2=﹣a,解得,a=﹣3,∴B(﹣3,2),∵一次函数y=kx+b的图象经过点A(﹣2,4),B(﹣3,2),∴,解得,,∴一次函数y=kx+b的解析式为y=2x+8;(2)∵一次函数y=2x+8的图象与x轴交于点C,∴C(﹣4,0),∵正比例函数y=﹣x的图象向下平移m(m>0)个单位长度后经过点C,∴平移后的函数的解析式为y=﹣x﹣m,∴0=﹣×(﹣4)﹣m,解得,m=;(3)∵B(﹣3,2),∴根据图象可知﹣x>kx+b的解集为:x<﹣3.24.【解答】解:(1)如图2:作点A关于x轴的对称点A'(1,﹣1),连A'B交x轴于点P,∴P A+PB的最小值就是A'B的长,∵A'(1,﹣1),点B的坐标为(4,3),∴A'B==5,∴P A+PB的最小值为5;(2)∵AD平分∠BAC,∴∠CAD=∠BAD,∴直线AB与直线AC关于直线AD对称,如图3,作点N关于直线AD的对称点N',连接MN',∴MN=MN',∴BM+MN=BM+MN',∴当点B,点M,点N'三点共线,且BM垂直AC时,BM+MN的值最小,∴此时,BN'⊥AC,∠CAB=60°,∴∠ABM=30°,∴AN'=AB=3,BN'=AN'=3,∴BM+MN的最小值为3,故答案为3;(3)如图4,过作点C关于OB的对称点C',作点D关于OA的对称点D',连接C'D'交OA于点E,交OB于点F,∴CF+EF+DE=C'F+EF+D'F,由两点之间,线段最短,可得CF+EF+DE的最小值为C'D',连接CC'交OB于点G,连接DD'交OA于点N,过点D'作D'P⊥OB于P,作D'H⊥CC'于点H,∵∠AOB=30°,OC=5,OD=12,CC'⊥OB,DD'⊥OA,∴CG==C'G,OG=CG=,DN=6=D'N,∠ODN=60°,∴DD'=12,且D'P⊥OB,∠ODN=60°,∴PD=6=OP,D'P=PD=6,∴C'D'==13,故答案为:13.。

浙教版八年级上册数学期末考试试卷含答案

浙教版八年级上册数学期末考试试卷含答案

浙教版八年级上册数学期末考试试题一、单选题1.下面四个标志中,是轴对称图形的是( )A .B .C .D .2.如图,在△ABC 中,AC 边上的高线是( )A .线段DAB .线段BAC .线段BCD .线段BD3.在下列长度的四根木棒中,能与6cm ,9cm 长的两根木棒钉成一个三角形的是( )A .1cmB .2cmC .3cmD .4cm4.若a >b ,则下列式子正确的是( )A .b+2>a ﹣2B .﹣2017a >﹣2017bC .4﹣a >4﹣bD .44ab 5.在平面直角坐标系中,点(),2A m 与点()3,B n 关于x 轴对称,则( )A .3m =,2n =-B .3m =-,2n =C .3m =,2n =D .2m =-,3n =6.已知点(﹣1,y 1),(4,y 2)在一次函数y =3x+a 的图象上,则y 1,y 2的大小关系是()A .y 1<y 2B .y 1=y 2C .y 1>y 2D .不能确定7.能说明命题“若x 2≥9,则x≥3”为假命题的一个反例可以是( )A .x =4B .x =2C .x =﹣4D .x =﹣28.如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA+PC =BC ,则下列选项正确的是( )A .B .C .D . 9.如图,A ,B 两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C 也在格点上,且ABC 为等腰三角形,在图中所有符合条件的点C 的个数为( )A .7B .8C .9D .1010.如图,在平面直角坐标系中,点A 的坐标为(4,0),点Q 是直线y 上的一个动点,以AQ 为边,在AQ 的右侧作等边△APQ ,使得点P 落在第一象限,连接OP ,则OP+AP 的最小值为( )A .6B .C .8D .二、填空题11.命题“内错角相等,两直线平行”的题设是__________.12.已知点A 的坐标为(3,4),将其向右平移2个单位后的坐标为 _____.13.如图,直线y kx b =+经过点(2,3)A --和点(3,0)B -,直线y ax =经过点A ,则不等式ax kx b <+的解集为______;14.如图,四边形ABCD中,90∠=∠=︒,分别以它的四条边为斜边,向外作等ABC CDA腰直角三角形,其中3个三角形面积分别为2,5,9,则第4个三角形面积为___________.15.已知平面直角坐标系中,O为坐标原点,点A坐标为(0,8),点B坐标为(4,0),点E是直线y=x+4上的一个动点,若△EAB=△ABO,则点E的坐标为_____________.16.如图,在△ABC中,AB>AC,△B=45°,AC=5,BC=E是AB边上一点,将△BEC沿EC所在直线翻折得到△DEC,DC交AB于F,当DE△AC时,BE的长为_____.17.如图,等腰直角△ABC中,D为斜边AB的中点,E,F分别为腰AC,BC上(异于端点)的点,DE△DF,AB=10,设x=DE+DF,则x的取值范围是__________.三、解答题18.如图,已知AC 平分△BAD ,AB =AD .求证:△B =△D .19.解不等式组:1+221 1.3x x >-⎧⎪-⎨≤⎪⎩ 20.如图所示的象棋棋盘上,若帅位于点(1,0)上,相位于点(3,0)上.(1)请在如图所示的网格中建立平面直角坐标系;(2)炮所在点的坐标是 ,马与帅的距离是 ;(3)若要把炮移动到与它关于y 轴对称的点的位置,则移动后炮的位置是 (用坐标表示).21.如图,一次函数y =﹣2x+4的图象分别与x 轴、y 轴交于点A ,B .(1)求△AOB的面积;(2)在该一次函数图象上有一点P到x轴的距离为6,求点P的坐标.22.某公司购买A B、两种不同品牌的免洗洗手液,若购买A种10件,B种5件,共需130元;若购A种5件,B种10件,共需140元.、两种洗手液每件各多少元?(1)A B、两种洗手液共100件,且总费用不超过900元,则A种洗手液至少需要购(2)若购买A B买多少件?23.甲、乙两人分别从同一公路上的A,B两地同时出发骑车前往C地,两人行驶的路程y (km)与甲行驶的时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)A,B两地相距km;乙骑车的速度是km/h;(2)请分别求出甲、乙两人在0≤x≤6的时间段内y与x之间的函数关系式;(3)求甲追上乙时用了多长时间.24.在△ABC中,△BAC=90°,AB=AC.(1)如图1,点D是CA延长线上的一点,点E在线段AB上,且AD=AE,连接BD和CE,延长CE交BD于点F.求证:BD=CE;(2)在(1)的条件下,若点F为BD的中点,求△AFD的度数;(3)如图2,点P是△ABC外一点,△APB=45°,猜想PA,PB,PC三条线段长度之间存在的数量关系,并证明你的结论.25.如图,在平面直角坐标系中,直线y=kx+b分别交x轴,y轴于点A(6,0),点B(0,﹣8),过点D(0,16)作平行于x轴的直线CD,交AB于点C,点E(0,m)在线段OD 上,延长CE交x轴于点F,点G在x轴的正半轴上,且AG=AF.(1)求直线AB的函数表达式;(2)当点E恰好是OD的中点时,求△ACG的面积;(3)是否存在m,使得△FCG是直角三角形?若存在,求m的值;若不存在,请说明理由.参考答案1.B【分析】结合轴对称图形的概念进行求解即可.【详解】解:根据轴对称图形的概念可知:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.D【分析】从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.【详解】由图可知, △ABC 中AC 边上的高线是BD .故选:D .【点睛】本题主要考查了三角形的高线,钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.3.D【分析】首先设第三根木棒长为xcm ,再根据三角形三边关系,即可求得3<x <15,据此即可判定.【详解】解:设第三根木棒长为xcm ,由题意得:9﹣6<x <9+6,所以3<x <15,故只有4cm 符合题意.故选:D .【点睛】本题考查了三角形三边关系,熟练掌握和运用三角形三边关系是解决本题的关键.4.D【分析】根据不等式的性质 (△不等式的两边都加上或减去同一个数或整式, 不等号的方向不变,△不等式的两边都乘以或除以同一个正数, 不等号的方向不变,△不等式的两边都乘以或除以同一个负数, 不等号的方向改变)逐个判断即可.【详解】解:A,a>b,∴a -2>b -2,无法得出A 中结论,故本选项错误; B.a>b, ∴﹣2017a <﹣2017b,故本选项错误; C.a>b, ∴-a<-b,∴4-a<4-b, 故本选项错误; D. a>b, ∴4a >4b , 故本选项正确; 故选D.【点睛】本题考查了对不等式的性质的应用, 主要考查学生的辨析能力, 是一道比较典型的题目,难度适中.5.A【分析】根据关于x 轴对称的两点横坐标相等,纵坐标互为相反数即可求得m 与n 的值.【详解】根据关于x 轴对称的两点横坐标相等,纵坐标互为相反数可知3m =,2n =-,故选:A .【点睛】本题主要考查了关于x 轴对称的两点的坐标特征,熟练掌握平面直角坐标系中的相关对称知识是解决本题的关键.6.A【分析】根据一次函数y =3x+a 的一次项系数k >0时,函数值随自变量的增大而增大的性质来求解即可.【详解】解:△一次函数y =3x+a 的一次项系数为3>0,△y 随x 的增大而增大,△点(﹣1,y 1),(4,y 2)在一次函数y =3x+a 的图象上,﹣1<4,△y 1<y 2,故选:A .【点睛】本题考查了一次函数的性质,掌握y kx b =+,0k >时,y 随x 的增大而增大是解题的关键.7.C【分析】把x 的值分别代入x 2≥9且与3比较,即可判定【详解】解:当x =﹣4时,满足x 2≥9,但不能得到x≥3,说明命题“若x 2≥9,则x≥3”是假命题的一个反例可以是x =﹣4.故选:C .【点睛】本题考查了判定一个命题真假的方法,熟练掌握和运用判定一个命题真假的方法是解决本题的关键.8.B【详解】解:△PB+PC=BC ,PA+PC=BC ,△PA=PB ,根据线段垂直平分线定理的逆定理可得,点P 在线段AB 的垂直平分线上,故可判断B 选项正确.故选B .9.B【分析】分两种情况:△AB 为等腰三角形的底边;△AB 为等腰三角形的一条腰;画出图形,即可得出结论.【详解】解:如图所示:△AB为等腰三角形的底边,符合条件的点C的有5个;△AB为等腰三角形的一条腰,符合条件的点C的有3个.所以符合条件的点C共有8个.故选:B.【点睛】此题考查了等腰三角形的判定,熟练掌握等腰三角形的判定是解题的关键,注意数形结合的解题思想.10.C【分析】根据点Q的运动先证明点P在直线PM是运动,再根据轴对称最值问题,作点P 关于直线PM的对称点B,连接AB,求出AB的长即可.【详解】解:如图,作△OAM=60°,边AM交直线OQ于点M,作直线PM,由直线y可知,△MOA=60°,△△MOA=△OAM=60°,△△OAM是等边三角形,△OA=OM,△△APQ是等边三角形,△AQ=AP,△PAQ=60°,△△OAQ=△MAP,△△OAQ△△MAP(SAS),△△QOA=△PMA=60°=△MAO,△PM△x轴,即点P在直线PM上运动,过点O关于直线PM的对称点B,连接AB,AB即为所求最小值,此时,在Rt△OAB中,OA=4,△BAO=60°,△△OBA=30°,△AB=2OA=8.故选:C.【点睛】本题属于一次函数与几何综合题,涉及勾股定理,等边三角形的性质与判定,全等三角形的性质与判定,轴对称最值问题,旋转的性质等知识,解题的关键是得出点P在直线PM是运动.11.内错角相等【分析】根据一个命题都可以改成“如果…那么…”的形式,如果后面的部分是题设,那么后面的部分是结论,由此问题可求解.【详解】解:命题“内错角相等,两直线平行”改为“两条直线被第三条直线所截,如果一对内错角相等,那么这两条直线平行”,所以这个命题的题设为内错角相等;故答案为内错角相等.【点睛】本题主要考查命题的题设与结论,熟练掌握命题的题设和结论的书写是解题的关键.12.(5,4)【分析】直接利用平移的变化规律求解即可.平移的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】解:原来点的横坐标是3,纵坐标是4,向右平移2个单位得到新点的横坐标是3+2=5,纵坐标不变.则新坐标为(5,4).故答案为:(5,4).【点睛】本题考查了平移坐标的变化规律,即平移的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,熟练掌握知识点是解题的关键.x13.<2【分析】不等式ax kx b <+的解集,就是指函数图象在点A 左边的部分的自变量的取值范围.【详解】解:根据题意,y kx b =+与y ax =都经过点(2,3)A --,结合图像可知,不等式ax kx b <+的解集为<2x -.故答案为:<2x -【点睛】本题主要考查一次函数与一元一次不等式之间的联系.根据函数图象即可得到不等式的解集.14.12【分析】连接AC ,先根据等腰直角三角形的面积公式、勾股定理可得222,,AB BC AD 的值,再利用勾股定理可得2CD 的值,由此即可得.【详解】解:如图,连接AC ,ABE 是等腰直角三角形,且它的面积为5,211522AE BE AE ∴⋅==,即210AE =, 2222220AB AE BE AE ∴=+==,同理可得:2236,8BC AD ==,90ABC CDA ∠=∠=︒,22222AB BC AC AD CD ∴+==+,即220368CD +=+,解得248CD =,在等腰Rt CDF 中,22222CD CF DF CF =+=,即221242CF CD ==, 则等腰Rt CDF 的面积为21112412222CF DF CF ⋅==⨯=, 故答案为:12.【点睛】本题考查了等腰直角三角形、勾股定理,熟练掌握勾股定理是解题关键.15.(-12,-8);(4,8)【分析】分两种情况:当点E 在y 轴右侧时,由条件可判定AE△BO ,容易求得E 点坐标;当点E 在y 轴左侧时,可设E 点坐标为(a ,a+4),过AE 作直线交x 轴于点C ,可表示出直线AE 的解析式,可表示出C 点坐标,再根据勾股定理可表示出AC 的长,由条件可得到AC=BC ,可得到关于a 的方程,可求得E 点坐标.【详解】(1)当点E 在y 轴右侧时,如图1,连接AE ,△△EAB=△ABO ,△AE△OB ,△A (0,8),△E 点纵坐标为8,又E 点在直线y=x+4上,把y=8代入可求得x=4,△E 点坐标为(4,8);(2)当点E 在y 轴左侧时,过A 、E 作直线交x 轴于点C ,如图2,设C(m,0),△△EAB=△ABO,△AC=BC,△(4-m)2=m2+82,解得m=-6,△C(6,0)△直线AC的解析式为483y x=+,△E是直线AC与y=x+4的交点△联立4834y xy x⎧=+⎪⎨⎪=+⎩,解得128xy=-⎧⎨=-⎩△E(-12,-8).综上可知,E点坐标为(4,8)或(-12,-8).故答案为:(4,8)或(-12,-8).【点睛】本题主要考查一次函数的综合应用,涉及待定系数法、平行线的判定和性质、等腰三角形的性质、分类讨论思想等知识点.确定出E点的位置,由条件得到AE△OB或AC=BC 是解题的关键.本题难度未大,注意考虑全面即可.16.2【分析】作CH△AB于H,EM△BC于M,求出BH=CH=4,根据AC=5,可得AH=3,AB=7,然后再证明△ACE=△AEC,得到AE=AC=5,即可求出BE=2.【详解】解:如图,作CH△AB于H,EM△BC于M,△△B=45°,BC=,△BH=CH=4,△AC=5,△AH=3,△AB=AH+BH=3+4=7,△将△BEC沿EC所在直线翻折得到△DEC,且DE△AC,△△ACD=△D=△B=45°,△DCE=△BCE,△△ACE=△ACD+△DCE=△B+△BCE=△AEC,△AE=AC=5,△BE=AB﹣AE=7﹣5=2.故答案为:2.【点睛】本题考查翻折变换的性质,等腰直角三角形的性质,勾股定理,平行线的性质,等角对等边等知识,解题的关键是熟练掌握图形翻折的性质.17.10≤<x【分析】过点D作DM△AC,DN△BC,分别交AC、BC于M、N,证明DE=DF,当DE、DF与边垂直时和最小,当E或F有一个与C重合时,其和最大.【详解】如图所示,过点D作DM△AC,DN△BC,分别交AC、BC于M、N,△△ABC是等腰三角形,点D是AB的中点,△DM= DN,又DE△DF,△△EDM=△FDN,在△EDM和△FDN中EMD FND DM DNMDE NDF ∠=∠⎧⎪=⎨⎪∠=∠⎩△EDM △△FDN (ASA),△DE=DF ,在Rt ABC 中, △AB=10,△AC=BC=当DE 、DF 与边垂直时和最小,即1()2DE DF AC BC +=+= 当E 或F 有一个与C 重合时,其和最大,即10DE DF DC DB AB +=+==,△10x <.故答案为:10x <.【点睛】本题主要考查了全等三角形的判定和性质,等腰三角形性质,垂线段最短等,能灵活证明三角形全等,判断出DE+DF 什么情况下和最大,最小是解题的关键.18.见解析【分析】首先根据角平分线的定义,可证得△BAC =△DAC ,再根据SAS 即可证得△ABC△△ADC ,据此即可证得结论【详解】首先根据角平分线的定义得到△BAC =△DAC ,再利用SAS 定理便可证明其全等,进而可得结论.证明:△AC 平分△BAD ,△△BAC =△DAC ,在△ABC 和△ADC 中,AB AD BAC DAC AC AC =⎧⎪∠=∠⎨⎪=⎩, △△ABC△△ADC (SAS ),△△B =△D .【点睛】本题考查了角平分线的定义及全等三角形的判定和性质,熟练掌握和运用全等三角形的判定方法是解决本题的关键.19.-3<x≤2【详解】解:解不等式△得:x>-3,将△化简得:2x-1≤3,解得:x≤2,△不等式组的解为-3<x≤2.20.(1)见解析(2)(﹣2,2);2(3)(2,2)【分析】(1)根据已知两点的坐标可确定平面直角坐标系,再判断其它各点的坐标;(2)根据点的坐标确定距离;(3)根据对称关系即可求解平移的位置.(1)根据帅位于点(1,0)上,相位于点(3,0),坐标系如图:(2)炮位于点(﹣2,2),马与帅的距离是2,故答案为:(﹣2,2);2;(3)炮移动到关于y轴对称的位置应该为马的右侧一个单位,则移动后炮的位置是(2,2).故答案为:(2,2).【点睛】本题考查了构建直角坐标系,读出点的坐标,根据坐标求距离,以及关于坐标轴对称的点的特征,灵活掌握性质是本题的关键.21.(1)4;(2)P点坐标(﹣1,6),(5,﹣6)【分析】(1)根据题意可求A,B两点坐标,即可求△AOB的面积.(2)由点P到x轴的距离为6,即|y|=6,可得y=±6,代入解析式可求P点坐标.【详解】解:(1)当x=0时,y=4,当y=0时,x=2△A (2,0),B (0,4)△AO =2,BO =4△S△AOB =12AO×BO =4 (2)△点P 到x 轴的距离为6△点P 的纵坐标为±6△当y =6时,6=﹣2x+4△x =﹣1,即P (﹣1,6)当y =﹣6时,﹣6=﹣2x+4△x =5,即P (5,﹣6)△P 点坐标(﹣1,6),(5,﹣6)22.(1)A 种洗手液每件8元,B 种洗手液每件各10元;(2)50件【分析】(1)设A 种洗手液每件x 元,B 种洗手液每件各y 元,根据题意列出二元一次方程组,解方程组即可求解;(2)设A 种洗手液购买m 件,根据题意列出不等式,从中找到最小整数解即可.【详解】解:(1)设A 种洗手液每件x 元,B 种洗手液每件各y 元, 根据题意得105130510140x y x y +=⎧⎨+=⎩解得:810x y =⎧⎨=⎩ 答:A 种洗手液每件8元,B 种洗手液每件各10元;(2)设A 种洗手液购买m 件,则B 种洗手液购买()100m -件,根据题意可得()810100900m m +-≤,解得:50m ≥.答:A 种洗手液至少需要购买50件.23.(1)20;5;(2)甲、乙两人在0≤x≤6的时间段内y 与x 之间的函数关系式分别为10y x =,520y x =+;(3)甲追上乙用了4小时的时间【分析】(1)根据图象可直接求出A 、B 两地的相距距离,然后由图象可知乙行驶10km 所需的时间为2小时,由此问题可求解;(2)设甲、乙两人在0≤x≤6的时间段内y 与x 之间的函数关系式分别为y kx =、y ax b =+,然后把点()()()6,60,2,30,0,20代入求解即可;(3)由题意可联立(2)中的两个函数关系式进行求解即可.【详解】解:(1)由图象可知:A 、B 两地的相距20km ;乙骑车的速度为(30-20)÷2=5km/h ; 故答案为20;5;(2)设甲、乙两人在0≤x≤6的时间段内y 与x 之间的函数关系式分别为y kx =、y ax b =+,则由图象可把点()6,60代入甲的函数关系式得:660k =,解得:10k =,△甲的函数关系式为10y x =;把点()()2,30,0,20代入乙的函数关系式得:23020a b b +=⎧⎨=⎩,解得:520a b =⎧⎨=⎩,△乙的函数关系式为520y x =+;(3)由(2)可联立关系式得:10520y xy x =⎧⎨=+⎩,解得:440x y =⎧⎨=⎩,△甲追上乙用了4小时的时间.24.(1)见解析(2)45°(3)PB ﹣PC =,理由见解析【分析】(1)由两个等腰直角三角形得到两个三角形全等的条件,即可;(2)利用(1)得到的结论,判断出点A ,E ,F ,D 四点共圆,即可;(3)利用三角形相似的判定和性质,再利用勾股定理,即可.【详解】(1)证明:△△BAC =90°,△△BAC =△DAB =90°,在Rt△EAC 和Rt△DAB 中,AD AEDAB EAC AB AC=⎧⎪∠=∠⎨⎪=⎩,△Rt△EAC△Rt△DAB (SAS ),△CE =BD ;(2)解:如图1,由(1)有,Rt△EAC△Rt△DAB,△△ABD=△ACE,△△ACE+△AEC=90°,△△ABD+△AEC=△ABD+△BEF=90°,△△DAE=90°,△点A,E,F,D四点共圆,△△AFE=△ADE=45°,△△AFD=45°;(3)解:结论:PB﹣PC=.理由:如图2,在PB上截取PM=PC,由(2)有,△BPC=90°,△CM=,△PMC=45°,△△BMC=135°,△△APB=45°,△△APC=135°,△△APC=△BMC,△△ACP+△ACM=△BCM+△ACM=45°,△△ACP=△BCM,△△APC△△BMC ,△PC PA CM MB ==△BM =,△PB =PM+BM =PC ,△PB ﹣PC =.25.(1)y 43=x ﹣8 (2)192(3)存在,m =7或4【分析】(1)将点A 、B 的坐标代入函数表达式:y =kx+b ,即可求解;(2)证明△EDC△△EOF (AAS ),由全等三角形的性质得出OF =CD =18,求出AG =AF =24,过点C 作CH△x 轴于点H ,由三角形面积公式可得出答案;(3)△当△FGC =90°时,AG =AF ,则AC 是中线,则AF =AC =20,故点F (﹣14,0),即可求解;△当△CGF =90°时,则点G (18,0),则AF =AG =12,故点F (﹣6,0),即可求解.(1)解:将点A 、B 的坐标代入函数表达式:y =kx+b , 608k b b +=⎧⎨=-⎩, 解得:438k b ⎧=⎪⎨⎪=-⎩, △直线的表达式为:y 43=x ﹣8; (2) 当y =16时,43x ﹣8=16, 解得x =18,△点C 的坐标为(18,16),△CD =18,△E 是OD 中点,△DE =OE ,△△CDE=△FOE,△DEC=△OEF,△△EDC△△EOF(ASA),△OF=CD=18,△AG=AF=OF+OA=24,过点C作CH△x轴于点H,△S△ACG1122AG CH=⨯⨯=⨯24×16=192;(3)△当△FCG=90°时,AG=AF,则AC是中线,则AF=AC=20,故点F(﹣14,0),由点C、F的坐标可得:直线CF的表达式为:y12=x+7,故点E(0,7),则m=7;△当△CGF=90°时,则点G(18,0),则AF=AG=12,故点F(﹣6,0),同理直线CF的表达式为:y23=x+4,故m=4;综上可得,m=7或4.21。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年八年级数学上册期末复习测试卷
学校:__________ 姓名:__________ 班级:__________ 考号:__________
题号 一 二 三 总分 得分
评卷人 得分
一、选择题
1.(2分)小亮早晨从家骑车到学校,先上坡后下坡,行程情况如图所示.若返回时,上坡、下坡的速度仍保持不变,那么小明从学校骑车回家用的时间是( ) A .37.2分钟
B .48分钟
C .30分钟
D .33分钟
2.(2分)两个完全相间的长方体的长,宽,高分别是5 cm ,4 cm ,3 cm ,把它们叠放在一起组成一个新长方体,在这些新长方体中,表面积最大的是( ) A .188cm 2
B .176cm 2
C .164cm 2
D .158 cm 2
3.(2分)不等式34x x -<的解集在数轴上的正确表示是( )
A .
B .
C .
D .
4.(2分)如果一个角的两边与另一个角的两边分别平行,则这两个角的关系是( ) A .相等
B .互余
C .互补
D .相等或互补
5.(2分)如图,学校的保管室里,有一架5 m 长的梯子斜靠在墙上,此时梯子与地面所成的角为45°.如果梯子底端0固定不动,顶端靠到对面墙上,此时梯子与地面所成的角为60°,则此保管室的宽度AB 为( ) A .5(21)2
+m
B .5(32)2
+m
C .32
D .5(31)2
+ m
6.(2分)在一次乒乓球比赛中,甲、乙两名运动员7局球的比分依次是
6:11,10:12,7:11,11:8,13:11,12:10,11:6,则运动员甲7局得分(6,10,7,11,13,12,Il)的众数、中位数、平均数分别是()
A.6,11,11 B.11,12,10 C.11,11,9 D.11,11,10
7.(2分)等腰三角形周长是29,其中一边是7,则等腰三角形的底边长是()
A.15 B.15或7 C.7 D.11
8.(2分)在下列图形中,折叠后可围成正方体的是()
A.B. C. D.
9.(2分)十位学生的鞋号由小到大分别是20、21、22、22、22、22、23、23、24、24。

这组数据的平均数、中位数、众数中鞋厂最感兴趣的是()
A.平均数B.众数C.中位数D.平均数和中位数10.(2分)班级组织有奖知识竞赛,小明用100元班费购买笔记本和钢笔共30件,已知笔记本每本2元,钢笔每支5元,那么小明最多能买钢笔()
A.20支 B.14支 C.13支 D.10支
11.(2分)某服装销售商在进行市场占有情况的调查时,他应该最关注已售出服装型号的()
A.平均数B.众数C.中位数D.最小数
12.(2分)在海上,灯塔位于一艘船的北偏东40°方向,那么这艘船位于这个灯塔的
()
A.南偏西50°方向B.南偏西40°方向
C.北偏东50°方向D.北偏东40°方向
13.(2分)我市某一周的最高气温统计如下表:
最高气温(℃)25262728
天数1123
则这组数据的中位数与众数分别是()
A.27℃,28℃B.27.5℃,28℃C.28℃,27℃D.26.5℃,27℃
评卷人得分
二、填空题
14.(3分)等腰三角形一腰上的高与另一腰的夹角为30°,腰长为4cm,则其腰上的高
为 .
15.(3分)一组数据的方差是2222212310
1
[(4)(4)(4)(4)]10
S x x x x =-+-+-++-L ,则这组数据共有
个,平均数是 .
16.(3分)如图,把直线3y x =-向上平移后得到直线AB ,直线AB 经过点(m ,n ),且
35m n +=,
则直线AB 的解析式是 .
17.(3分)用等腰直角三角板画∠AOB=45°,并将三角板沿OB 方向平移到如图所示的虚线处后绕点M 逆时针方向旋转 28°,则三角板的斜边与射线 OA 的夹角α为 .
18.(3分)在△ABC 中,点D 是BC 上,∠BAD=80°,AB=AD=DC ,则∠C= . 19.(3分)三角形三内角的度数之比为1:2:3,最大边长8cm ,则最小边长 cm . 20.(3分)如图,CD 平分∠ACB ,AE ∥DC 交BC 的延长线于点E ,若∠ACE=80°,则∠CAE= .
21.(3分)如图,点E 是∠AOB 的平分线上一点,EC ⊥OA,ED ⊥OB,垂足分别是C 、D ,若OE=4,∠AOB=60°,则DE=_______.
22.(3分)如图是一个几何体的三视图,根据图示,可计算出该几何体的侧面积为 . 23.(3分)如图,直角坐标系中,△ABC 的顶点都在网格点上.其中,A 点坐标为(2,一1),则△ABC 的面积为_____________平方单位.
24.(3分)农科院为了选出适合某地种植的玉米种子,对甲、乙两个品种各用10块试验田
A
O B E C
D
进行试验,得到和试验田每公顷产量的数据,通过计算得到数据的平均数为7.54x 甲≈,
7.53x 乙≈,数据的方差为20.01S 甲≈,20.002S 乙≈,则这两种玉米的产量比较稳定的是
__________.
25.(3分)边长为a 的正三角形的面积等于__________. 评卷人 得分
三、解答题
26.(6分)在△ABC 中,AB=AC ,点D ,E 分别在边BC ,AC 上. 实验与探究
(1)如图①,若∠BAD=30°,AD 是BC 上的高,AD=AE ,则∠EDC= ; (2)如图②,若∠BAD=40°,AD 是BC 上的高,AD=AE ,则∠EDC= .
归纳与发现
(3)通过对图①,②的观察和对∠EDC 的探究,当AD 是BC 上的高,AD=AE 时,你会发现∠BAD 与∠EDC 之间有什么关系?请用式子表示; 运用与推广
(4)如图③,如果AD 不是BC 上的高,AD=AE ,上述关系是否成立?若成立,请你写出来,并说明理由;若不成立,请举出反例.
27.(6分)小敏暑假到某一名山旅游,从科学课上知道山区气温随着海拔高度的增加而下降,沿途她利用随身所带的登山表检测气温,气温y (℃)与海拔高度x (m)存在着下列关系:
海拔高度x (m) 400 500 600 700 … 气想y (℃)
32
31.4
30.8
30.2

(1)现以海拔高度为x 轴,气温为y 轴建立平面直角坐标系(如图),根据提供的数据,请通过描点画图探究y 与x 之间的函数关系,并求出函数解析式;
(2)若小敏到达山巅时,测得当时气温为19.4℃,请求出这里的海拔高度.
28.(6分)小明在做一次函数的一道练习题时,作业本被顽皮的小弟弟不小心泼洒了墨水,结果图象和部分列表数据被污浊了. 请你根据题中提供的信息,帮助小明补全表格和图象,并回答相关问题.
(1)列表:
表中污浊处的x= ,y= ;
(2)图象:
(3)请写出y与x的函数解析式(写出计算过程);
(4)求函数图象与两条坐标轴所围成的三角形的面积.
29.(6分)(1)画出如图所示的几何体的三视图;
(2)在如图所示的4×4的方格(小正方形的边长为1)上画出长度为5的线段.
30.(6分)下表是某市4所中学举行男子足球单循环赛的成绩登记表. 表中①与②表示的是同一场比赛,在这场比赛中一中进了 3 个球,三中进了2个球,即一中以 3:2胜三中,或者说三中以 2:3 负于一中,其余依次类推. 按照比赛规则胜一场得 3 分,平一场得 1 分,负一场得 0 分.
(1)本次足球单循环赛共进行了几场比赛?你能排出他们的名次吗?
(2)求各场比赛的平均进球数;
(3)求备场比赛进球数的众数和中位数.
【参考答案】***试卷处理标记,请不要删除
评卷人得分
一、选择题
1.A
2.C
3.C
4.D
5.A
6.D
7.C
8.C
9.B
10.D
11.B
12.B
13.A
二、填空题14
15.10.4
16.35
y x
=-+
17.28°
18.25°
19.4
20.50°
21.2
22. 8π
23.5
24.乙
25.2
4
a
三、解答题
26.(1)15°(2)20°(3)∠EDC=1
2
∠BAD
(4)仍成立,理由如下:∵AB=AC,∴∠B=∠C.∵AD=AE,∴∠ADE=∠AED. 在△EDC
中,∠AED= ∠C+∠EDC. 在△ADB 中,∠ADE+∠EDC =∠BAD+∠ B,∴∠EDC=1
2

BA
27.(1)描点画图略,图象是直线,所以此函数为一次函数,此一次函数解析式为3
34.4500
y x =-
+ (2)2500m
28.(1)-1,-1 (2)略 (3)23y x =-+ (4)94
29.略
30.(1)6场比赛,二中是第一名,一中是第二名,三中是第三名,四中是第四名; (2)各场比赛的进球数为1,5,2,2,3,5. ∴平均进球数1
6
x =⨯(1+5+2+2+3+5)=3(个);
(3)各场比赛进球数的众数2个和5个,中位数为2.5个.。

相关文档
最新文档